JPH02161271A - Ice making structure of automatic ice machine - Google Patents
Ice making structure of automatic ice machineInfo
- Publication number
- JPH02161271A JPH02161271A JP63314448A JP31444888A JPH02161271A JP H02161271 A JPH02161271 A JP H02161271A JP 63314448 A JP63314448 A JP 63314448A JP 31444888 A JP31444888 A JP 31444888A JP H02161271 A JPH02161271 A JP H02161271A
- Authority
- JP
- Japan
- Prior art keywords
- ice
- making
- water
- supply
- ice making
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 174
- 239000004020 conductor Substances 0.000 claims abstract description 9
- 238000007599 discharging Methods 0.000 claims abstract description 4
- 239000007787 solid Substances 0.000 abstract description 12
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- WKVZMKDXJFCMMD-UVWUDEKDSA-L (5ar,8ar,9r)-5-[[(2r,4ar,6r,7r,8r,8as)-7,8-dihydroxy-2-methyl-4,4a,6,7,8,8a-hexahydropyrano[3,2-d][1,3]dioxin-6-yl]oxy]-9-(4-hydroxy-3,5-dimethoxyphenyl)-5a,6,8a,9-tetrahydro-5h-[2]benzofuro[6,5-f][1,3]benzodioxol-8-one;azanide;n,3-bis(2-chloroethyl)-2-ox Chemical compound [NH2-].[NH2-].Cl[Pt+2]Cl.ClCCNP1(=O)OCCCN1CCCl.COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3C(O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 WKVZMKDXJFCMMD-UVWUDEKDSA-L 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000002470 thermal conductor Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000007710 freezing Methods 0.000 description 4
- 230000008014 freezing Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000008399 tap water Substances 0.000 description 4
- 235000020679 tap water Nutrition 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 238000005057 refrigeration Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 241000167854 Bourreria succulenta Species 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C2500/00—Problems to be solved
- F25C2500/02—Geometry problems
Landscapes
- Production, Working, Storing, Or Distribution Of Ice (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
この発明は、例えば球体状や多面体状をなす氷塊群を、
全自動で大量に製造し得る自動製氷機の製氷構造に関す
るものである。[Detailed Description of the Invention] Industrial Application Field The present invention is applicable to a group of ice blocks having, for example, a spherical shape or a polyhedral shape.
This invention relates to an ice-making structure of an automatic ice-making machine that can produce ice in large quantities fully automatically.
従来技術
各種の産業分野で、サイコロ状の角氷や所要厚みの板氷
その他フレーク状の氷片等を大量に連続製造する自動製
氷機が、その用途に応じて好適に使い分けられている0
例えば、前記の角氷を製造する製氷機として。BACKGROUND ART In various industrial fields, automatic ice making machines that continuously produce large quantities of dice-shaped ice cubes, sheet ice of a required thickness, and flake-shaped ice pieces are suitably used depending on the application.
For example, as an ice maker that produces the aforementioned ice cubes.
■製氷室に下向きに多数画成した立方体状の製氷小室を
、その下方から水皿により開閉自在に閉成し、当該水皿
から製氷水を各製氷小室に噴射供給して、該製氷小室中
に角氷を徐々に形成するようにした所謂クローズドセル
方式や、
■下方に開放する多数の立方体状の製氷小室に製氷水を
直接供給し、角氷を該製氷小室中に形成するようにした
所謂オープンセル方式が知られている。また、板氷や細
粒状のクラッシュアイスを連続製造する製氷機、その他
フレーク状の氷片を連続製造するオーガ式製氷機等も実
施されている。■ A large number of cube-shaped ice-making compartments are defined downward in the ice-making compartment, which can be opened and closed by a water tray from below, and ice-making water is injected from the water tray to each ice-making compartment to fill the ice-making compartments. The so-called closed-cell method, which gradually forms ice cubes in the process, and ice-making water is directly supplied to a number of cube-shaped ice-making chambers that open downward, and ice cubes are formed in the ice-making chambers. A so-called open cell system is known. In addition, ice makers that continuously produce sheet ice or fine crushed ice, and auger-type ice makers that continuously produce ice flakes are also in use.
