JPH0551831B2 - - Google Patents

Info

Publication number
JPH0551831B2
JPH0551831B2 JP5522888A JP5522888A JPH0551831B2 JP H0551831 B2 JPH0551831 B2 JP H0551831B2 JP 5522888 A JP5522888 A JP 5522888A JP 5522888 A JP5522888 A JP 5522888A JP H0551831 B2 JPH0551831 B2 JP H0551831B2
Authority
JP
Japan
Prior art keywords
ice
making
compartment
water
making compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5522888A
Other languages
Japanese (ja)
Other versions
JPH01230968A (en
Inventor
Yasuo Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP5522888A priority Critical patent/JPH01230968A/en
Publication of JPH01230968A publication Critical patent/JPH01230968A/en
Publication of JPH0551831B2 publication Critical patent/JPH0551831B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、例えば球体状の氷塊群や多面体状
の氷塊群を、全自動で大量に製造し得る自動製氷
機の製氷構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an ice-making structure of an automatic ice-making machine that can fully automatically produce large quantities of, for example, spherical ice blocks or polyhedral ice blocks.

従来技術 各種の産業上の分野では、正六面体状をなす角
氷や所要厚みの板氷その他の氷塊を、連続的に大
量に製造する自動製氷機が、その用途に応じて好
適に使い分けられている。例えば、前記の角氷を
製造する製氷機として、 製氷室に下向きに多数画成した立方体状の製
氷小室を、その下方から水皿により開閉自在に
閉成し、当該水皿から製氷水を各製氷小室に噴
射供給して、該製氷小室中に角氷を徐々に形成
するようにした所謂クローズドセル方式や、 下方に開放する多数の製氷小室に、水皿を介
することなく製氷氷を直接供給し、角氷を該製
氷小室中に形成するようにした所謂オープンセ
ル方式が知られている。また、板状や細粒状の
クラツシユアイスを連続製造する製氷機、その
他フレーク状の氷を連続製造するオーガ式製氷
機等も実施されている。
Prior Art In various industrial fields, automatic ice making machines that continuously produce large quantities of ice cubes in the shape of regular hexahedrons, ice sheets of a required thickness, and other ice blocks are suitably used depending on the application. There is. For example, as an ice maker for producing ice cubes, a large number of cube-shaped ice-making compartments are defined downward in the ice-making compartment, which can be opened and closed from below by a water tray, and ice-making water is poured into each compartment from the water tray. The so-called closed-cell method, in which ice cubes are gradually formed in the ice-making chamber by injection, or ice cubes are directly supplied to multiple ice-making chambers that open downward without going through a water tray. However, a so-called open cell system is known in which ice cubes are formed in the ice making compartment. In addition, ice machines that continuously produce plate-shaped or fine-grained crushed ice, and auger-type ice machines that continuously produce ice flakes are also in use.

発明が解決しようとする課題 従来の各種製氷機により製造される氷は、前述
した如く、立方体状の角氷や板氷、その他フレー
ク状の氷やクラツシユアイスがその全てである。
これらの氷の内で、所要の定形を備えて、そのま
ま飲料に浮かせたり、各種食材の冷却ベツドに使
用したり出来るのは、僅かに前記の角氷があるに
過ぎない(板氷は、定形を備えて製造されるが、
通常そのままの寸法では使用し得ない)。
Problems to be Solved by the Invention As mentioned above, ice manufactured by various conventional ice making machines are all cube-shaped ice cubes, sheet ice, other flaky ice, and crushed ice.
Of these ice cubes, only the ice cubes mentioned above have the required shape and can be floated on drinks or used as a cooling bed for various foodstuffs. Although it is manufactured with
(Usually cannot be used with the same dimensions.)

しかるに最近の喫茶店やレストランその他の飲
食施設では、同種営業に対し種々の面で優位に立
つて顧客を吸引するべく、他社との差別化を図る
懸命な努力が払われている。その一環として、例
えば、従来より広く普及している角氷の替わりに
球体状の氷を使用し、これにより顧客に目先の新
しい変化を提供しようとする傾向がみられる。
However, in recent years, coffee shops, restaurants, and other eating and drinking establishments have been making strenuous efforts to differentiate themselves from other companies in order to gain an advantage over similar businesses in various ways and attract customers. As part of this, for example, there is a trend to use spherical ice cubes instead of the more widely popular ice cubes, thereby offering customers immediate new changes.

この球状氷は、広く飲食に供されることから、
空気混入による白濁がなく、清澄な透明氷塊で商
品価値の高いものでなければならず、また大量に
製造可能であることを必要とするが、従来この種
の要請を満たす自動製氷機は存在しなかつた。そ
こで、本願の発明者は、透明で清澄な球状氷を大
量に製造し得る製氷機の開発に当り、前記の要請
を充分に満足する機構を得たので、その基本概念
につき昭和63年1月29日付けで、発明「自動製氷
機」として特許出願を行なつた。(特開平1−
196477号公報参照) 先の出願に係る製氷機は、下方に開放する第
1製氷小室を多数画成し、背面に蒸発器を備えた
第1製氷室と、上方に開放する第2製氷小室を
多数画成した第2製氷室とを基本的に備え、製氷
運転に際し両製氷小室が対応的に閉成して、その
内部に球体状等の氷形成用空間を画成するもので
ある。この基本構造に係る製氷機において、タン
ク貯留された製氷水を、第1および第2製氷小室
で画成される氷形成用空間中に、如何にして連続
的に供給し、また未氷結水を如何にして円滑に回
収するか、が新たな解決課題となつている。
This spherical ice is widely used for eating and drinking.
Ice cubes must be clear and transparent, with no cloudiness due to air inclusion, and must have high commercial value, and must be able to be manufactured in large quantities, but no automatic ice maker has hitherto existed that meets these requirements. Nakatsuta. Therefore, in developing an ice-making machine capable of producing large amounts of transparent and clear spherical ice, the inventor of the present application obtained a mechanism that fully satisfies the above-mentioned requirements, and therefore developed the basic concept in January 1988. On the 29th, he filed a patent application for his invention, an "automatic ice maker." (Unexamined Japanese Patent Publication No. 1-
(See Publication No. 196477) The ice-making machine according to the earlier application defines a number of first ice-making chambers that open downward, and includes a first ice-making chamber equipped with an evaporator on the back and a second ice-making chamber that opens upward. Basically, it is equipped with a plurality of second ice-making compartments, and during ice-making operation, both ice-making compartments are closed correspondingly to define a spherical or other ice-forming space therein. In the ice making machine according to this basic structure, how is it possible to continuously supply ice making water stored in a tank into the ice forming space defined by the first and second ice making chambers, and how to supply unfrozen water to the ice forming space defined by the first and second ice making chambers? How to smoothly collect the waste has become a new problem to be solved.

発明の目的 この発明は、前述した課題の提示に鑑み、これ
を好適に解決するべく提案されたものであつて、
下方に開放する第1製氷小室を多数備える第1製
氷室と、上方に開放する第2製氷小室を多数備え
る第2製氷室とから構成される製氷機を基本と
し、タンクに貯留した製氷氷を、両製氷小室によ
り画成される氷形成空間中に連続供給し、また未
氷結水を円滑に回収し得る新規な構成に係る自動
製氷機の製氷構造を提供することを目的とする。
Purpose of the Invention This invention has been proposed in view of the above-mentioned problems and to suitably solve them.
The ice-making machine is basically composed of a first ice-making compartment that has a number of first ice-making compartments that open downward, and a second ice-making compartment that has a number of second ice-making compartments that open upward. An object of the present invention is to provide an ice-making structure for an automatic ice-making machine having a novel configuration capable of continuously supplying ice into an ice-forming space defined by both ice-making chambers and smoothly recovering unfrozen water.

