JPH0565780B2 - - Google Patents

Info

Publication number
JPH0565780B2
JPH0565780B2 JP14329588A JP14329588A JPH0565780B2 JP H0565780 B2 JPH0565780 B2 JP H0565780B2 JP 14329588 A JP14329588 A JP 14329588A JP 14329588 A JP14329588 A JP 14329588A JP H0565780 B2 JPH0565780 B2 JP H0565780B2
Authority
JP
Japan
Prior art keywords
ice
making
compartment
chamber
making compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14329588A
Other languages
Japanese (ja)
Other versions
JPH01312372A (en
Inventor
Yasuo Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP14329588A priority Critical patent/JPH01312372A/en
Publication of JPH01312372A publication Critical patent/JPH01312372A/en
Publication of JPH0565780B2 publication Critical patent/JPH0565780B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、球状氷等の如き異形氷塊を自動的
に製造する製氷機の除氷運転制御方法に関し、更
に詳しくは、第1製氷室に設けた第1製氷小室
を、第2製氷室に設けた第2製氷小室により下方
から閉成し、両製氷小室中に画成される内部空間
に所要形状の氷塊を製造する自動製氷機におい
て、除氷運転に伴い前記第2製氷室を第1製氷室
から強制的に離脱させた際に、得られた氷塊を前
記第1製氷小室に確実に残留させ得る除氷運転制
御方法に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for controlling the deicing operation of an ice maker that automatically produces irregularly shaped ice cubes such as spherical ice. In an automatic ice-making machine that closes a first ice-making compartment from below with a second ice-making compartment provided in a second ice-making compartment and produces ice blocks of a desired shape in an internal space defined in both ice-making compartments, ice removal is performed. The present invention relates to a deicing operation control method that can ensure that the obtained ice cubes remain in the first ice making compartment when the second ice making compartment is forcibly separated from the first ice making compartment during operation.

従来技術 正六面体状の角氷や所要厚みの板氷その他の氷
塊を連続的に製造する自動製氷機が、各種の産業
分野で用途に応じて好適に使い分けられている。
例えば、前記の角氷を製造する製氷機として、 製氷室に下向きに多数画成した立方体状の製
氷小室を、その下方から水皿により開閉自在に
閉成し、当該水皿から製氷水を各製氷小室に噴
射供給して、該小室中に角氷を徐々に形成する
ようにした所謂クローズドセル方式や、 下方に開放する多数の製氷小室に、製氷水を
直接供給し(水皿を介することなく)、角氷を
該小室中に形成するようにした所謂オープンセ
ル方式が知られている。
BACKGROUND OF THE INVENTION Automatic ice making machines that continuously produce regular hexahedral ice cubes, ice sheets of a required thickness, and other ice blocks are suitably used in various industrial fields depending on the purpose.
For example, as an ice maker for producing ice cubes, a large number of cube-shaped ice-making compartments are defined downward in the ice-making compartment, which can be opened and closed from below by a water tray, and ice-making water is poured into each compartment from the water tray. There is a so-called closed-cell method in which ice cubes are gradually formed in the ice-making chamber by injection into the ice-making chamber, and ice-making water is directly supplied to a number of ice-making chambers that open downward (through a water tray). A so-called open cell system is known in which ice cubes are formed in the small chamber.

また、板氷を連続製造する製氷機としては、冷
凍系に接続する蒸発器を備えた製氷板を傾斜配置
し、この製氷板の表面または裏面に製氷水を流下
供給して、当該製氷板面上に板氷を形成する流下
式が広く普及している。更に前記の製氷機により
得られた板氷を破砕して、細粒状のクラツシユア
イスを得る製氷方式や、冷却筒の内壁面に水を流
下凍結させて氷層を形成し、この氷層を回転オー
ガの切削刃により掻き削つてフレーク状の氷を得
るオーガ式も実施されている。
In addition, as an ice-making machine that continuously produces ice sheets, an ice-making plate equipped with an evaporator connected to the refrigeration system is arranged at an angle, and ice-making water is supplied flowing down to the front or back surface of the ice-making plate. The flow-down method, which forms a sheet of ice on top, is widely used. Furthermore, there is an ice making method in which the sheet ice obtained by the ice making machine described above is crushed to obtain fine granular crushed ice, and an ice making method in which water flows down and freezes on the inner wall of the cooling cylinder to form an ice layer. An auger-type method is also used in which flaky ice is obtained by scraping it with the cutting blade of a rotating auger.

発明が解決しようとする課題 従来の各種製氷機により製造される氷は、前述
した如く、立方体状の角氷や板氷、その他フレー
ク状の氷やクラツシユアイスがその全てである。
これらの氷の内で所要の定形を備え、そのまま飲
料に浮かせたり、各種食材の冷却用ベツドに使用
し得るのは、僅かに前記の角氷に過ぎない(板氷
は、定形を備えて製造されるが、通常そのままの
寸法では使用し得ない)。しかるに最近の喫茶店
やレストランその他のサービス施設では、同業他
社に対し種々の面で優位に立つて差別化を図り、
顧客を吸引するための懸命な努力が払われてい
る。その一例として、従来より広く流通している
角氷の使用に替えて球体状の氷を採用し、これに
より顧客に目先の新しい変化を提供しようとする
傾向がみられる。
Problems to be Solved by the Invention As mentioned above, ice manufactured by various conventional ice making machines are all cube-shaped ice cubes, sheet ice, other flaky ice, and crushed ice.
Of these ice cubes, only the ice cubes mentioned above have the required shape and can be floated on drinks or used as cooling beds for various foodstuffs. (However, it cannot normally be used in its original size.) However, in recent years, coffee shops, restaurants, and other service facilities have sought to differentiate themselves from their competitors in various ways.
Hard efforts are being made to attract customers. One example of this is the trend of using spherical ice cubes instead of the conventionally widely distributed ice cubes, thereby offering customers immediate new changes.