発明が解決しようとする課題
従来の各種製氷機により製造される氷は、前述した如く
、立方体状の角氷や板氷、その他フレーク状の氷片やク
ラッシュアイスが殆どである。これらの氷で所要の定形
を備え、そのまま飲料に浮かせたり、各種食材の冷却ベ
ツドに供したり出来るのは、僅かに前記の角氷があるに
過ぎない(板氷も定形は備えているが1通常そのままの
寸法では使用し得ない)。Problems to be Solved by the Invention As mentioned above, most of the ice produced by various conventional ice making machines are cube-shaped ice cubes, sheet ice, other flaky ice pieces, and crushed ice. Only the above-mentioned ice cubes have the required shape and can be floated on drinks or used as a cooling bed for various foodstuffs (sheet ice also has a shape, but (Usually cannot be used with the same dimensions.)
しかるに最近の喫茶店やレストランその他の飲食施設で
は、同種営業に対し種々の面で優位に立って顧客を吸引
するべく、他社との差別化を図る懸命な努力が払われて
いる。その−環として、例えば、従来より広く普及して
いる角氷に替えてボール状(球体状)の氷塊を使用し、
これにより顧客に目先の新しい変化を提供しようとする
傾向がみ受けられる。However, in recent years, coffee shops, restaurants, and other food and beverage establishments have been making strenuous efforts to differentiate themselves from other companies in order to gain an advantage over similar businesses in various ways and attract customers. As the ring, for example, a ball-shaped (spherical) block of ice can be used instead of the ice cubes that have been widely used in the past.
As a result, there is a tendency to try to provide immediate new changes to customers.
しかしこの球状氷は、広く飲食に供されることから、空
気混入による白濁がなく、清澄な透明氷塊でなければ商
品価値は低下する。また大量に製造可能であることを必
要とするが、従来この種の要請を満たす球状氷の自動製
氷機は存在しなかった。そこで本願の発明者は、透明で
清澄な球状氷を大量に製造し得る製氷機の開発に従事し
、前記の要請を充分に満足する機構を得たので、その基
本概念につき昭和63年1月29日付けで、発明「自動
製氷機」として特許出願を行なった。However, since this spherical ice is widely used for eating and drinking, its commercial value will decrease unless it is a clear, transparent block of ice that does not become cloudy due to aeration. In addition, it is necessary to be able to produce large quantities of ice, but no automatic ice-making machine for producing spherical ice has hitherto existed that meets this type of requirement. Therefore, the inventor of the present application engaged in the development of an ice making machine capable of producing a large amount of transparent and clear spherical ice, and having obtained a mechanism that fully satisfies the above requirements, the inventor developed the basic concept in January 1988. On the 29th, he filed a patent application for his invention, an "automatic ice maker."
先の出願に係る製氷機は、■上方に開放する第1製氷小
室を多数画成し、背面に蒸発器を備えた第1製氷室と、
■上方に開放する第2製氷小室を多数画成した第2製氷
室とを基本的に備え、製氷運転に際し両製氷小室が対応
的に閉成して、その内部に球体等の異形氷を形成する空
間を画成するものである。この基本構造に係る製氷機で
は、第2製氷室の底部に製氷水の供給孔と排出孔とが穿
設され、製氷運転に際して供給孔を介して前記空間中に
供給されて氷結するに到らなかった製氷水は、排出孔を
介して排出されるよう構成されている。The ice-making machine according to the previous application includes: ■ a first ice-making compartment that defines a number of first ice-making compartments that open upwardly and is equipped with an evaporator on the back;
■Basically equipped with a second ice-making compartment that defines a number of second ice-making compartments that open upward, and during ice-making operation, both ice-making compartments close correspondingly to form irregularly shaped ice such as spheres inside. It defines the space where In the ice making machine according to this basic structure, a supply hole and a discharge hole for ice making water are provided at the bottom of the second ice making chamber, and during ice making operation, ice making water is supplied into the space through the supply hole and freezes. The remaining ice-making water is configured to be discharged through a discharge hole.