課題を解決するための手段 前述した課題を克服し、初期の目的を好適に達
成するため本発明は、製氷水を製氷室に噴射供給
して該製氷室内に氷塊を形成し、該製氷室で氷結
するに到らなかつた製氷水は再循環に供するよう
構成した自動製氷機において、 背面に蒸発器を備えて機内に略水平に固定配置
され、下方に開放する所要形状の第1製氷小室を
多数形成した第1製氷室と、 上方に開放する所要形状の第2製氷小室が多数
形成され、前記第1製氷室の下方に退出自在に配
設されて、製氷運転に際し各対応の第1製氷小室
と第2製氷小室との間に氷形成用空間を画成する
第2製氷室と、 機内に傾動自在に配設され、製氷運転に際し前
記第2製氷室を下方から閉成して、各第2製氷小
室に製氷水を噴射供給可能であり、除氷運転に際
し斜め下方に傾動して、前記第2製氷室の退出を
許容する水皿とから構成したことを特徴とする。
Means for Solving the Problems In order to overcome the above-mentioned problems and suitably achieve the initial objective, the present invention provides ice-making water to be injected into the ice-making chamber to form ice cubes in the ice-making chamber; In an automatic ice-making machine configured to recirculate ice-making water that has not yet frozen, a first ice-making compartment with an evaporator on the back, fixedly arranged approximately horizontally inside the machine, and opening downward in the desired shape is installed. A large number of first ice-making compartments are formed, and a large number of second ice-making compartments each having a desired shape and opening upward are formed, and are retractably disposed below the first ice-making compartment. A second ice-making compartment defines an ice-forming space between the small compartment and the second ice-making compartment, and the second ice-making compartment is tiltably disposed inside the machine, and during ice-making operation, the second ice-making compartment is closed from below, and each It is characterized by comprising a water tray that can inject and supply ice-making water to the second ice-making compartment and tilts diagonally downward during deicing operation to allow exit of the second ice-making compartment.

実施例 次に、本発明に係る自動製氷機の製氷構造につ
き、好適な実施例を挙げて、添付図面の参照しな
がら以下説明する。なお、本発明の実施例では、
第7図aに示す球状氷1を連続製造する自動製氷
機につき説明するが、後述する製氷小室の内部形
状を変更するだけで、第7図bに示す如きダイヤ
カツト状の多面体水2の製造にも容易に対応し得
るものである。
Embodiments Next, the ice-making structure of the automatic ice-making machine according to the present invention will be described below using preferred embodiments with reference to the accompanying drawings. In addition, in the embodiment of the present invention,
An automatic ice making machine that continuously produces spherical ice 1 shown in FIG. 7a will be explained, but by simply changing the internal shape of the ice making chamber described later, it is possible to produce diamond-shaped polyhedral water 2 as shown in FIG. 7b. can also be easily accommodated.

第1図は、本発明の好適な実施例に係る自動製
氷機の主要製氷構造を、製氷状態で概略的に示す
ものである。図において、所要直径をなす多数の
球状氷を製造する製氷室10は、水平に配設した
第1製氷室11と、この第1製氷室11を下方か
ら退出自在に開成する第2製氷室12とから基本
的に構成される。すなわち、製氷機における筐体
(図示せず)の内部上方に、良好な熱伝導率を有
する金属を材質とする矩形状の第1製氷室11が
水平に配設固定され、この第1製氷室11の下面
部に下向きに開放する第1製氷小室13が、所要
の整列パターンで多数凹設されている。夫々の第
1製氷小室13は半球状凹部として形成され、一
例として直径3cm、凹部の深さ1.5cmに設定され
ている。
FIG. 1 schematically shows the main ice-making structure of an automatic ice-making machine according to a preferred embodiment of the present invention in an ice-making state. In the figure, an ice-making compartment 10 that produces a large number of spherical ice cubes having a required diameter includes a first ice-making compartment 11 arranged horizontally, and a second ice-making compartment 12 that opens and exits the first ice-making compartment 11 from below. It basically consists of. That is, a rectangular first ice making chamber 11 made of a metal having good thermal conductivity is horizontally arranged and fixed inside and above a casing (not shown) of the ice making machine. A large number of first ice-making chambers 13 opening downward are provided in the lower surface of the ice-making chamber 11 in a predetermined alignment pattern. Each of the first ice-making chambers 13 is formed as a hemispherical recess, and is set to have a diameter of 3 cm and a recess depth of 1.5 cm, for example.

前記第1製氷室11の上面、つまり各第1製氷
小室13の頂部となる部位には、第4図に示す冷
凍系(後述)の一部を構成する管体からなる蒸発
器14が密着固定され、当該冷凍系を運転するこ
とにより、この蒸発器14で気化冷媒との熱交換
が促進されて、第1製氷室11が氷点下にまで冷
却される。
An evaporator 14 made of a tube that constitutes a part of the refrigeration system (described later) shown in FIG. 4 is tightly fixed to the upper surface of the first ice-making compartment 11, that is, the top of each first ice-making compartment 13. By operating the refrigeration system, heat exchange with the vaporized refrigerant is promoted in the evaporator 14, and the first ice making compartment 11 is cooled to below freezing point.

第2製氷室12は熱良導体の金属を材質とする
板状のブロツクとして構成され、製氷運転時に第
1製氷室11の直下に位置すると共に、後述する
移動機構(第3図参照)により、徐氷運転時に第
1製氷室11の直下から側方に退出可能になつて
いる。また第2製氷室12の下方に、後述する製
氷水タンク19に連通する分配管24を備える水
皿38が傾動自在に設けられ、常には該水皿38
は第2製氷室12を下方から閉成している。すな
わち、第2製氷室12の上面には、第1製氷室1
1の第1製氷小室13と対応して、同じく半球状
凹部からなる第2製氷小室15が所要の整列パタ
ーンで多数凹設され、この第2製氷小室15の直
径も、一例として3cmで凹部の深さが1.5cmにな
るよう設定されている。従つて、第1製氷室11
に対し第2製氷室12を閉成すると、対応の各製
氷小室13,15の内部に直径3cmの球状空間が
画成される。
The second ice-making compartment 12 is constructed as a plate-shaped block made of a metal with good thermal conductivity, and is located directly below the first ice-making compartment 11 during ice-making operation. During ice operation, it is possible to exit to the side from directly below the first ice making chamber 11. Further, below the second ice making chamber 12, a water tray 38 having a distribution pipe 24 communicating with an ice making water tank 19, which will be described later, is provided in a freely tiltable manner.
The second ice making chamber 12 is closed from below. That is, on the upper surface of the second ice making compartment 12, the first ice making compartment 1
Corresponding to the first ice-making chambers 13 of 1, a large number of second ice-making chambers 15, also made of hemispherical recesses, are provided in a desired alignment pattern, and the diameter of the second ice-making chambers 15 is, for example, 3 cm, and The depth is set to 1.5cm. Therefore, the first ice making chamber 11
On the other hand, when the second ice making chamber 12 is closed, a spherical space with a diameter of 3 cm is defined inside each of the corresponding small ice making chambers 13 and 15.

水皿38は、第1製氷室11の側方に位置する
機内の固定部位に、枢軸16を中心として傾動自
在に枢支され、除氷運転に際し後述のアクチユエ
ータモータAMを付勢することにより、第2製氷
室12に対し傾動離間し得るようになつている。
この水皿38には、その下方に位置して製氷水を
所定量貯留するタンク19が一体的に設けられ、
また水皿38の裏面に蛇行配置した分配管24に
各第2製氷小室15に対応する噴水孔25が穿設
されている。また、第2製氷室12における各第
2製氷小室15の底部には通孔12aが穿設さ
れ、前記水皿38により第2製氷室12を下方か
ら閉成した際に、各噴水孔25が前記通孔12a
に対応一致するようになつている。なお、水皿3
8の各噴水孔25に隣接して戻り孔26が穿設さ
れ、後述の製氷運転に際し氷結するに到らなかつ
た製氷水(以下「未氷結水」という)は、この戻
り孔26を介して製氷水タンク19に帰還され
る。
The water tray 38 is rotatably supported around the pivot shaft 16 at a fixed part inside the machine located on the side of the first ice making compartment 11, and energizes an actuator motor AM, which will be described later, during deicing operation. As a result, it can be tilted away from the second ice making chamber 12.
This water tray 38 is integrally provided with a tank 19 located below it and storing a predetermined amount of ice-making water.
Further, water fountain holes 25 corresponding to the respective second ice-making chambers 15 are bored in the distribution pipe 24 arranged in a meandering manner on the back surface of the water tray 38 . In addition, a through hole 12a is bored at the bottom of each second ice making compartment 15 in the second ice making compartment 12, and when the second ice making compartment 12 is closed from below with the water tray 38, each water fountain hole 25 is opened. The through hole 12a
It is designed to match. In addition, water plate 3
A return hole 26 is provided adjacent to each fountain hole 25 of 8, and ice-making water that has not yet frozen during the ice-making operation (hereinafter referred to as "unfrozen water") is passed through the return hole 26. It is returned to the ice making water tank 19.