この球状氷は、広く飲食に供されることから、
空気混入による白濁がなく、清澄な透明氷塊で商
品価値の高いものでなければならず、また大量に
製造可能であることを必要とするが、従来この種
の要請を満たす自動製氷機は存在しなかつた。そ
こで、本願の発明者は、透明で清澄な球状氷を大
量に製造し得る製氷機を開発し、前記の要請を充
分に満足する機構を得るに至つたので、その基本
概念につき昭和63年1月29日付けで、発明「自動
製氷機」として特許出願を行なつた。(特開平1
−196477号公報参照) 先の出願に係る製氷機は、下方に開放する第
1製氷小室を多数画成し、背面に蒸発器を備えた
第1製氷室と、上方に開放する第2製氷小室を
多数画成した第2製氷室とを基本的に備え、製氷
運転に際し第1および第2の製氷小室が対応的に
閉成して、その内部に球体状等の氷形成用空間を
画成するよう構成されている。この製氷機で製氷
運転を行なつて、前記空間に球状氷等の氷塊を生
成した後は、除氷運転に移行して両製氷小室から
氷塊を除去してやる必要がある。
This spherical ice is widely used for eating and drinking.
Ice cubes must be clear and transparent, with no cloudiness due to air inclusion, and must have high commercial value, and must be able to be manufactured in large quantities, but no automatic ice maker has hitherto existed that meets these requirements. Nakatsuta. Therefore, the inventor of the present application developed an ice making machine capable of producing large amounts of transparent and clear spherical ice, and obtained a mechanism that fully satisfies the above requirements. On April 29th, he filed a patent application for his invention, ``Automatic Ice Maker.'' (Unexamined Japanese Patent Publication No. 1
-Refer to Publication No. 196477) The ice-making machine according to the earlier application defines a number of first ice-making compartments that open downward, and includes a first ice-making compartment equipped with an evaporator on the back, and a second ice-making compartment that opens upward. Basically, the ice-making chamber is equipped with a second ice-making chamber defining a large number of small ice-making chambers, and during ice-making operation, the first and second ice-making chambers correspondingly close to define a spherical or other ice-forming space therein. is configured to do so. After performing ice making operation with this ice maker and producing ice blocks such as spherical ice in the space, it is necessary to shift to deicing operation and remove the ice blocks from both ice making compartments.

このために、第1製氷室を下方から閉成してい
る第2製氷室を、該第1製氷室に対し強制的に離
脱させるが、このとき氷塊自体は第1および第2
製氷小室の内面に強固に氷結しているので、これ
ら両製氷小室に対し氷結を解除させる順番が重要
となる。蓋し、第1および第2製氷小室を同時に
加熱すると、両製氷小室に対する氷結を解除され
た氷塊は、第2製氷室が強制離脱されるに伴い一
挙に落下してしまう。そしてこの場合は、第2製
氷室に凹設されて上方に開いている第2製氷小室
に氷塊が引掛かつて残留したり、貯氷庫への氷塊
の円滑な落下が妨げられる等の不都合な事態を生
ずる。
For this purpose, the second ice-making compartment, which closes the first ice-making compartment from below, is forcibly separated from the first ice-making compartment, but at this time, the ice cubes themselves are removed from the first and second ice-making compartments.
Since the inner surface of the ice-making chamber is firmly frozen, the order in which the ice is released from both ice-making chambers is important. When the lid is closed and the first and second ice-making compartments are heated simultaneously, the ice cubes that have been thawed from both ice-making compartments fall all at once as the second ice-making compartment is forcibly removed. In this case, inconvenient situations such as ice blocks getting caught and remaining in the second ice-making compartment, which is recessed in the second ice-making compartment and open upwards, or preventing the ice blocks from falling smoothly into the ice storage, may occur. arise.

発明の目的 この発明は、前述した欠点に鑑み、これを好適
に解決するべく提案されたものであつて、除氷運
転に伴い第2製氷室を第1製氷室から強制的に離
脱させた際に、得られた氷塊を一挙に落下させる
ことなく、取敢えず該氷塊を第1製氷小室に確実
に残留させるようにした除氷運転制御方法を提供
することを目的とする。
Purpose of the Invention The present invention has been proposed in view of the above-mentioned drawbacks in order to suitably solve the problems. Another object of the present invention is to provide a deicing operation control method that ensures that the obtained ice blocks remain in the first ice-making compartment without dropping them all at once.

課題を解決するための手段 前述した課題を克服し、所期の目的を好適に達
成するため本発明は、製氷機本体の内部に配置さ
れ、上面に冷凍系に接続する蒸発器を備えると共
に、下面に第1製氷小室を多数凹設してなる第1
製氷室と、製氷機本体の内部に回動自在に枢支さ
れ、製氷運転に際し前記第1製氷小室を下方から
対応的に閉成する第2製氷小室を多数凹設すると
共に、除氷運転に際し前記第1製氷室から離脱し
て該第1製氷小室を開放する第2製氷室と、前記
第2製氷室に配設され、除氷運転に際して付勢さ
れる加熱手段とを備え、製氷水を第1および第2
製氷小室に噴射供給して所要形状の氷塊を製造す
る自動製氷機において、 除氷運転に伴い前記加熱手段を付勢している
間、冷凍系における圧縮機の運転を停止させる制
御を行なうことを特徴とする。
Means for Solving the Problems In order to overcome the above-mentioned problems and suitably achieve the intended purpose, the present invention includes an evaporator disposed inside the ice maker body and connected to the refrigeration system on the top surface, The first ice-making chamber has a number of recessed ice-making chambers on the bottom surface.
The ice-making chamber and a number of second ice-making chambers are rotatably supported inside the ice-making machine body and close the first ice-making chamber correspondingly from below during ice-making operation. A second ice-making compartment that separates from the first ice-making compartment to open the first ice-making compartment; and a heating means that is disposed in the second ice-making compartment and is energized during deicing operation; 1st and 2nd
In an automatic ice making machine that produces ice cubes of a desired shape by injection supplying ice to a small ice making chamber, control is performed to stop the operation of a compressor in a refrigeration system while the heating means is energized during deicing operation. Features.

実施例 次に、本発明に係る自動製氷機の除氷運転制御
方法につき、これを好適に実施し得る装置との関
係において、添付図面を参照しながら以下説明す
る。なお、この発明に係る自動製氷機によれば、
第6図aに示す球状氷1以外に、第6図bに示す
如きダイヤカツト状の多面体氷2も製造可能であ
るが、実施例としては、多数の球状氷を連続製造
する場合について説明する。
Embodiment Next, a method for controlling the deicing operation of an automatic ice maker according to the present invention will be described below with reference to the accompanying drawings in relation to a device that can suitably implement the method. Furthermore, according to the automatic ice making machine according to the present invention,
In addition to the spherical ice 1 shown in FIG. 6a, it is also possible to produce diamond-cut polyhedral ice 2 as shown in FIG. 6b, but as an example, a case will be described in which a large number of spherical ices are continuously produced.

(製氷機構について) 第1図は、本発明に係る除氷運転制御方法を好
適に実施し得る製氷機の主要製氷機構を、製氷状
態で概略的に示すものであつて、傾斜配置した第
1製氷室11と、この第1製氷室11を下方から
開閉自在に閉成可能な第2製氷室12とから製氷
室10が基本的に構成されている。第1製氷室1
1は、熱良導金属を材質とする矩形状の構造体で
あつて、製氷機の筐体(図示せず)内部上方に、
所要の角度傾斜させて固定され、下向きに開放す
る第1製氷小室13が、その下面部に所要の整列
パターンで多数凹設されている。夫々の第1製氷
小室13は半球状凹部として形成され、その直径
は一例として3cmで、従つて凹部の深さは1.5cm
に設定されている。
(About ice-making mechanism) FIG. 1 schematically shows the main ice-making mechanism of an ice-making machine in an ice-making state, which can suitably implement the de-icing operation control method according to the present invention. The ice-making compartment 10 basically includes an ice-making compartment 11 and a second ice-making compartment 12 that can be opened and closed from below. 1st ice making room 1
Reference numeral 1 denotes a rectangular structure made of a metal with good thermal conductivity, and is located above the inside of the ice maker casing (not shown).
A large number of first ice-making chambers 13, which are fixed at a predetermined angle and open downward, are recessed in a predetermined alignment pattern on the lower surface thereof. Each first ice-making chamber 13 is formed as a hemispherical recess, the diameter of which is, for example, 3 cm, and the depth of the recess is therefore 1.5 cm.
is set to .