ところが、製氷運転が進行して前記空間中に氷層が生成
されると、前記供給孔および排出孔の孔内にも氷層が生
成されて、孔の内径は次第に小さくなる。そして、更に
氷層の成長が進むと、供給孔および排出孔は氷層により
閉塞され、製氷水は空間中に供給されなくなる。このた
め、該空間中には内部に未氷結な空洞を有する氷塊が形
成されることに゛なり、中実な氷塊をvi造することが
できなくなる問題が指摘される。However, as the ice-making operation progresses and an ice layer is generated in the space, ice layers are also generated in the supply hole and the discharge hole, and the inner diameter of the hole gradually becomes smaller. When the ice layer grows further, the supply hole and the discharge hole are blocked by the ice layer, and ice-making water is no longer supplied into the space. For this reason, an ice block having an unfrozen cavity inside is formed in the space, and it is pointed out that it becomes impossible to form a solid ice block.
発明の目的
この発明は、前述した課題に鑑み、これを好適に解決す
るべく提案されたものであって、下方に開放する第1製
氷小室を多数備える第11氷室と。OBJECTS OF THE INVENTION The present invention has been proposed in view of the above-mentioned problems to suitably solve the problems, and provides an eleventh ice chamber including a large number of first ice-making compartments that open downward.
上方に開放する第211氷小室を多数備える第21!氷
室とから構成される製氷機において、両製氷小室で画成
される空間中に常に中実な氷塊を形成し得る新規な製氷
構造を提供することを目的とする。The 21st with many ice chambers that open upward! An object of the present invention is to provide a new ice-making structure that can always form a solid block of ice in a space defined by both ice-making compartments.
課題を解決するための手段
前述した課題を克服し、所期の目的を好適に達成するた
め本発明は、製氷水を製氷室に噴射供給して該製氷室内
に氷塊を形成し、氷結するに到らなかった製氷水は再循
環に供するようにした自動製氷機において、背面に蒸発
器を備えて機内に固定配置され、下方に開放する所要形
状の第1′@氷小室を多数形成した第1製氷室と、この
第1製氷室に対して接離自在に配設され、前記第1製氷
小室の夫々を下方から対応的に閉成し得る所要形状の第
2製氷小室を多数形成した第2製氷室とからなり、前記
第2製氷室の底部に穿設される製氷水の供給および排出
を行なう通孔の画成部位を熱不良導体で構成したことを
特徴とする。Means for Solving the Problems In order to overcome the above-mentioned problems and suitably achieve the intended purpose, the present invention provides a method for injecting ice-making water into an ice-making chamber to form ice blocks in the ice-making chamber and freezing. In an automatic ice maker that recirculates unused ice making water, the ice maker is equipped with an evaporator on the back, is fixedly placed inside the machine, and has a number of ice chambers of the desired shape that open downward. A first ice-making compartment, and a plurality of second ice-making compartments each having a desired shape and arranged so as to be movable toward and away from the first ice-making compartment, and capable of correspondingly closing each of the first ice-making compartments from below. The second ice making compartment is characterized in that a portion defining a through hole for supplying and discharging ice making water formed in the bottom of the second ice making compartment is made of a thermally poor conductor.