水皿38の傾動開閉駆動手段としては、第1図
に示す減速機付きのアクチユエータモータAMが
好適に使用され、このモータAMの回転軸にカム
レバー17およびレバー片37が同軸的に固定さ
れている。そして、前記カムレバー17の先端1
7aと水皿38の前方端部との間に、コイルスプ
リング18が弾力的に係着されている。前記カム
レバー17の基部に形成したカム面17bは、第
2製氷室12を閉成している水皿38の側部上面
にカム係合可能に寸法設定されている。また第1
製氷室11を支持する固定部位には、第5図の回
路図に示す切換スイツチS2が配設され、除氷運転
に伴うモータAMの回転により前記レバー片37
が回動すると、前記切換スイツチS2を接点a−b
側から接点a−c側に切換付勢し得るようになつ
ている。
As the tilting opening/closing driving means for the water tray 38, an actuator motor AM with a reduction gear shown in FIG. ing. Then, the tip 1 of the cam lever 17
A coil spring 18 is elastically engaged between 7a and the front end of the water tray 38. A cam surface 17b formed at the base of the cam lever 17 is dimensioned so as to be able to cam engage with the upper surface of the side portion of the water tray 38 that closes the second ice making chamber 12. Also the first
A changeover switch S2 shown in the circuit diagram of FIG. 5 is disposed at a fixed portion that supports the ice-making chamber 11, and the lever piece 37 is rotated by rotation of the motor AM during deicing operation.
When rotates, the changeover switch S2 is connected to contacts a and b.
The switch can be biased from the side to the contact a-c side.

前記製氷水タンク19の底部側面から導出した
給水管21は、給水ポンプ22を介してタンク側
方に設けた圧力室23に連通されている。該圧力
室23は、水皿38の下面に配設した前記分配管
24に連通している。従つて、製氷水タンク19
からポンプ22を介して圧送される製氷水は、分
配管24に穿設した前記各噴水孔25および第2
製氷小室15の底部に穿設した前記通孔12aを
介して、各第2製氷小室15中に噴射可能になつ
ている。なお、前記の通孔12aを充分に大径に
設定しておくことにより、後述する製氷運転に際
し両製氷小室13,15で氷結するに到らなかつ
た未氷結水を、この通孔12aおよび水皿38に
穿設した前記戻り孔26から製氷水タンク19に
戻し得るようになつている。
A water supply pipe 21 led out from the bottom side of the ice-making water tank 19 is communicated via a water supply pump 22 with a pressure chamber 23 provided on the side of the tank. The pressure chamber 23 communicates with the distribution pipe 24 disposed on the lower surface of the water tray 38. Therefore, the ice making water tank 19
The ice-making water that is pumped through the pump 22 from the
The ice can be injected into each of the second ice-making chambers 15 through the through hole 12a formed in the bottom of the ice-making chamber 15. By setting the diameter of the through hole 12a to be sufficiently large, the unfrozen water that has not yet frozen in the ice making chambers 13 and 15 during the ice making operation to be described later can be transferred to the through hole 12a and the water. The ice-making water can be returned to the ice-making water tank 19 through the return hole 26 formed in the tray 38.

更に、第2製氷小室15の底部周辺に、除氷促
進用のヒータHが密着配置され、第5図の制御回
路に示す如く、製氷運転が完了すると、タイマT
により設定した所要時間だけ該ヒータHへの通電
がなされる。また、製氷タンク19への給水は、
第5図に示す制御回路中の給水弁WVの開放によ
り、外部水道系に接続している給水管27を介し
てなされる。
Furthermore, a heater H for promoting ice removal is closely arranged around the bottom of the second ice making chamber 15, and as shown in the control circuit of FIG. 5, when the ice making operation is completed, a timer T is activated.
The heater H is energized for the required time set by . In addition, the water supply to the ice making tank 19 is as follows.
This is done by opening the water supply valve WV in the control circuit shown in FIG. 5 via the water supply pipe 27 connected to the external water system.

第1製氷室11における所要の第1製氷小室1
3の頂部には、製氷完了検知手段としての製氷検
知サーモTh1が配設されている。この製氷検知サ
ーモTh1は、第5図に示す制御回路に介装され
て、製氷運転中はその接点a−cを閉成すると共
に接点c−bを開放し、そ製氷運転が終了する
と、前記接点a−cを開放すると共に接点c−b
を閉成し得るよう設定されている。また、別の第
1製氷小室13の頂部には、除氷完了検知手段と
しての除氷検知サーモTh2が配設され、この除氷
検知サーモTh2は、第1製氷小室13が冷却状態
にある場合にのみ接点を開放し、該製氷小室13
から氷が放出されて温度上昇を伴うと、該接点を
閉成するよう設定されている。
Necessary first ice making compartment 1 in the first ice making compartment 11
An ice-making detection thermo Th1 serving as an ice-making completion detecting means is disposed on the top of the ice-making device 3. This ice-making detection thermometer Th1 is installed in the control circuit shown in FIG. 5, and during the ice-making operation, it closes its contacts a-c and opens its contacts c-b, and when the ice-making operation ends, The contacts a-c are opened and the contacts c-b are opened.
It is set up so that it can be closed. Further, a deicing detection thermo Th 2 as a deicing completion detection means is disposed at the top of another first ice making compartment 13, and this deicing detection thermo Th 2 detects when the first ice making compartment 13 is in a cooling state. The contacts are opened only in certain cases, and the ice making compartment 13 is opened.
The contact is set to close when ice is released from the contact point and the temperature rises.

(第2製氷室の移動機構について) 実施例に使用される第2製氷室12は、所要の
タイミングで後述の移動機構により移動されて、
前記第1製氷室11の直下から完全に退避可能に
構成されている。すなわち第2製氷室12は、そ
の除氷運転に際して、第1製氷室11から垂直に
所要距離だけ下降した後、水平に移動して第1製
氷室11の直下から退避するいわゆるL字形運動
と、製氷運転の再開に先駆けて、前述と逆方向の
復帰運動とを行ない得るものであつて、このL字
形および逆L字形運動を与える移動機構の一例
を、第3図a,bに概略的に示す。
(Regarding the moving mechanism of the second ice-making compartment) The second ice-making compartment 12 used in the example is moved by the moving mechanism described below at the required timing,
It is configured to be completely retractable from directly below the first ice making chamber 11. That is, during the deicing operation, the second ice-making compartment 12 moves vertically down from the first ice-making compartment 11 by a required distance, and then moves horizontally to retreat from directly below the first ice-making compartment 11, which is a so-called L-shaped movement. An example of a moving mechanism that can perform a return movement in the opposite direction to that described above before restarting the ice-making operation, and that provides this L-shaped and inverted L-shaped movement is schematically shown in FIGS. 3a and 3b. show.

図において、定位置に水平固定した第1製氷室
11の両側縁に隣接して、一対のL字形をなすガ
イドレール39,39が平行に配設されると共
に、このガイドレール39,39の右方(第3図
aにおいて)に所定距離離間して、同じ形状を有
する一対のL字形ガイドレール40,40が整列
的に配設されている。夫々のガイドレール39お
よび40には、図示の如く、その軌条面にラツク
歯39a,40aが形成され、前記第2製氷室1
2の両側縁に軸を介して回転自在に枢支した各ピ
ニオンギヤ41が、前記ラツク歯39a,40a
と脱落不能に噛み合つて、当該第2製氷室12を
L字形ガイドレール39,39並びに40,40
に移動自在に水平支持している。
In the figure, a pair of L-shaped guide rails 39, 39 are arranged in parallel adjacent to both side edges of the first ice making chamber 11, which is horizontally fixed in a fixed position, and the right side of the guide rails 39, 39 are arranged in parallel. A pair of L-shaped guide rails 40, 40 having the same shape are arranged in alignment at a predetermined distance apart from each other (in FIG. 3a). As shown in the figure, each of the guide rails 39 and 40 has rack teeth 39a and 40a formed on its rail surface, and the second ice making chamber 1
Each pinion gear 41 is rotatably supported via a shaft on both side edges of the rack teeth 39a, 40a.
The second ice making chamber 12 is connected to the L-shaped guide rails 39, 39 and 40, 40.
It is supported horizontally so that it can be moved freely.