前記第1製氷室11の上面(つまり各第1製氷
小室13の頂部)に、第3図に示す冷凍系(後
述)の一部を構成する管体からなる蒸発器14が
密着固定され、当該冷凍系を運転することによ
り、この蒸発器14に冷媒が循環されて、第1製
氷室11が氷点下にまで冷却される。また除氷運
転時には、第5図に示す制御回路中のホツトガス
弁HVの開放により、該蒸発器14にホツトガス
を供給して、第1製氷室11を加温し得るように
なつている。
An evaporator 14 made of a tube constituting a part of the refrigeration system (described later) shown in FIG. By operating the refrigeration system, the refrigerant is circulated through the evaporator 14, and the first ice-making compartment 11 is cooled down to below freezing point. Further, during deicing operation, by opening the hot gas valve HV in the control circuit shown in FIG. 5, hot gas can be supplied to the evaporator 14 and the first ice making chamber 11 can be heated.

この第1製氷室11における所要の第1製氷小
室13の頂部に、製氷検知サーモTh1が配設され
ている。この製氷検知サーモTh1は、第5図に示
す制御回路に介装されて、製氷運転中はその接点
c−aを閉成(接点c−bは開放)すると共に、
該製氷運転が終了すると、前記接点c−aを開放
(接点c−bは閉成)し得るよう設定されている。
また、別の第1製氷小室13の頂部に、除氷検知
サーモTh2が配設され、この除氷検知サーモTh2
は、第1製氷小室13が冷却状態にある場合にの
み接点を開放し、該製氷小室13から氷が離間し
て温度上昇を来すと、該接点を閉成するよう設定
されている。
An ice-making detection thermo Th 1 is disposed at the top of a required first ice-making compartment 13 in the first ice-making compartment 11 . This ice-making detection thermometer Th1 is interposed in the control circuit shown in FIG. 5, and during ice-making operation, its contacts ca are closed (contacts c-b are opened).
When the ice-making operation is completed, the contact c-a is set to be opened (the contact c-b is closed).
Further, a de-icing detection thermo Th 2 is disposed at the top of another first ice-making compartment 13, and this de-icing detection thermo Th 2
is set to open the contact only when the first ice-making compartment 13 is in a cooling state, and to close the contact when the ice is separated from the ice-making compartment 13 and the temperature rises.

第1製氷室11の直下には、製氷運転に際し
て、第1製氷小室13を斜め下方から閉成し、か
つ除氷運転に際して、第1製氷室11を開放する
第2製氷室12が配設されている。この第2製氷
室12も熱良導体金属を材質とし、その上面に第
2製氷小室15(各第1製氷小室13と対応する
半球状凹部からなる)が、上向きに所要の整列パ
ターンで多数凹設されている。第2製氷小室15
の直径も、一例として3cmで、凹部の深さ1.5cm
に設定されている。従つて、第1製氷室11を下
方から第2製氷室12により閉成すると、両製氷
小室13,15の内部に直径3cmの球状空間が画
成される。
A second ice-making compartment 12 is disposed directly below the first ice-making compartment 11, which closes the first ice-making compartment 13 diagonally from below during ice-making operation and opens the first ice-making compartment 11 during de-icing operation. ing. This second ice-making chamber 12 is also made of a metal with good thermal conductivity, and on its upper surface, a large number of second ice-making chambers 15 (consisting of hemispherical recesses corresponding to each of the first ice-making chambers 13) are arranged upward in a required alignment pattern. has been done. Second ice making compartment 15
For example, the diameter is 3 cm, and the depth of the recess is 1.5 cm.
is set to . Therefore, when the first ice making chamber 11 is closed by the second ice making chamber 12 from below, a spherical space with a diameter of 3 cm is defined inside both the small ice making chambers 13 and 15.

また、第2製氷小室15の底部周辺に、除氷促
進用の電熱ヒータHが埋設され、第5図の制御回
路に関連して後述する如く、製氷運転が完了する
と、第2製氷室12が所要温度になるまで該ヒー
タHへの通電がなされる。更に、各第2製氷小室
15の底部に所要径の通孔12aが穿設され、こ
れを介して後述する分配管24から製氷水の供給
および未氷結水の排出がなされる。
Further, an electric heater H for promoting ice removal is buried around the bottom of the second ice making chamber 15, and as will be described later in connection with the control circuit in FIG. 5, when the ice making operation is completed, the second ice making chamber 12 is The heater H is energized until the required temperature is reached. Furthermore, a through hole 12a of a required diameter is formed at the bottom of each second ice making chamber 15, and ice making water is supplied and unfrozen water is discharged from a distribution pipe 24, which will be described later, through this hole.

第2製氷室12の上方端部は、製氷機の筐体内
部上方の固定部位に枢軸16を介して傾動自在に
枢支したブラケツト45に取付けられている。そ
して、この第2製氷室12を、枢軸16を中心に
時計方向に回動させれば、前記第1製氷小室13
を開放可能であり(第2図および第4図参照)、
また開放状態から反時計方向に回動させれば、該
第1製氷小室13を再び閉成可能である。なお、
第2製氷室12の開閉手段として、第1図に示す
アクチユエータモータAMが好適に使用され、こ
のモータAMの回転軸にカムレバー17およびレ
バー片37が共通固定されている。
The upper end of the second ice making chamber 12 is attached to a bracket 45 which is tiltably pivoted via a pivot 16 to a fixed portion inside the housing of the ice making machine. If the second ice-making chamber 12 is rotated clockwise about the pivot 16, the first ice-making chamber 13
can be opened (see Figures 2 and 4),
Furthermore, by turning the ice making chamber 13 counterclockwise from the open state, the first ice making chamber 13 can be closed again. In addition,
An actuator motor AM shown in FIG. 1 is preferably used as the opening/closing means for the second ice making chamber 12, and a cam lever 17 and a lever piece 37 are commonly fixed to the rotating shaft of this motor AM.