実施例
次に1本発明に係る自動製氷機の製氷構造につき、好適
な実施例を挙げて、添付図面を参照しながら以下説明す
る。第1図は本発明の好適な実施例に係る製氷構造の要
部を示す縦断面図、第2図は第2製氷室および水皿を示
す要部概略斜視図、第3図は本発明に係る自ljI製氷
機の主要製氷構造を製氷状態で概略的に示す縦断面図で
ある。なお、本発明の実施例では、第13図(a)に示
す球状水lを連続製造する自動製氷機につき説明するが
。Embodiment Next, the ice-making structure of an automatic ice-making machine according to the present invention will be described below with reference to a preferred embodiment and the accompanying drawings. FIG. 1 is a vertical sectional view showing the main parts of the ice making structure according to the preferred embodiment of the present invention, FIG. 2 is a schematic perspective view of the main parts showing the second ice making chamber and the water tray, and FIG. FIG. 2 is a vertical cross-sectional view schematically showing the main ice-making structure of the ice-making machine in an ice-making state. In the embodiment of the present invention, an automatic ice making machine that continuously produces spherical water 1 shown in FIG. 13(a) will be described.
後述する製氷小室の内部形状を変更するだけで。Simply change the internal shape of the ice-making compartment, which will be described later.
第13図(b)に示す如きダイヤカット状の多面体水2
の製造にも容易に対応し得る6
(第1および第21ft!氷室について)第3図に概略
的に示す如く、所要直径をなす多数の球状水を製造する
製氷室10は、水平に配設した第1製氷室11と、この
第1製氷室11を下方から開閉自在に閉成可能な第2I
製氷室12とから基本的に構成される。すなわち、製氷
機筐体(図示せず)の内部上方に、熱伝導率の良好な金
属を材質とする矩形状の第1R氷室11が水平に配設固
定され、所要の整列パターンで第1製氷小室13が、こ
の第1N氷室11に下向きで多数凹設されている。各第
111氷小室13は半球状の凹部として形成され、−例
として直径3cm、深さ1.5cnに設定されている。Diamond-cut polyhedral water 2 as shown in FIG. 13(b)
6 (Regarding the 1st and 21 ft. ice chambers) As schematically shown in FIG. a first ice-making compartment 11, and a second ice-making compartment 11 that can be freely opened and closed from below.
It basically consists of an ice making compartment 12. That is, a rectangular first R ice chamber 11 made of a metal with good thermal conductivity is arranged and fixed horizontally in the upper part of the inside of the ice making machine housing (not shown), and the first ice making machine is arranged and fixed in a predetermined alignment pattern. A large number of small chambers 13 are recessed downward in this first N ice chamber 11. Each 111th ice chamber 13 is formed as a hemispherical recess, and has a diameter of 3 cm and a depth of 1.5 cm, for example.
第1製氷室11の上面には、冷凍系(図示せず)から導
j41. l、た蒸発器14が蛇行状に密着固定され、
当該冷凍系の運転により蒸発器14における気化冷媒の
熱交換が促進されて、第1製氷室11が氷点下にまで冷
却される。On the top surface of the first ice making compartment 11, there is a guide j41. l, the evaporator 14 is closely fixed in a meandering manner;
By operating the refrigeration system, heat exchange of the vaporized refrigerant in the evaporator 14 is promoted, and the first ice making chamber 11 is cooled to below freezing point.
第1製氷室11の直下には、銅の如き熱良導性の金属を
材質とする第2製氷室12が後述の如く傾動自在に配設
され、その製氷運転に際して、該第1fA氷室11を下
方から閉成すると共に、除氷運転に際して、該第1製氷
室11を開放し得るようになっている。すなわち、第2
1!氷室12には、前記第1製氷室11に凹設した第1
111氷小室13と対応して、同じく半球状凹部からな
る第2製氷小室15が上向きに所要の整列パターンで多
数凹設されている。この第21!氷小室15の直径も、
−例として3C11であり、凹部の深さは1.51に設
定されている。従って、第1製氷室11に対し第2製氷
室12を下方から閉成すると、両製氷小室13.15が
相互に対応して各小室内に直径33の球状空間が画成さ
れる。なお、第2111氷室12における各第2製氷小
室15の底部には、後述する給排部材71が嵌挿される
通孔12aが穿設されている。Immediately below the first ice making chamber 11, a second ice making chamber 12 made of a metal with good thermal conductivity such as copper is provided so as to be tiltable as will be described later. The first ice making chamber 11 can be closed from below and opened during deicing operation. That is, the second
1! The ice compartment 12 includes a first ice compartment recessed in the first ice compartment 11.