なお、第2製氷室12には、ガイドレール3
9,40の裏面に形成したラツク歯と噛合する別
のピニオンギヤ51が、前記各ピニオンギヤ41
に隣接して回転自在に枢支されている。すなわ
ち、ガイドレール39,40は、両ピニオンギヤ
41,51で挟持され、これにより第2製氷室1
2をガイドレール39,40から脱落することが
ない。
Note that the second ice making compartment 12 has a guide rail 3.
Another pinion gear 51 that meshes with the rack teeth formed on the back surfaces of the pinion gears 9 and 40 is connected to each pinion gear 41.
It is rotatably supported adjacent to. That is, the guide rails 39 and 40 are held between both pinion gears 41 and 51, and thereby the second ice making chamber 1
2 will not fall off the guide rails 39, 40.

また第2製氷室12には、前記ピニオンギヤ4
1が配設された軸とウオームおよびウオームホイ
ールを介して連結した駆動軸52が回転自在に枢
支され、この駆動軸52は、当該第2製氷室12
に配設した減速モータにギヤ連結されている。こ
れにより、該モータ42を駆動することにより、
各ピニオンギヤ41と前記ラツク歯39a,40
aとの噛合作用下に、第3図bに示す如く、第2
製氷室12を各対をなすL字形ガイドレール3
9,39および40,40に沿つて自走させ、第
1製氷室11の直下から完全に退避させ得るもの
である。
In addition, the second ice making chamber 12 is provided with the pinion gear 4.
A drive shaft 52 is rotatably connected to the shaft on which the second ice making compartment 12 is disposed via a worm and a worm wheel.
It is gear-coupled to a deceleration motor located at the As a result, by driving the motor 42,
Each pinion gear 41 and the rack teeth 39a, 40
Under the meshing action with a, the second
L-shaped guide rails 3 form each pair of ice making compartments 12
9, 39 and 40, 40, and can be completely evacuated from directly below the first ice making chamber 11.

なお、製氷運転の完了時には、第1製氷室11
と第2製氷室12とは強固に氷結しており、当該
第2製氷室12に内設したヒータHによる融解熱
と前記減速モータ42による駆動力とだけでは、
両製氷室11,12を剥離させることは困難と思
われる。そこで、第3図aに示すように、カム4
3を備えるモータ44を第1製氷室11に取付
け、このカム43の回転により第2製氷室12の
縁部を下方に押圧することによつて、両製氷室1
1,12を強制的に剥離させる機構の設置が推奨
される。
Furthermore, when the ice-making operation is completed, the first ice-making compartment 11
and the second ice-making compartment 12 are solidly frozen, and the melting heat from the heater H installed inside the second ice-making compartment 12 and the driving force from the deceleration motor 42 alone cannot
It seems difficult to separate both ice-making compartments 11 and 12. Therefore, as shown in Fig. 3a, the cam 4
3 is attached to the first ice-making compartment 11, and by pressing the edge of the second ice-making compartment 12 downward by the rotation of the cam 43, both ice-making compartments 1
It is recommended to install a mechanism to forcibly peel off parts 1 and 12.

(冷凍系について) 第4図は、製氷機における冷凍系の概略構成を
示すものであつて、圧縮機CMで圧縮された気化
冷媒は、吐出管34を経て凝縮器28で凝縮液化
し、ドライヤ29で脱湿された後キヤピラリーチ
ユーブ30で減圧され、蒸発器14に流入してこ
こで一挙に膨張して蒸発し、第1製氷室11と熱
交換を行なつて、各第1製氷小室13を氷点下に
まで冷却させる。この蒸発器14で蒸発した気化
冷媒と未蒸発の液化冷媒とは、気液混相状態でア
キユムレータ31に流入し、ここで気液分離がな
される。そして気相冷媒は、吸入管32を経て圧
縮機CMに帰還し、液相冷媒は当該アキユレータ
31内に貯留される。
(About the refrigeration system) Fig. 4 shows a schematic configuration of the refrigeration system in the ice maker.The vaporized refrigerant compressed by the compressor CM is condensed and liquefied in the condenser 28 through the discharge pipe 34, and then the dryer After being dehumidified in step 29, the pressure is reduced in the capillary reach tube 30, and it flows into the evaporator 14 where it expands and evaporates all at once, exchanging heat with the first ice making chamber 11, and forming the first ice making chamber 11. 13 is cooled to below freezing. The vaporized refrigerant evaporated in the evaporator 14 and the unevaporated liquefied refrigerant flow into the accumulator 31 in a gas-liquid mixed phase state, where they are separated into gas and liquid. The gas phase refrigerant then returns to the compressor CM via the suction pipe 32, and the liquid phase refrigerant is stored in the accumulator 31.

更に、圧縮機Cの吐出管34からホツトガス管
33が分岐され、このホツトガス管33はホツト
ガス弁HVを経て、蒸発器14の入口側に連通さ
れている。このホツトガス弁HVは、除氷運転の
際にのみ開放し、製氷運転時は閉成する制御がな
される。すなわち、除氷運転時にホツトガス弁
HVが開放して、圧縮機CMから吐出される高温
冷媒を、前記ホツトガス管33を介して蒸発器1
4にバイパスさせ、各第1製氷小室13を加温す
ることにより、小室内部に生成される球状氷の周
面を融解させて、各氷塊を自重により落下させ
る。また蒸発器14から流出した高温冷媒は、ア
キユムレータ31に流入し、このアキユムレータ
31中に滞留している液相冷媒を加熱して蒸発さ
せ、気相冷媒として吸入管32から圧縮機CMに
再び帰還させる。なお、図中の符号FMは、凝縮
器28用のフアンモータを示す。
Further, a hot gas pipe 33 is branched from the discharge pipe 34 of the compressor C, and this hot gas pipe 33 is communicated with the inlet side of the evaporator 14 via a hot gas valve HV. This hot gas valve HV is controlled to open only during deicing operation and close during ice making operation. In other words, during deicing operation, the hot gas valve
When the HV is opened, the high temperature refrigerant discharged from the compressor CM is sent to the evaporator 1 via the hot gas pipe 33.
4 and heats each first ice-making chamber 13, the circumferential surface of the spherical ice produced inside the chamber is melted, and each ice block is caused to fall by its own weight. Further, the high temperature refrigerant flowing out from the evaporator 14 flows into the accumulator 31, heats and evaporates the liquid phase refrigerant staying in this accumulator 31, and returns it to the compressor CM from the suction pipe 32 as a gas phase refrigerant. let Note that the symbol FM in the figure indicates a fan motor for the condenser 28.

(電気制御回路について) 第5図に、実施例に係る自動製氷機の電気制御
回路図の一例を示す。図において、電源供給ライ
ンRと接続点Dとの間に、ヒユーズFと貯氷検知
スイツチS1とが直列に設けられ、この接続点Dと
電源供給ラインTとの間に、圧縮機CMがリレー
X1の常閉接点X1−bを介して接続されている。
貯氷検知スイツチS1は、貯氷庫(図示せず)中の
氷が所定レベル以下に減少したとき閉成し、貯氷
庫の氷が所定レベルに達すると開放する構成にな
つている。また除氷運転に際して、前記第2製氷
室12の傾動により付勢される切換スイツチS2
端子aが接続点Dに接続され、この切換スイツチ
S2の切換接点bは、製氷検知サーモTh1の接点c
に接続されている。
(Regarding the electrical control circuit) FIG. 5 shows an example of an electrical control circuit diagram of the automatic ice maker according to the embodiment. In the figure, a fuse F and an ice storage detection switch S1 are installed in series between the power supply line R and the connection point D, and a compressor CM is connected between the connection point D and the power supply line T.
It is connected via the normally closed contact X 1 -b of X 1 .
The ice storage detection switch S1 is configured to close when the ice in the ice storage (not shown) decreases below a predetermined level, and to open when the ice in the ice storage reaches a predetermined level. Further, during deicing operation, the terminal a of the changeover switch S2 , which is energized by the tilting of the second ice making chamber 12, is connected to the connection point D.
Switching contact b of S2 is contact c of ice-making detection thermometer Th1 .
It is connected to the.