また前記カムレバー17の先端17aと第2製
氷室12の前方端部との間に、コイルスプリング
18が弾力的に係着されている。前記カムレバー
17の基部に形成したカム面17bは、第1製氷
室11を閉成している第2製氷室12の側部上面
と係合可能に寸法設定されている。第1製氷室1
1には、第5図の回路図に示す切換スイツチS2
配設され、除氷運転に伴うモータAMの回転によ
り前記レバー片37が回動すると、当該スイツチ
S2を接点a−b側から接点a−c側に切換えるよ
うになつている。
Further, a coil spring 18 is elastically engaged between the tip 17a of the cam lever 17 and the front end of the second ice making chamber 12. The cam surface 17b formed at the base of the cam lever 17 is dimensioned so as to be able to engage with the side upper surface of the second ice making chamber 12 that closes the first ice making chamber 11. 1st ice making room 1
1 is provided with a changeover switch S2 shown in the circuit diagram of FIG.
S2 is switched from the contact a-b side to the contact a-c side.

前記第2製氷室12の裏面には、圧力室23を
備える分配管24が僅かな間隙を保持して近接配
置され、この分配管24には前記第2製氷小室1
5の夫々に対応可能な噴水孔25が穿設されてい
る。そして、該第2製氷室12を第1製氷室11
に対し閉成した際に、この噴水孔25の夫々が、
第2製氷小室15に穿設した前記通孔12aに対
応的に臨むように構成してある。
On the back side of the second ice making chamber 12, a distribution pipe 24 including a pressure chamber 23 is arranged close to the second ice making chamber 12 with a slight gap.
A fountain hole 25 corresponding to each of the water fountains 5 and 5 is bored. Then, the second ice making compartment 12 is replaced with the first ice making compartment 11.
When the fountain holes 25 are closed, each of the fountain holes 25
It is configured to face the through hole 12a formed in the second ice making compartment 15 correspondingly.

なお分配管24の下面には、スペーサ46を介
して水案内板47が配設され、前記第2製氷室1
2の下面と平行に延在している。この水案内板4
7は、製氷運転時に第2製氷小室15の通孔12
aから落下する未氷結水を回収し、下方の製氷水
タンク19に案内するためのものである。また第
2製氷室12の所要部位に、温度検知サーモTh3
が配設され、該第2製氷室12の温度を監視し得
るようになつている。
Note that a water guide plate 47 is disposed on the lower surface of the distribution pipe 24 via a spacer 46, and a water guide plate 47 is provided on the lower surface of the distribution pipe 24 to
It extends parallel to the lower surface of 2. This water guide plate 4
7 is a through hole 12 of the second ice making chamber 15 during ice making operation.
This is to collect the unfrozen water that falls from a and guide it to the ice-making water tank 19 below. In addition, a temperature detection thermometer Th 3 is installed at the required part of the second ice making compartment 12.
is arranged so that the temperature of the second ice making compartment 12 can be monitored.

第1図に示す如く、製氷水タンク19は製氷機
の筐体下方で、かつ前記第1および第2製氷室1
1,12の直下に設けられ、タンク本体から斜め
上方に延在する傾斜面19aを有している。この
傾斜面19aと前記水案内板47との間には、図
に示す如く、第2の水案内板48を傾斜的に介在
させておくのが好ましい。前記第2水案内板48
は、その最下端縁が下方に屈曲されて、前記傾斜
面19aの上端部の上方に臨み、未氷結水はこの
屈曲端縁を介して傾斜面19aに案内されると共
に、除氷時の氷塊は第2水案内板48上を滑落し
て、貯氷庫に回収可能になつている。なお、製氷
水タンク19の底部側面から導出した給水管21
は、給水ポンプ22を介して前記圧力室23に連
通され、また該タンク19への給水は、給水弁
WVの開放により、外部水道系に接続している給
水管27を介してなされる。
As shown in FIG. 1, the ice-making water tank 19 is located below the housing of the ice-making machine, and is located in the first and second ice-making compartments 1.
1 and 12, and has an inclined surface 19a extending obliquely upward from the tank body. As shown in the figure, it is preferable that a second water guide plate 48 be interposed between the inclined surface 19a and the water guide plate 47 in an inclined manner. Said second water guide plate 48
The lowermost edge thereof is bent downward and faces above the upper end of the inclined surface 19a, and unfrozen water is guided to the inclined surface 19a via this bent edge, and the ice blocks during deicing are can slide down on the second water guide plate 48 and be collected in the ice storage. In addition, the water supply pipe 21 led out from the bottom side of the ice-making water tank 19
is communicated with the pressure chamber 23 via a water supply pump 22, and water is supplied to the tank 19 through a water supply valve.
Opening of the WV is done via the water supply pipe 27 connected to the external water system.

(冷凍系について) 第3図は、製氷機における冷凍系の概略構成を
示すものであつて、圧縮機CMで圧縮された気化
冷媒は、吐出管34を経て凝縮器28で凝縮液化
し、ドライヤ29で脱湿された後キヤピラリーチ
ユーブ30で減圧され、蒸発器14に流入してこ
こで一挙に膨張して蒸発し、第1製氷室11と熱
交換を行なつて、各第1製氷小室13を氷点下に
まで冷却させる。この蒸発器14で蒸発した気化
冷媒と未蒸発の液化冷媒とは、気液混相状態でア
キユムレータ31に流入し、ここで気液分離がな
される。そして気相冷媒は、吸入管32を経て圧
縮機CMに帰還し、液相冷媒は当該アキユムレー
タ31内に貯留される。
(About the refrigeration system) Fig. 3 shows a schematic configuration of the refrigeration system in the ice maker. The vaporized refrigerant compressed by the compressor CM passes through the discharge pipe 34, is condensed and liquefied in the condenser 28, and is then transferred to the dryer. After being dehumidified in step 29, the pressure is reduced in the capillary reach tube 30, and it flows into the evaporator 14 where it expands and evaporates all at once, exchanging heat with the first ice making chamber 11, and forming the first ice making chamber 11. 13 is cooled to below freezing. The vaporized refrigerant evaporated in the evaporator 14 and the unevaporated liquefied refrigerant flow into the accumulator 31 in a gas-liquid mixed phase state, where they are separated into gas and liquid. The gas phase refrigerant then returns to the compressor CM through the suction pipe 32, and the liquid phase refrigerant is stored in the accumulator 31.