Corresponding to the ice chambers 111, a large number of second ice-making chambers 15, also made of hemispherical recesses, are recessed upward in a desired alignment pattern. This 21st! The diameter of the ice chamber 15 is also
- 3C11 as an example, and the depth of the recess is set to 1.51. Therefore, when the second ice-making compartment 12 is closed from below with respect to the first ice-making compartment 11, the two ice-making compartments 13, 15 correspond to each other, and a spherical space having a diameter of 33 is defined within each compartment. The bottom of each second ice-making compartment 15 in the 2111th ice compartment 12 is provided with a through hole 12a into which a supply/discharge member 71 (described later) is inserted.
第2製氷室12は、前述の如く銅等の熱良導金属を材質
とするブロック体として構成され、各第2製氷小室15
に製氷水を噴射供給するための水皿38が、当該第2製
氷室12の外底部にボルト60を介して一体的に固定さ
れている。また水皿38は、その後端部が直角に立上が
って後部64が形成され、この後部64の開放端におい
て製氷機筐体(図示せず)の固定部位に、枢軸16によ
り傾動旋回可能に枢支され、後述のアクチュエータモー
タAMによって第2Wi氷室12と共に回動付勢される
。すなわち、第8図に示す如く時計方向に回動すれば、
水皿38に一体固定した第2@氷室12は第111氷小
室13を開放し、また反時計方向に回動すれば、第3図
に示す如く、第2製氷室12は第1製氷小室13を閉成
する。As described above, the second ice-making chamber 12 is configured as a block body made of a metal with good thermal conductivity such as copper, and each of the second ice-making chambers 15
A water tray 38 for spraying and supplying ice-making water to the ice-making chamber 12 is integrally fixed to the outer bottom of the second ice-making chamber 12 via bolts 60. The rear end of the water tray 38 stands up at a right angle to form a rear portion 64, and the open end of the rear portion 64 is pivoted to a fixed portion of the ice maker housing (not shown) by a pivot 16 so as to be tiltable and rotatable. It is supported and rotated together with the second Wi ice chamber 12 by an actuator motor AM, which will be described later. That is, if it is rotated clockwise as shown in Fig. 8,
The second ice compartment 12 integrally fixed to the water tray 38 opens the 111th ice compartment 13, and by rotating counterclockwise, the second ice compartment 12 opens the first ice compartment 13 as shown in FIG. Close.
水皿38の裏面には、各第2製氷小室15と連通ずる噴
水孔25が対応的に穿設され、これら、噴水孔25に製
氷水を供給する分配管24が同じく水皿38の裏面に蛇
行配置されている。また水皿38の下方には、前記分配
管24に製氷水を供給するための製氷水タンク19が一
体的に設けられている。On the back side of the water tray 38, fountain holes 25 communicating with each of the second ice-making chambers 15 are correspondingly bored, and distribution pipes 24 for supplying ice-making water to these fountain holes 25 are also formed on the back side of the water tray 38. It is arranged in a meandering manner. Further, below the water tray 38, an ice-making water tank 19 for supplying ice-making water to the distribution pipe 24 is integrally provided.