製氷検知サーモTh1の接点aとラインTとの
間には、前記ポンプ22の駆動用モータPMお
よびフアンモータFMが並列接続され、 該サーモTh1の接点bとラインTとの間に
は、リレーX1、タイマT、該タイマTの常閉
接点T−bと直列接続したヒータHが、夫々並
列接続されている。また、前記アクチユエータ
モータAMの端子kはラインTに接続され、該
モータAMの傾動駆動用端子mは、タイマTの
常開接点T−aを介してサーモTh1の接点bに
接続されている。更に、切換スイツチS2の切換
接点cは、前記アクチユエータモータAMの復
帰駆動用端子nに除氷検知サーモTh2の接点c
−aを介して接続され、また該切換接点cとラ
インTとの間に前記ホツトガス弁HVが接続さ
れている。なお前記タイマTは、通電開始(除
氷動作開始)から所要の設定時間が経過した
後、前記常閉接点T−bを開放すると共に、常
開接点T−aを閉成する。更に給水弁WVは、
製氷水タンク19の水位を監視する水位スイツ
チFSWと直列になつて、スイツチS2の切換接
点bとラインTとの間に介装されている。
Between the contact a of the ice-making detection thermo Th 1 and the line T, the drive motor PM and the fan motor FM of the pump 22 are connected in parallel, and between the contact b of the thermo Th 1 and the line T, The relay X 1 , the timer T, and the heater H connected in series with the normally closed contact T-b of the timer T are connected in parallel. Furthermore, the terminal k of the actuator motor AM is connected to the line T, and the tilting drive terminal m of the motor AM is connected to the contact b of the thermostat Th1 via the normally open contact Ta of the timer T. ing. Furthermore, the changeover contact c of the changeover switch S2 is connected to the return drive terminal n of the actuator motor AM, and the contact c of the de-icing detection thermometer Th2.
-a, and the hot gas valve HV is connected between the switching contact c and the line T. The timer T opens the normally closed contact T-b and closes the normally open contact Ta after a predetermined set time has elapsed since the start of energization (start of deicing operation). Furthermore, the water supply valve WV is
It is interposed between the switching contact b of the switch S2 and the line T in series with the water level switch FSW that monitors the water level of the ice making water tank 19.

また、除氷検知サーモTh2の接点bとライン
Tとの間に、リミツトスイツチLSWおよびリ
レーX2が直列に介装され、前記第2製氷室1
2を第1製氷室11に対して進退駆動するモー
タ42の端子kがラインTに接続されている。
なお、前記リミツトスイツチLSWは、第2製
氷室12の位置検出を行なうものであつて、当
該第2製氷室12の当接により接点が開放され
る。該モータ42における第2製氷室退出用端
子mは、リレーX2の常開接点X2−aを介して
スイツチS4の切換接点cに接続され、また第2
製氷室進入用端子nは、リレーX2の常閉接点
X2−bを介してアクチユエータモータAMの
復帰駆動用端子nに接続されている。更に、前
述した如く両製氷室11,12を強制剥離させ
る手段としてのモータ44が、前記モータ44
と並列に回路中に介装してある。
Further, a limit switch LSW and a relay X 2 are interposed in series between the contact point b of the deicing detection thermometer Th 2 and the line T, and the second ice making chamber 1
A terminal k of a motor 42 that drives the ice making container 2 to advance and retreat with respect to the first ice making chamber 11 is connected to the line T.
The limit switch LSW detects the position of the second ice making chamber 12, and its contacts are opened when the second ice making chamber 12 comes into contact with the limit switch LSW. The second ice maker exit terminal m of the motor 42 is connected to the switching contact c of the switch S4 via the normally open contact X2 -a of the relay X2 , and
Terminal n for entering the icemaker compartment is the normally closed contact of relay X 2 .
It is connected to the return drive terminal n of the actuator motor AM via X 2 -b. Further, as described above, the motor 44 as a means for forcibly separating both the ice making chambers 11 and 12 is connected to the motor 44.
is inserted in the circuit in parallel with.

(実施例の作用) 次に、実施例に係る製氷構造の作用につき説明
する。製氷運転に際し第2製氷室12は、第1図
に示すように、第1製氷室11の下方に位置し
て、その第1製氷小室13を下面側から閉成し、
また水皿38には第2製氷室12を同じく下面側
から閉成している。従つて、水皿38の分配管2
4に穿設した各噴水孔25は、第2製氷小室15
の底部に穿設した通孔12aに対応的に合致して
いる。
(Operation of the embodiment) Next, the operation of the ice making structure according to the embodiment will be explained. During ice-making operation, the second ice-making compartment 12 is located below the first ice-making compartment 11, as shown in FIG. 1, and closes the first ice-making compartment 13 from the bottom side.
Further, the second ice making chamber 12 is also closed from the bottom side of the water tray 38. Therefore, the distribution pipe 2 of the water tray 38
Each fountain hole 25 drilled in the second ice making chamber 15
It corresponds to the through hole 12a bored in the bottom of the.

(製氷運転について) この状態で、自動製氷機への電源を投入する
が、このとき貯氷庫に氷塊は貯留されていないの
で、貯氷検知スイツチS1は閉成され、また切換ス
イツチS2は接点a−b側に接続されており、閉成
中の水位スイツチFSWにより給水弁WVが開弁
し、製氷水タンク19に水供給がなされる。該タ
ンク19の水位が所定値にまで達成すると、水位
スイツチFSWが開放して、給水弁WVが閉弁し、
水供給を停止する。
(About ice-making operation) In this state, power is turned on to the automatic ice-making machine, but at this time, since there are no ice cubes stored in the ice storage, ice storage detection switch S 1 is closed, and changeover switch S 2 is closed. The water supply valve WV is connected to the a-b side, and the water supply valve WV is opened by the water level switch FSW which is being closed, and water is supplied to the ice-making water tank 19. When the water level of the tank 19 reaches a predetermined value, the water level switch FSW opens and the water supply valve WV closes.
Stop water supply.

更に、第1製氷室11の温度は室温程度に保持
されているため、製氷検知サーモTh1は接点c−
a側に接続されている。従つて、電源投入と同時
に圧縮機CM、フアンモータFM、ポンプモータ
PMへの通電が開始され製氷運転に入る。これに
より、第1製氷室11に設けた蒸発器14での冷
媒循環がなされ、当該第1製氷室11の冷却がな
されると共に、製氷水タンク19からの製氷水2
0は分配管24にポンプ圧送され、該分配管24
の各噴水孔25および第2製氷小室15の通孔1
2aを介して、両製氷小室13,15に画成され
る球状空間中に噴射される。
Furthermore, since the temperature of the first ice-making chamber 11 is maintained at about room temperature, the ice-making detection thermometer Th1 is connected to the contact c-
Connected to side a. Therefore, when the power is turned on, the compressor CM, fan motor FM, and pump motor
Power to the PM is started and ice making operation begins. As a result, the refrigerant is circulated in the evaporator 14 provided in the first ice-making compartment 11, and the first ice-making compartment 11 is cooled, and the ice-making water 2 from the ice-making water tank 19 is circulated.
0 is pumped into the distribution pipe 24;
Each fountain hole 25 and the through hole 1 of the second ice making chamber 15
The ice is injected into the spherical space defined by both the ice-making chambers 13 and 15 through the ice-making chambers 2a.