更に、圧縮機CMの吐出管34からホツトガス
管33が分岐され、このホツトガス管33はホツ
トガス弁HVを経て、蒸発器14の入口側に連通
されている。このホツトガス弁HVは、除氷運転
の際にのみ開放し、製氷運転時は閉成する制御が
なされる。すなわち、除氷運転時にホツトガス弁
HVが開放して、圧縮機CMから吐出される高温
冷媒を、前記ホツトガス管33を介して蒸発器1
4にバイパスさせ、各第1製氷小室13を加温す
ることにより、小室内部に生成される球状氷の周
面を融解させて、各氷塊を自重により落下させ
る。また蒸発器14から流出した高温冷媒は、ア
キユムレータ31に流入し、このアキユムレータ
31中に滞留している液相冷媒を加熱して蒸発さ
せ、気相冷媒として吸入管32から圧縮機CMに
再び帰還させる。なお、図中の符号FMは、凝縮
器28用のフアンモータを示す。
Furthermore, a hot gas pipe 33 is branched from the discharge pipe 34 of the compressor CM, and this hot gas pipe 33 is communicated with the inlet side of the evaporator 14 via a hot gas valve HV. This hot gas valve HV is controlled to open only during deicing operation and close during ice making operation. In other words, during deicing operation, the hot gas valve
When the HV is opened, the high temperature refrigerant discharged from the compressor CM is sent to the evaporator 1 via the hot gas pipe 33.
4 and heats each first ice-making chamber 13, the circumferential surface of the spherical ice produced inside the chamber is melted, and each ice block is caused to fall by its own weight. Further, the high temperature refrigerant flowing out from the evaporator 14 flows into the accumulator 31, heats and evaporates the liquid phase refrigerant staying in this accumulator 31, and returns it to the compressor CM from the suction pipe 32 as a gas phase refrigerant. let Note that the symbol FM in the figure indicates a fan motor for the condenser 28.

(電気制御回路について) この実施例に係る装置を作動させる制御回路の
一例を、第5図に示す。図において、電源供給ラ
インRと接続点Dとの間に、ヒユーズFと貯氷検
知スイツチS1とが直列に設けられ、この接続点D
と電源供給ラインTとの間に、圧縮機CMがリレ
ーXの常閉接点X−bを介して接続されている。
また除氷運転に際して、前記第2製氷室12の傾
動により付勢される切換スイツチS2の端子aが接
続点Dに接続され、この切換スイツチS2の切換接
点bは、製氷検知サーモTh1の接点cに接続され
ている。
(Regarding Electrical Control Circuit) An example of a control circuit for operating the device according to this embodiment is shown in FIG. In the figure, a fuse F and an ice accumulation detection switch S1 are provided in series between the power supply line R and the connection point D.
A compressor CM is connected between the power supply line T and the power supply line T via a normally closed contact X-b of a relay X.
Further, during the deicing operation, the terminal a of the changeover switch S2 , which is energized by the tilting of the second ice-making chamber 12, is connected to the connection point D, and the changeover contact b of the changeover switch S2 is connected to the ice-making detection thermometer Th1. is connected to contact c.

製氷検知サーモTh1の接点aとラインTとの間
には、ポンプ22の駆動用モータPMおよびフア
ンモータFMが並列接続され、該サーモTh1の接
点bは前記温度検知サーモTh3の接点aに接続さ
れると共に、該サーモTh3の切換接点bとライン
Tとの間にリレーXおよびヒータHが夫々並列接
続されている。また、温度検知サーモTh3の他方
の切換接点cは、アクチユエータモータAMの傾
動駆動用端子mに接続されている。更に該モータ
AMの端子kはラインTに接続されると共に、そ
の復帰駆動用端子nは、除氷検知サーモTh2の接
点を介して切換スイツチS2の切換接点cに接続さ
れている。また前記切換スイツチS2の切換接点c
とラインTとの間には、ホツトガス弁HVおよび
給水弁WVが並列接続されている。
A driving motor PM of the pump 22 and a fan motor FM are connected in parallel between the contact a of the ice-making detection thermometer Th 1 and the line T, and the contact b of the thermometer Th 1 is connected to the contact a of the temperature detection thermometer Th 3 . A relay X and a heater H are connected in parallel between the switching contact b of the thermometer Th3 and the line T, respectively. Further, the other switching contact c of the temperature detection thermometer Th3 is connected to the tilting drive terminal m of the actuator motor AM. Furthermore, the motor
Terminal k of AM is connected to line T, and its return drive terminal n is connected to changeover contact c of changeover switch S2 via contact of deicing detection thermometer Th2 . Also, the switching contact c of the switching switch S2
A hot gas valve HV and a water supply valve WV are connected in parallel between and the line T.

実施例の作用 次に、前述した自動製氷機を作動させることに
より実施される除氷運転制御方法につき説明す
る。
Effects of the Embodiment Next, a method of controlling the deicing operation performed by operating the automatic ice maker described above will be described.

(製氷運転の開始) 先ず、自動製氷機への電源(電源スイツチは図
示せず)を投入する。このとき、貯氷庫に氷塊は
貯留されていないので、貯氷検知スイツチS1は閉
成されており、また切換スイツチS2は接点a−b
側に接続されている。また、第1製氷室11の温
度は室温程度に保持されているため、製氷検知サ
ーモTh1は接点c−a側に接続されている。従つ
て、電源投入と同時に圧縮機CM、フアンモータ
FM、ポンプモータPMへの通電が開始され、製
氷運転に入つて第1製氷室11の冷却がなされ
る。また、製氷水タンク19からの製氷水20は
分配管24にポンプ圧送され、該分配管24にお
ける各噴水孔25および第2製氷室12に穿設し
た前記通孔12aを介して、これに対応する各第
2製氷小室15中に噴射される。
(Start of ice-making operation) First, power is turned on to the automatic ice-making machine (the power switch is not shown). At this time, since no ice is stored in the ice storage, the ice storage detection switch S1 is closed, and the changeover switch S2 is connected to contacts a and b.
connected to the side. Further, since the temperature of the first ice making chamber 11 is maintained at about room temperature, the ice making detection thermo Th1 is connected to the contact ca side. Therefore, when the power is turned on, the compressor CM and fan motor
FM and pump motor PM are started to be energized, ice making operation begins, and first ice making chamber 11 is cooled. In addition, the ice-making water 20 from the ice-making water tank 19 is pumped to the distribution pipe 24, and the ice-making water 20 is pumped to the distribution pipe 24, and the ice-making water 20 is pumped to the distribution pipe 24, and the ice-making water 20 is fed through the water fountain holes 25 in the distribution pipe 24 and the through hole 12a drilled in the second ice-making chamber 12. is injected into each second ice making compartment 15.