噴射された製氷水は、第1製氷室11における
第1製氷小室13の内面に接触して冷却され、下
方の第2製氷室12における第2製氷小室15を
潤した後、前記複数の通孔12aおよび水皿38
に穿設した前記戻り孔26を介して、製氷水タン
ク19に戻されて再度の循環に供される。この製
氷水の循環を反復する内に、タンク19中に貯留
される製氷水全体の温度が次第に低下すると共
に、第2製氷小室15の温度も同様に次第に低下
する。先ず第1製氷小室13の内壁面で製氷水の
一部が凍結して氷層が形成され(第6図a参照)、
未氷結水は通孔12aからタンク19に帰還する
サイクルを重ねる間に、前記氷層の成長が更に進
行して、第6図bおよび第6図cに示す如く、最
終的に両製氷小室13,15に形成される球状空
間中に球状氷1が生成される。
The injected ice-making water contacts the inner surface of the first ice-making compartment 13 in the first ice-making compartment 11 and is cooled, moistens the second ice-making compartment 15 in the second ice-making compartment 12 located below, and then flows through the plurality of through holes. 12a and water tray 38
The ice-making water is returned to the ice-making water tank 19 through the return hole 26 drilled in the ice-making water tank 19, and is circulated again. As this ice-making water circulation is repeated, the temperature of the entire ice-making water stored in the tank 19 gradually decreases, and the temperature of the second ice-making chamber 15 also gradually decreases. First, a portion of the ice-making water freezes on the inner wall surface of the first ice-making chamber 13 to form an ice layer (see FIG. 6a).
As the unfrozen water repeats the cycle of returning to the tank 19 from the through hole 12a, the growth of the ice layer further progresses, and finally, as shown in FIGS. 6b and 6c, both ice-making compartments 13 , 15. Spherical ice 1 is generated in the spherical space formed in .

(除氷運転について) このように製氷が完了して、第1製氷室11の
温度が所要の温度域まで低下すると、これを検知
した製氷検知サーモTh1が接点C−a側から接点
c−b側に切換わる。これにより、フアンモータ
FMおよびポンプモータPMへの通電が停止され、
製氷水の循環供給に停止される。またリレーX1
が通電励磁されて、これと協動する常閉接点X1
−bが開放し、圧縮機CMの運転も停止される。
更にタイマTへの通電がなされて、所要設定時限
のカウントが開始される。そして、該タイマTが
カウントアツプするまで、その常閉接点T−bに
直列接続して前記ヒータHへの通電がなされて第
2製氷室12を加熱し、従つて第2製氷小室15
に対する球状氷の氷結を融解させる。また、第2
製氷室12と水皿38との氷結も好適に融解され
る。
(Regarding deicing operation) When ice making is completed and the temperature of the first ice making chamber 11 falls to the required temperature range, the ice making detection thermo Th1 detects this and switches from the contact C-a side to the contact c- Switch to side b. This allows the fan motor to
Power to FM and pump motor PM is stopped,
The circulating supply of ice making water is stopped. Also relay x 1
is energized and cooperates with normally closed contact X 1
-b is opened and the operation of compressor CM is also stopped.
Further, the timer T is energized and starts counting the required set time period. Then, until the timer T counts up, the heater H connected in series to the normally closed contact T-b is energized to heat the second ice-making compartment 12, and thus the second ice-making compartment 15 is heated.
Melt the ice cubes against the ice. Also, the second
Freezing in the ice making compartment 12 and the water tray 38 is also suitably thawed.

所要の制定時限が経過して、タイマTがカウン
トアツプすると、該タイマTの常閉接点T−bを
開放してヒータHへの通電を停止させると共に、
前記アクチユエータモータAMの傾動駆動用端子
mに接続する常閉接点T−aを閉成し、当該モー
タAMを第2図aにおいて反時計方向に回動させ
る。これによりカムレバー17が回転して、その
基部に形成したカム面17bが、水皿38の側部
上面を強制的に下方に押圧する。既に述べた如
く、第2製氷室12はヒータHにより加熱され
て、水皿38に対する氷結は解除されているの
で、当該水皿38(および製氷水タンク19)は
第2製氷室12から強制剥離されて、斜め下方に
傾動し始める。この水皿38および製氷水タンク
19の傾動により、該タンク19中の不純物濃度
の高まつた製氷水は外部に廃棄される。
When the required established time period elapses and the timer T counts up, the normally closed contact T-b of the timer T is opened to stop energizing the heater H, and
The normally closed contact Ta connected to the tilt drive terminal m of the actuator motor AM is closed, and the motor AM is rotated counterclockwise in FIG. 2a. As a result, the cam lever 17 rotates, and the cam surface 17b formed at the base of the cam lever 17 forcibly presses the upper side surface of the water tray 38 downward. As already mentioned, the second ice-making compartment 12 is heated by the heater H and the ice on the water tray 38 has been removed, so the water tray 38 (and the ice-making water tank 19) is forcibly separated from the second ice-making compartment 12. and begins to tilt diagonally downward. By tilting the water tray 38 and the ice-making water tank 19, the ice-making water with increased impurity concentration in the tank 19 is disposed of to the outside.

水皿38が最大限に傾動したタイミングをもつ
て、前記レバー片37が切換スイツチS2を押圧付
勢し、その接点a−bを接点a−c側に切換える
ことにより、タイマ装置Tへの通電が遮断され、
その常閉接点T−bが再び閉成すると共に、常閉
接点T−aが開放復帰する。またアクチユエータ
モータAMはその回転を停止して、水皿38の傾
動を停止させる。なお除氷検知サーモTh2は、接
点c−a開放状態を保持しているので、アクチユ
エータモータAMの復帰指令は未だ出されない。
At the timing when the water tray 38 is tilted to the maximum, the lever piece 37 presses and urges the changeover switch S2 , and switches the contacts a and b to the contacts a and c, thereby providing a signal to the timer device T. Power is cut off,
The normally closed contact T-b closes again, and the normally closed contact T-a returns to open. Moreover, the actuator motor AM stops its rotation and the tilting of the water tray 38 is stopped. Note that since the deicing detection thermometer Th2 maintains the contact ca open state, a return command for the actuator motor AM is not issued yet.

更に、前記スイツチS2の切換えによりホツトガ
ス弁HVが開放し、リレーX1の常閉接点X1−b
の閉成に伴い運転を再開した圧縮機CMから吐出
される高温冷媒を、ホツトガス管33を介して蒸
発器14にバイパスさせる。これにより第1製氷
室11の加温がなされ、その第1製氷小室13の
内面と球状氷との氷結面の融解を開始する。
Furthermore, the hot gas valve HV is opened by switching the switch S2 , and the normally closed contact X1 - b of the relay X1 is opened.
The high-temperature refrigerant discharged from the compressor CM, which has resumed operation with the closing of the compressor CM, is bypassed to the evaporator 14 via the hot gas pipe 33. As a result, the first ice-making chamber 11 is heated, and the frozen surface between the inner surface of the first ice-making chamber 13 and the spherical ice begins to melt.

前述した切換スイツチS2の切換えにより、前記
リレーX2が励磁され、これと協動する常閉接点
X2−aが閉成し、また常閉接点X2−bが開放し
て、前記モータ42の第2製氷室退出用端子mお
よびモータ44への通電がなされる。これによ
り、前記モータ44が駆動されてカム43を回転
させ、第2製氷室12の縁部を下方に押圧して、
第1製氷室11から強制剥離させる。また、同期
的にモータ42が所要方向に駆動され、第3図a
およびbに示すように、前記ピニオンギヤ41と
ラツク歯39a,40aとの噛合作用下に、第2
製氷室12を各対をなすL字形ガイドレール3
9,39および40,40に沿つて自走させる。
すなわち第2製氷室12は、第1製氷室11から
離間して垂直に下降した後、右方に自走して第1
製氷室11の直下から完全に退避する。このと
き、第1製氷室11の第1製氷小室13には、未
だ球状氷1が下向きに氷結している。第2製氷室
12が右方向に所定距離だけ移動して、前記リミ
ツトスイツチLSWに当該すると、該スイツチ
LSWの接点が開放してリレーX2への通電を遮断
する。これによりリレーX2は滅勢され、前記モ
ータ42,44は回転を停止する。
By switching the aforementioned changeover switch S2 , the relay X2 is energized, and the normally closed contact that cooperates with it is energized.
X 2 -a is closed, and normally closed contact X 2 -b is opened, so that the second ice making chamber exit terminal m of the motor 42 and the motor 44 are energized. As a result, the motor 44 is driven to rotate the cam 43 and press the edge of the second ice making chamber 12 downward.
It is forcibly removed from the first ice making compartment 11. Further, the motor 42 is synchronously driven in a desired direction, and as shown in FIG.
As shown in FIGS. 1 and 2b, the second
L-shaped guide rails 3 form each pair of ice making compartments 12
9, 39 and 40, 40.
That is, the second ice-making compartment 12 separates from the first ice-making compartment 11 and descends vertically, and then moves to the right by itself to reach the first ice-making compartment 11.
Completely evacuate from immediately below the ice making compartment 11. At this time, the spherical ice 1 is still frozen downward in the first ice-making compartment 13 of the first ice-making compartment 11 . When the second ice maker 12 moves a predetermined distance to the right and hits the limit switch LSW, the switch
The LSW contact opens and cuts off the power to relay X2 . This deenergizes the relay X2 and the motors 42, 44 stop rotating.

しかるに、前述の如く、ホツトガス弁HVの開
放により蒸発器14には先程よりホツトガスが循
環しているから、第1製氷室11は温度上昇中で
ある。そして、第1製氷小室13が或る程度加温
されると、小室壁面と球状氷1との氷結が解除さ
れ、第2図dに示すように、当該球状氷1は自重
により落下して、傾動待機している前記水皿38
の表面に落着し貯氷庫に滑落回収される。
However, as described above, since the hot gas has been circulating in the evaporator 14 since the hot gas valve HV was opened, the temperature of the first ice making chamber 11 is rising. Then, when the first ice-making chamber 13 is heated to a certain degree, the ice between the chamber wall and the spherical ice 1 is broken, and as shown in FIG. 2d, the spherical ice 1 falls due to its own weight. The water tray 38 is on standby for tilting.
It lands on the surface and is collected by sliding into the ice storage.

このように、球状氷が全て第1製氷小室13か
ら離脱すると、第1製氷室11は蒸発器14に循
環しているホツトガスにより一挙に温度上昇す
る。この温度上昇を除氷検知サーモTh2が検知す
ると、該サーモTn2は接点c−aが閉成して除氷
運転を完了させる。前記サーモTh2における接点
c−aの閉成により、モータ42の第2製氷室進
出用端子nへの通電がなされ、該モータ42は先
とは逆方向に駆動される。このため、第2製氷室
12は、ピニオンギヤ41とラツク歯39a,4
0aとの噛合作用下に、各対をなすL字形ガイド
レール39,39および40,40に沿つて自走
復帰し、第2図eに示す如く、第1製氷室11の
下方に帰還して、次の製氷運転を待機する。また
モータ44も、モータ42と同様に回転復帰し
て、次の両製氷室11,12の強制剥離を待機す
る。
In this way, when all the spherical ice leaves the first ice making compartment 13, the temperature of the first ice making compartment 11 rises all at once due to the hot gas circulating in the evaporator 14. When the deicing detection thermometer Th2 detects this temperature rise, the contact c-a of the thermometer Tn2 closes to complete the deicing operation. By closing the contact c-a of the thermometer Th2 , the second ice maker advancing terminal n of the motor 42 is energized, and the motor 42 is driven in the opposite direction. Therefore, the second ice making chamber 12 has a pinion gear 41 and a rack tooth 39a, 4.
Under the meshing action with 0a, it returns to its self-propelled position along the pairs of L-shaped guide rails 39, 39 and 40, 40, and returns to the lower part of the first ice-making chamber 11, as shown in FIG. 2e. , waits for the next ice-making operation. Similarly to the motor 42, the motor 44 returns to rotation and waits for the next forced peeling of both the ice making chambers 11 and 12.

更に、モータAMにおける復帰駆動用端子nへ
の通電がなされ、該モータAMは逆回転してカム
レバー17を駆動し、該レバー17と水皿38と
の間に弾力的に係着したコイルスプリング18に
より、水皿38および製氷水タンク19を反時計
方向に回動付勢して、水平状態に復帰させること
により、再び第2製氷室12を下方から閉成す
る。なお、モータ42の回転速度を、水皿38の
復帰速度より充分に大きく設定しておくことによ
り、復帰中の水皿38と第2製氷室12との干渉
は生じない。
Further, the return drive terminal n of the motor AM is energized, and the motor AM reversely rotates to drive the cam lever 17, and the coil spring 18 elastically engaged between the lever 17 and the water tray 38. As a result, the water tray 38 and the ice-making water tank 19 are rotated counterclockwise and returned to the horizontal state, thereby closing the second ice-making chamber 12 from below again. Note that by setting the rotational speed of the motor 42 to be sufficiently higher than the return speed of the water tray 38, interference between the water tray 38 and the second ice making chamber 12 during the return operation will not occur.

次いで、前記モータAMの逆回転によりカムレ
バー17も逆回転し、前記切換スイツチS2を押圧
付勢して、接点a−c側から接点a−b側に切換
える。これにより、前記ホツトガス弁HVが閉成
して、ホツトガスの供給を停止する。また、水位
スイツチFSWは閉成しているので、給水弁PWV
が開放し、水位の低下したタンク19に新たな製
氷水を供給し、所要の水位に達すると水位スイツ
チFSWが作動して、タンク19への製氷水の供
給を停止する。
Then, due to the reverse rotation of the motor AM, the cam lever 17 also rotates in the reverse direction, pressing and energizing the changeover switch S2 to switch from the contact ac side to the contact ab side. As a result, the hot gas valve HV is closed and the supply of hot gas is stopped. Also, since the water level switch FSW is closed, the water supply valve PWV
is opened and new ice-making water is supplied to the tank 19 whose water level has decreased, and when the required water level is reached, the water level switch FSW is activated and the supply of ice-making water to the tank 19 is stopped.

また前記リレーX2は滅勢されて、これと協動
する常閉接点X2−aを再び開放する。そして第
5図の回路図に示す初期状態に復帰し、製氷運転
が再開されて前述した動作を繰り返す。製氷運転
と除氷運転とが反復され、貯氷庫に所定量の球状
氷が貯留されると、貯氷検知スイツチS1が開放し
て製氷機の運転が停止される。
The relay X 2 is also deenergized, opening the normally closed contact X 2 -a associated therewith again. Then, the initial state shown in the circuit diagram of FIG. 5 is restored, the ice-making operation is restarted, and the above-described operation is repeated. When the ice making operation and the ice removal operation are repeated and a predetermined amount of spherical ice is stored in the ice storage, the ice storage detection switch S1 is opened and the operation of the ice maker is stopped.