噴射された製氷水は、第1製氷小室13の内面
に接触して冷却され、下方の第2製氷室12にお
ける第2製氷小室15を潤した後、この第2製氷
小室15の底部に穿設した前記通孔12aを介し
て前記水案内板47に落下し、更に第2の水案内
板48および傾斜面19aを経て製氷水タンク1
9に戻され、再度の循環に供される。この製氷水
の循環を反復する内に、タンク19中に貯留され
る製氷水全体の温度が次第に低下する。また第2
製氷室12は、その一部において第1製氷室11
に接触していると共に、当該第2製氷小室15に
冷却された未氷結水が接触して循環するので、第
2製氷室12自体の温度も同様に次第に低下して
氷結点以下となる。そして、先ず第1製氷小室1
3の内壁面で製氷水の一部が凍結して氷層が形成
され、未氷結水は戻り孔を兼ねる通孔12aを経
て製氷水タンク19に帰還するサイクルを重ねる
間に、前記氷層の成長が更に進行して、最終的に
第1製氷小室13および第2製氷小室15に画成
される球状空間中に球状氷1が徐々に生成され
る。
The injected ice-making water comes into contact with the inner surface of the first ice-making chamber 13 and is cooled, moistening the second ice-making chamber 15 in the second ice-making chamber 12 located below. The ice-making water falls through the through hole 12a into the water guide plate 47, and further passes through the second water guide plate 48 and the inclined surface 19a to the ice-making water tank 1.
9 and subjected to circulation again. As this ice-making water circulation is repeated, the overall temperature of the ice-making water stored in the tank 19 gradually decreases. Also the second
The ice making room 12 is partially connected to the first ice making room 11.
Since the cooled unfrozen water contacts and circulates in the second ice making compartment 15, the temperature of the second ice making compartment 12 itself also gradually decreases to below the freezing point. First, the first ice making compartment 1
A part of the ice-making water freezes on the inner wall surface of the ice-making water tank 19 to form an ice layer, and the unfrozen water returns to the ice-making water tank 19 through the through hole 12a which also serves as a return hole. As the growth progresses further, spherical ice 1 is gradually generated in the spherical space defined by the first ice-making chamber 13 and the second ice-making chamber 15.

(製氷完了と除氷運転への移行) このように、第1製氷小室13および第2製氷
小室15での製氷が完了して、第1製氷室11の
温度が所要の温度域まで低下すると、これを検知
した製氷検知サーモTh1が接点c−a側から接点
c−b側に切換わり、フアンモータFMおよびポ
ンプモータPMへの通電が停止される(第7図の
タイミングチヤート参照)。また第2製氷室12
は、球状氷1の生成により所要温度以下に低下し
ているので、前記温度検知サーモTh3は接点a−
b側に接続されており、従つてリレーXが通電励
磁されて常閉接点X−bを開放し、圧縮機CMの
運転も停止される。これにより、蒸発器14への
冷媒の循環は停止され、第1製氷室11の強制冷
却はなされなくなる。また、前記ヒータHへの通
電が開始されて第2製氷室12の加熱がなされ、
その熱伝導により第2製氷小室15での球状氷1
の氷結を融解させて、得られた球状氷1と第2製
氷小室15との結合力を低下させる。
(Completion of ice making and transition to deicing operation) In this way, when the ice making in the first ice making chamber 13 and the second ice making chamber 15 is completed and the temperature of the first ice making chamber 11 falls to the required temperature range, Upon detecting this, the ice-making detection thermometer Th1 switches from the contact ca side to the contact c-b side, and energization to the fan motor FM and pump motor PM is stopped (see timing chart in FIG. 7). Also, the second ice making room 12
has fallen below the required temperature due to the formation of spherical ice 1, so the temperature detection thermometer Th3 is connected to contact a-
Therefore, the relay X is energized and excited to open the normally closed contact X-b, and the operation of the compressor CM is also stopped. As a result, the circulation of the refrigerant to the evaporator 14 is stopped, and forced cooling of the first ice-making chamber 11 is no longer performed. Further, energization to the heater H is started to heat the second ice making chamber 12,
Due to the heat conduction, the spherical ice 1 in the second ice making compartment 15
The bonding force between the obtained spherical ice 1 and the second ice-making chamber 15 is reduced by melting the ice.

次いで前記ヒータHの加熱により、第2製氷室
12の温度が所定値以上に上昇すると、前記温度
検知サーモTh3がこれを検知して、その接点a−
bを接点a−c側に切換える。これによりリレー
Xが滅勢されて常閉接点X−bを閉成し、第7図
のタイミングチヤート図に示す如く、圧縮機CM
の運転を再開すると共に、ヒータHへの通電を停
止させる。また、アクチユエータモータAMの傾
動駆動用端子mを介して通電がなされ、当該モー
タAMを駆動することにより、そのカムレバー1
7が回転して、基部に形成したカム面17bが第
2製氷室12の側部上面を強制的に下方に押圧す
る。既に述べた如く、第2製氷小室15に対する
球状氷の氷結は解除されているので、当該第2製
氷室12は第1製氷室11から強制剥離されて、
時計方向に傾動し始める。そして、最終的に第2
製氷室12は、第2図および第4図に示す如く、
垂下状態で完全に開放する。
Next, when the temperature of the second ice making chamber 12 rises to a predetermined value or higher due to heating by the heater H, the temperature detection thermometer Th3 detects this and closes the contact a-
Switch b to contact a-c side. As a result, relay X is deenergized and normally closed contact X-b is closed, and the compressor CM
At the same time, the power supply to the heater H is stopped. In addition, electricity is supplied through the tilting drive terminal m of the actuator motor AM, and by driving the motor AM, the cam lever 1
7 rotates, and the cam surface 17b formed on the base forcibly presses the side upper surface of the second ice making chamber 12 downward. As already mentioned, since the spherical ice in the second ice-making compartment 15 has been thawed, the second ice-making compartment 12 is forcibly separated from the first ice-making compartment 11.
It begins to tilt clockwise. And finally the second
As shown in FIGS. 2 and 4, the ice making compartment 12 is
Fully open in a hanging state.

このとき、第1製氷室11における第1製氷小
室13には、球状氷1が未だ氷結固着している。
この第2製氷室12が、最大限に傾動したタイミ
ングにおいて、前記レバー片37が切換スイツチ
S2を押圧付勢し、その接点a−bを接点a−c側
に切換える。これにより給水弁WVが開放して、
製氷水タンク19に新たな製氷水が供給されると
共に、ホツトガス弁HVが開放し、既に運転を前
述の如く再開している圧縮機CMから吐出される
高温冷媒(ホツトガス)を蒸発器14に循環供給
させる。このため第1製氷室11は該ホツトガス
による加温がなされ、その第1製氷小室13の内
面と球状氷との氷結面の融解を開始する。なお除
氷検知サーモTh2は、その開放状態を保持してい
るので、アクチユエータモータAMの復帰指令は
未だ出されない。
At this time, the spherical ice 1 is still frozen and fixed in the first ice-making compartment 13 in the first ice-making compartment 11 .
At the timing when the second ice making chamber 12 is tilted to its maximum extent, the lever piece 37 is activated as a changeover switch.
S2 is pressed and energized, and its contacts a and b are switched to contacts a and c. This opens the water supply valve WV,
New ice-making water is supplied to the ice-making water tank 19, and the hot gas valve HV is opened to circulate the high-temperature refrigerant (hot gas) discharged from the compressor CM, which has already resumed operation as described above, to the evaporator 14. Let it be supplied. Therefore, the first ice-making chamber 11 is heated by the hot gas, and the frozen surfaces of the inner surface of the first ice-making chamber 13 and the spherical ice begin to melt. Note that since the de-icing detection thermo Th2 maintains its open state, a return command for the actuator motor AM is not issued yet.

また蒸発器14でのホツトガスの循環により、
第1製氷小室13が加温されると、第2図および
第4図に示す如く、小室壁面と球状氷との氷結が
解除され、当該球状氷は自重により落下し、その
直下に設けた前記第2水案内板48に沿つて滑落
して貯氷庫(図示せず)に案内回収される。
In addition, due to the circulation of hot gas in the evaporator 14,
When the first ice-making chamber 13 is heated, as shown in FIG. 2 and FIG. It slides down along the second water guide plate 48 and is guided and collected in an ice storage (not shown).

このように、球状氷が全て第1製氷小室13か
ら離脱すると、第1製氷室11は蒸発器14に循
環しているホツトガスにより一挙に温度上昇す
る。この温度上昇を前記除氷検知サーモTh2が検
知すると、該サーモTh2は閉成してアクチユエー
タモータAMにおける復帰駆動用端子nへの通電
がなされる。これにより該モータAMは逆回転し
てカムレバー17を駆動し、該レバー17と第2
製氷室12との間に弾力的に係着したコイルスプ
リング18により、第2製氷室12を反時計方向
に回動付勢して傾斜状態に復帰させ、第1製氷室
11の第1製氷小室13を斜め下方から閉成す
る。
In this way, when all the spherical ice leaves the first ice making compartment 13, the temperature of the first ice making compartment 11 rises all at once due to the hot gas circulating in the evaporator 14. When the deicing detection thermometer Th 2 detects this temperature rise, the thermometer Th 2 is closed and the return drive terminal n of the actuator motor AM is energized. As a result, the motor AM rotates in the opposite direction to drive the cam lever 17.
The coil spring 18 elastically engaged between the second ice making chamber 12 and the ice making chamber 12 rotates and urges the second ice making chamber 12 in the counterclockwise direction to return to the tilted state. 13 is closed diagonally from below.

なお、前記モータAMの逆回転によりカムレバ
ー17も逆回転し、前記切換スイツチS2を押圧付
勢して、その接点a−c側から接点a−b側に切
換える。これにより給水弁WVおよびホツトガス
弁HVが閉成して、製氷水およびホツトガスの供
給が停止される。そして初期状態に復帰して製氷
運転が再開され、前述した動作を繰り返す。製氷
運転と除氷運転とが反復されて、貯氷庫に所定量
の球状氷が貯留されると、貯氷検知スイツチS1
開放して製氷機の運転が停止される(第7図)。
Incidentally, due to the reverse rotation of the motor AM, the cam lever 17 also rotates in the reverse direction, and presses and energizes the changeover switch S2 to switch from the contact ac side to the contact ab side. As a result, the water supply valve WV and the hot gas valve HV are closed, and the supply of ice-making water and hot gas is stopped. The ice-making operation is then resumed by returning to the initial state, and the above-described operations are repeated. When the ice making operation and the ice removal operation are repeated and a predetermined amount of spherical ice is stored in the ice storage, the ice storage detection switch S1 is opened and the operation of the ice maker is stopped (FIG. 7).

図示例では、加熱手段として電熱ヒータHを使
用し製氷検知サーモTh1、温度検知サーモTh3
よびリレーXの組合わせにより、圧縮機CMの運
転停止並びに電熱ヒータHの通電付勢を行なう制
御例につき述べたが、これに限定されるものでは
ない。例えば、制御回路にタイマを組込み、この
タイマによつて該電熱ヒータHの通電加熱が一定
時間のみなされる制御を与えるようにしてもよ
い。
In the illustrated example, an electric heater H is used as a heating means, and a combination of an ice-making detection thermometer Th 1 , a temperature detection thermometer Th 3 , and a relay X is used to stop the operation of the compressor CM and energize the electric heater H. However, the invention is not limited to this. For example, a timer may be incorporated into the control circuit, and the timer may provide control such that the electric heating of the electric heater H is performed only for a certain period of time.

また球状氷等の如き異形氷塊を自動的に製造す
る製氷機構は、図示した如く、第1製氷室を機内
に傾斜配置する構造に限定されるものでなく、第
1製氷室を機内に水平に配置すると共に、該第1
製氷室を下方から回動自在に閉成する構造等、
種々の形態を好適に採用し得る。すなわち、第1
および第2製氷室を有し、生成された氷塊を第2
製氷室の方から先に離脱させる型式であつて、該
第2製氷室に加熱手段を設けるものであれば、何
れの自動製氷機であつても、本実施例に係る除氷
運転制御方法を応用可能である。
Furthermore, the ice-making mechanism that automatically produces irregularly shaped ice cubes such as spherical ice is not limited to the structure in which the first ice-making compartment is arranged at an angle inside the machine, as shown in the figure, but the first ice-making compartment is arranged horizontally inside the machine. the first
A structure that rotatably closes the ice-making compartment from below, etc.
Various forms can be suitably adopted. That is, the first
and a second ice-making chamber, and the generated ice cubes are stored in the second ice-making compartment.
The deicing operation control method according to this embodiment can be applied to any automatic ice maker, as long as it is of a type in which the ice maker is detached first and a heating means is provided in the second ice maker. It is applicable.

発明の効果 以上説明した如く、本発明に係る除氷運転制御
方法によれば、球状氷等の如き異形氷塊を自動的
に製造する製氷機、例えば第1製氷室に設けた第
1製氷小室を、第2製氷室に設けた第2製氷小室
により下方から閉成し、両製氷小室中に画成され
る内部空間に所要形状の氷塊を製造する自動製氷
機において、その除氷運転に際し第2製氷室に配
設した加熱手段を付勢している間、冷凍系におけ
る圧縮機の運転を停止させる制御が好適に行なわ
れる。このため、氷塊を前記第1製氷小室に確実
に残留させた状態のまま、第2製氷室を第1製氷
室から強制的に離脱させることができる。
Effects of the Invention As explained above, according to the deicing operation control method according to the present invention, an ice making machine that automatically produces irregularly shaped ice blocks such as spherical ice, for example, a first ice making compartment provided in a first ice making compartment, , in an automatic ice making machine that is closed from below by a second ice making compartment provided in the second ice making compartment and produces ice cubes of a desired shape in the internal space defined in both ice making compartments, when the second ice making compartment is closed during deicing operation. Control is preferably performed to stop the operation of the compressor in the refrigeration system while the heating means disposed in the ice making compartment is energized. Therefore, the second ice-making compartment can be forcibly separated from the first ice-making compartment while the ice cubes are reliably left in the first ice-making compartment.