発明の効果 以上説明した如く、本発明に係る自動製氷機の
製氷構造によれば、下方に開放する第1製氷小室
を多数画成した第1製氷室と、上方に開放する第
2製氷小室を多数画成した第2製氷室とを基本的
に備える製氷機において、第2製氷室と製氷水を
供給する水皿とを分離配設したことにより、タン
クに貯留した製氷水を、両製氷小室に画成される
氷形成空間中に好適に連続供給し、また未氷結水
を円滑に回収し得るものである。なお図示例で
は、球状氷を製造する場合につき説明したが、第
1製氷小室および第2製氷小室の内面形状を変更
することにより、第7図bに示す如き多面状氷を
大量生産するのにも好適に使用される。
Effects of the Invention As explained above, according to the ice-making structure of the automatic ice-making machine according to the present invention, the first ice-making compartment has a plurality of first ice-making compartments that open downward, and the second ice-making compartment that opens upward. In an ice-making machine that basically has a second ice-making compartment divided into multiple compartments, the second ice-making compartment and the water tray that supplies ice-making water are arranged separately, so that the ice-making water stored in the tank can be transferred to both small ice-making compartments. It is possible to suitably continuously supply unfrozen water into the ice forming space defined by the ice formation space, and to smoothly recover unfrozen water. In the illustrated example, explanation has been given on the case of manufacturing spherical ice, but by changing the inner surface shapes of the first ice-making chamber and the second ice-making chamber, it is possible to mass-produce multifaceted ice as shown in FIG. 7b. are also preferably used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の好適な実施例に係る製氷構造
の概略構成を示す縦断面図、第2図a〜eは、実
施例に係る製氷構造において先ず水皿が傾動し、
次いで第2製氷室が第1製氷室から分離して球状
氷を貯氷庫に向けて放出する状態を経時的に示す
説明図、第3図は第1製氷室に対し第2製氷室を
開放するための機構を示すものであつて、第3図
aは第1製氷室を第2製氷室で下方から閉成した
状態を示す概略斜視図、第3図bは第2製氷室を
第1製氷室の直下から完全に退避させた状態を示
す概略斜視図、第4図は自動製氷機における一般
的な冷凍系の回路図、第5図は実施例に係る装置
を運転制御する製氷制御回路の一例を示す回路
図、第6図a〜cは、第1製氷小室および第2製
氷小室内で球状氷が形成される状態を経時的に示
す説明図、第7図aは球状氷を示す説明図、第7
図bは多面状氷を示す説明図である。 11……第1製氷室、12……第2製氷室、1
3……第1製氷小室、14……蒸発器、15……
第2製氷小室、19……製氷水タンク、38……
水皿。
FIG. 1 is a vertical sectional view showing a schematic configuration of an ice making structure according to a preferred embodiment of the present invention, and FIGS.
An explanatory diagram illustrating over time the state in which the second ice maker separates from the first ice maker and releases spherical ice toward the ice storage, and FIG. 3 shows the second ice maker being opened to the first ice maker. Fig. 3a is a schematic perspective view showing a state in which the first ice-making compartment is closed from below with the second ice-making compartment, and Fig. 3b is a schematic perspective view showing the second ice-making compartment closed from below. A schematic perspective view showing a state in which the room is completely evacuated from directly below, FIG. 4 is a circuit diagram of a general refrigeration system in an automatic ice maker, and FIG. 5 is a diagram of an ice making control circuit that controls the operation of the device according to the embodiment. A circuit diagram showing an example, FIGS. 6 a to 6 c are explanatory diagrams showing the state in which spherical ice is formed in the first ice making compartment and the second ice making compartment over time, and FIG. 7 a is an explanatory diagram showing spherical ice. Figure, 7th
Figure b is an explanatory diagram showing multifaceted ice. 11...First ice making room, 12...Second ice making room, 1
3...First ice making compartment, 14...Evaporator, 15...
Second ice making compartment, 19... Ice making water tank, 38...
water dish.

Claims (1)

【特許請求の範囲】 1 製氷水を製氷室に噴射供給して該製氷室内に
氷塊を形成し、該製氷室で氷結するに到らなかつ
た製氷水は再循環に供するよう構成した自動製氷
機において、 背面に蒸発器14を備えて機内に略水平に固定
配置され、下方に開放する所要形状の第1製氷小
室13を多数形成した第1製氷室11と、 上方に開放する所要形状の第2製氷小室15が
多数形成され、前記第1製氷室11の下方に退出
自在に配設されて、製氷運転に際し各対応の第1
製氷小室13と第2製氷小室15との間に氷形成
用空間を画成する第2製氷室12と、 機内に傾動自在に配設され、製氷運転に際し前
記第2製氷室12を下方から閉成して、各第2製
氷小室15に製氷水を噴射供給可能であり、除氷
運転に際し斜め下方に傾動して、前記第2製氷室
12の退出を許容する水皿38と から構成したことを特徴とする自動製氷機の製氷
構造。 2 前記水皿38は、その下方に製氷水タンク1
9が一体的に配設されている請求項1記載の自動
製氷機の製氷構造。 3 前記水皿38は製氷水タンク19に管路を介
して連通する分配管24を備えると共に、この分
配管24に前記第2製氷小室15の夫々と対応し
て上方に開口する噴水孔25が穿設され、第2製
氷小室15の底部に穿設した通孔12aに前記噴
水孔25を夫々対応させることにより、各第2製
氷小室15への製氷水の噴射供給がなされる請求
項1および2記載の自動製氷機の製氷構造。
[Scope of Claims] 1. An automatic ice-making machine configured to inject ice-making water into an ice-making compartment to form ice cubes in the ice-making compartment, and to recirculate ice-making water that has not frozen in the ice-making compartment. , a first ice-making compartment 11 is provided with an evaporator 14 on the back and is fixedly arranged substantially horizontally inside the machine, and has a number of first ice-making compartments 13 of a desired shape that open downward, and a first ice-making compartment 11 of a desired shape that opens upward. A large number of second ice-making compartments 15 are formed, and are disposed below the first ice-making compartment 11 so as to be freely retractable.
A second ice-making compartment 12 defining an ice-forming space between the ice-making compartment 13 and the second ice-making compartment 15; and a second ice-making compartment 12 that is tiltably disposed inside the machine and closes the second ice-making compartment 12 from below during ice-making operation. and a water tray 38 that can spray and supply ice-making water to each of the second ice-making compartments 15 and that tilts diagonally downward during deicing operation to allow exit of the second ice-making compartment 12. An ice-making structure of an automatic ice-making machine featuring: 2 The water tray 38 has an ice making water tank 1 below it.
9. The ice making structure of an automatic ice making machine according to claim 1, wherein the ice making structure is integrally arranged. 3. The water tray 38 is equipped with a distribution pipe 24 that communicates with the ice-making water tank 19 via a pipe line, and the distribution pipe 24 is provided with a fountain hole 25 that opens upward and corresponds to each of the second ice-making chambers 15. Ice-making water is injected and supplied to each second ice-making chamber 15 by making the water fountain holes 25 correspond to the through holes 12a formed at the bottom of the second ice-making chamber 15, respectively. Ice making structure of the automatic ice making machine described in 2.
JP5522888A 1988-03-09 1988-03-09 Mechanical construction of automatic ice making machine Granted JPH01230968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5522888A JPH01230968A (en) 1988-03-09 1988-03-09 Mechanical construction of automatic ice making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5522888A JPH01230968A (en) 1988-03-09 1988-03-09 Mechanical construction of automatic ice making machine

Publications (2)

Publication Number Publication Date
JPH01230968A JPH01230968A (en) 1989-09-14
JPH0551831B2 true JPH0551831B2 (en) 1993-08-03

Family

ID=12992748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5522888A Granted JPH01230968A (en) 1988-03-09 1988-03-09 Mechanical construction of automatic ice making machine

Country Status (1)

Country Link
JP (1) JPH01230968A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101643635B1 (en) * 2009-10-07 2016-07-29 엘지전자 주식회사 Method for Ice Making and Ice Maker Apparatus
RU2765255C1 (en) * 2018-10-02 2022-01-27 ЭлДжи ЭЛЕКТРОНИКС ИНК. Refrigirator
AU2019384866B2 (en) * 2018-11-19 2023-01-12 Lg Electronics Inc. Ice maker and refrigerator

Also Published As

Publication number Publication date
JPH01230968A (en) 1989-09-14

Similar Documents

Publication Publication Date Title
US4910974A (en) Automatic ice making machine
JPH0532668B2 (en)
JPH0544587B2 (en)
JPH01210778A (en) Ice removing structure for automatic ice-making machine
JPH0544586B2 (en)
JPH0541913B2 (en)
JPH0551832B2 (en)
JPH0551831B2 (en)
JP5055170B2 (en) Reverse cell ice machine
JPH01225875A (en) Ice guide structure for automatic ice-making machine
JPH0586544B2 (en)
JPH02143068A (en) Ice guiding device in automatic ice making machine
JPH0543949B2 (en)
JPH02154963A (en) Deicing control method for automatic ice making machine
JPH0565780B2 (en)
JP3412677B2 (en) How to operate an automatic ice maker
JPH02140575A (en) Ice making structure in automatic ice making machine
JPH01230970A (en) Control method for ice discharging operation of automatic ice making machine
JPH0544588B2 (en)
JPH02154962A (en) Deicing control method for automatic ice making machine
JPH061141B2 (en) Automatic ice machine
JPH0554027B2 (en)
JPH0615279Y2 (en) Evaporator structure of automatic ice machine
JPH02161271A (en) Ice making structure of automatic ice machine
JPH02161272A (en) Ice making structure of automatic ice machine