すなわち、除氷運転に際し第1および第2製氷
小室を同時に加熱するのではなく、加熱手段によ
り第2製氷室を加熱している間は、第1製氷室に
設けた蒸発器に冷媒およびホツトガスの何れも循
環させない制御が与えられるので、脱氷のため第
1製氷室から第2製氷室を強制離脱させても、氷
塊群は第1製氷小室に未だ氷結状態で残留してい
る。従つて、第2製氷室が傾動作動しても、該第
2製氷室に上方を指向して開口している第2製氷
小室に、落下氷塊が引掛かつて残留したり、貯氷
庫への氷塊の円滑な落下が妨げられる等の不都合
な事態を有効に回避し得る。
That is, instead of heating the first and second ice-making compartments simultaneously during deicing operation, while the second ice-making compartment is being heated by the heating means, refrigerant and hot gas are supplied to the evaporator installed in the first ice-making compartment. Since control is provided to prevent any circulation, even if the second ice-making compartment is forcibly separated from the first ice-making compartment for deicing, the ice cubes still remain in the first ice-making compartment in a frozen state. Therefore, even if the second ice-making compartment is tilted, falling ice cubes may get caught and remain in the second ice-making compartment that opens upward to the second ice-making compartment, and ice cubes may not be deposited into the ice storage. Inconvenient situations such as a smooth fall being hindered can be effectively avoided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る除氷運転制御方法を好適
に実施し得る自動製氷機の概略構成を示す正面一
部縦断面図、第2図は第1図に示す製氷機におい
て、第2製氷室を開放した状態で示す概略斜視
図、第3図は自動製氷機における一般的な冷凍系
の回路図、第4図は第2製氷室を開放した状態で
示す正面図、第5図は実施例に係る製氷機を運転
制御する製氷制御回路の一例を示す回路図、第6
図aは球状氷を示す説明図、第6図bは多面状氷
を示す説明図、第7図は実施例に係る製氷装置
を、第5図に示す製氷制御回路により運転制御し
た際のタイミングチヤート図である。 11……第1製氷室、12……第2製氷室、1
3……第1製氷小室、14……蒸発器、15……
第2製氷小室、H……加熱手段(電熱ヒータ)、
CM……圧縮機。
FIG. 1 is a front partial vertical cross-sectional view showing a schematic configuration of an automatic ice maker that can suitably implement the deicing operation control method according to the present invention, and FIG. 2 is a second ice maker in the ice maker shown in FIG. Figure 3 is a schematic perspective view showing the chamber open, Figure 3 is a circuit diagram of a general refrigeration system in an automatic ice maker, Figure 4 is a front view with the second ice maker open, and Figure 5 is a diagram showing the implementation. Circuit diagram showing an example of an ice-making control circuit for controlling the operation of the ice-making machine according to the example, No. 6
Figure a is an explanatory diagram showing spherical ice, Figure 6 b is an explanatory diagram showing multifaceted ice, and Figure 7 is the timing when the ice making apparatus according to the embodiment is controlled by the ice making control circuit shown in Figure 5. It is a chart diagram. 11...First ice making room, 12...Second ice making room, 1
3...First ice making compartment, 14...Evaporator, 15...
Second ice making compartment, H... heating means (electric heater),
CM...Compressor.

Claims (1)

【特許請求の範囲】 1 製氷機本体の内部に配置され、上面に冷凍系
に接続する蒸発器14を備えると共に、下面に第
1製氷小室13を多数凹設してなる第1製氷室1
1と、 製氷機本体の内部に回動自在に枢支され、製氷
運転に際し前記第1製氷小室13を下方から対応
的に閉成する第2製氷小室15を多数凹設すると
共に、除氷運転に際し前記第1製氷室11から離
脱して該第1製氷小室13を開放する第2製氷室
12と、 前記第2製氷室12に配設され、除氷運転に際
して付勢される加熱手段Hとを備え、 製氷水を第1および第2製氷小室13,15に
噴射供給して所要形状の氷塊を製造する自動製氷
機において、 除氷運転に伴い前記加熱手段Hを付勢している
間、冷凍系における圧縮機CMの運転を停止させ
る制御を行なうことを特徴とする 自動製氷機の除氷運転制御方法。
[Scope of Claims] 1. A first ice-making chamber 1 which is disposed inside the ice-making machine body and includes an evaporator 14 connected to the refrigeration system on the upper surface, and a number of first ice-making chambers 13 recessed on the lower surface.
1, a plurality of second ice-making chambers 15 are rotatably supported inside the ice-making machine body, and which close the first ice-making chamber 13 correspondingly from below during ice-making operation; a second ice-making compartment 12 that separates from the first ice-making compartment 11 to open the first ice-making compartment 13; and a heating means H disposed in the second ice-making compartment 12 and energized during deicing operation. In an automatic ice making machine which produces ice cubes of a desired shape by injecting ice making water into the first and second ice making compartments 13 and 15, while the heating means H is energized during the deicing operation, A deicing operation control method for an automatic ice maker, characterized by controlling the operation of a compressor CM in a refrigeration system to be stopped.
JP14329588A 1988-06-09 1988-06-09 Control of deicing operation of automatic ice making machine Granted JPH01312372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14329588A JPH01312372A (en) 1988-06-09 1988-06-09 Control of deicing operation of automatic ice making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14329588A JPH01312372A (en) 1988-06-09 1988-06-09 Control of deicing operation of automatic ice making machine

Publications (2)

Publication Number Publication Date
JPH01312372A JPH01312372A (en) 1989-12-18
JPH0565780B2 true JPH0565780B2 (en) 1993-09-20

Family

ID=15335415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14329588A Granted JPH01312372A (en) 1988-06-09 1988-06-09 Control of deicing operation of automatic ice making machine

Country Status (1)

Country Link
JP (1) JPH01312372A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071786A1 (en) 2018-10-02 2020-04-09 엘지전자 주식회사 Ice maker and refrigerator comprising same

Also Published As

Publication number Publication date
JPH01312372A (en) 1989-12-18

Similar Documents

Publication Publication Date Title
US4910974A (en) Automatic ice making machine
JPH0532668B2 (en)
JPH0544587B2 (en)
JPH01210778A (en) Ice removing structure for automatic ice-making machine
JPH0541913B2 (en)
JPH0544586B2 (en)
JPH0565780B2 (en)
JPH0551832B2 (en)
JPH0543949B2 (en)
JPH0551831B2 (en)
JPH02143068A (en) Ice guiding device in automatic ice making machine
JPH061141B2 (en) Automatic ice machine
JPH0551830B2 (en)
JPH0543951B2 (en)
JP3412677B2 (en) How to operate an automatic ice maker
JPH0554027B2 (en)
JPH0551834B2 (en)
JPH0551835B2 (en)
JPH01260271A (en) Automatic ice-making machinery and control of ice-making operation
JPH01234768A (en) Ice making structure of automatic ice making machine
JPH0615279Y2 (en) Evaporator structure of automatic ice machine
JPH02140575A (en) Ice making structure in automatic ice making machine
JPH02161271A (en) Ice making structure of automatic ice machine
JPH0544588B2 (en)
JPH0712874U (en) Automatic ice machine