第1図および第2図に示す如く、第2製氷室12におけ
る各第21!I氷小室15の底部には、前述した如く所
要径の通孔L2aが穿設され、この通孔12aに、熱伝
導率の小さい(熱不良導体)樹脂等を材質とする円盤状
の給排部材71が嵌挿されている。なお、給排部材71
における第211氷小室15内に臨むh面は、該小室1
5の内面形状に一致する弧状に形成されている。As shown in FIG. 1 and FIG. 2, each 21st! A through hole L2a of the required diameter is bored in the bottom of the I ice chamber 15 as described above, and a disk-shaped supply/discharge hole made of resin or the like with low thermal conductivity (poor thermal conductor) is inserted into this through hole 12a. A member 71 is inserted. In addition, the supply/discharge member 71
The h side facing into the 211th ice chamber 15 in
It is formed into an arc shape that matches the inner surface shape of 5.
給排部材71には、水皿38に穿設した噴水孔25と連
通する供給孔71aが穿設され、この供給孔71aを介
して前記分配管24と氷形成用空間とが連通している。The supply/discharge member 71 has a supply hole 71a that communicates with the water fountain hole 25 formed in the water tray 38, and the distribution pipe 24 and the ice forming space communicate with each other through the supply hole 71a. .
また、給排部材71の供給孔71aに隣設して排出孔7
1bが穿設され、この排出孔71bは、水皿38に穿設
した戻り孔26に連通している。従って、後述する製氷
運転に際し、噴水孔25および供給孔71aを介して両
製氷小室13,15に画成された氷形成用空間に製氷水
が供給されると共に、該空間中で氷結するに到らなかっ
た製氷水(以下「未氷結水」という)は、排出孔71b
および戻り孔26を介して製氷水タンク19に帰還され
る。Further, a discharge hole 7 is provided adjacent to the supply hole 71a of the supply/discharge member 71.
1b is bored, and this discharge hole 71b communicates with the return hole 26 bored in the water tray 38. Therefore, during the ice-making operation to be described later, ice-making water is supplied to the ice-forming space defined in both the ice-making chambers 13 and 15 through the water fountain hole 25 and the supply hole 71a, and ice-making water reaches the ice-forming space in the space. Unfrozen ice-making water (hereinafter referred to as "unfrozen water") is drained from the drain hole 71b.
The water is then returned to the ice making water tank 19 via the return hole 26.
ここで、前記給排部材71は熱不良導体で構成されてい
るので、第1製氷室11および第2製氷室12からの熱
伝導が良好になされない、すなわち、製氷運転に際して
第1WI氷室11が冷却されると、熱良導体で構成され
る第2製氷室12は第1製氷室11と路間−の温度とな
るが、給排部材71には熱伝導が良好になされないため
、その温度は両製氷室11.12の温度よりも僅かに高
くなっている。従って、両製氷小室13,15に氷層が
形成される時間よりも、給排部材71の上面や供給孔7
1aおよび排出孔71bの孔内に氷層が形成される時間
の方が長くなる。これにより1両製氷小室13.15内
に中実な球状氷が未だ形成されていないにも拘らず、供
給孔71aが氷層により閉塞されて製氷水の供給が停止
することはない。Here, since the supply/discharge member 71 is made of a poor heat conductor, heat conduction from the first ice making compartment 11 and the second ice making compartment 12 is not performed well. In other words, during ice making operation, the first WI ice compartment 11 When cooled, the second ice-making compartment 12 made of a good thermal conductor reaches the same temperature as the first ice-making compartment 11, but since heat conduction is not good in the supply/discharge member 71, the temperature remains the same. The temperature is slightly higher than the temperature in both ice making compartments 11 and 12. Therefore, the upper surface of the supply/discharge member 71 and the supply hole 7
It takes longer for an ice layer to form inside the holes 1a and 71b. As a result, even though solid spherical ice has not yet been formed in the single-car ice-making compartment 13.15, the supply hole 71a will not be blocked by the ice layer and the supply of ice-making water will not be stopped.
(水皿f1動機構と水循環系とについて)水皿38を傾
動させるアクチュエータモータAMは減速機を備え、そ
の回転軸にカムレバー17およびレバー片37が半径方
向に延出するよう固定され、前記カムレバー17の先端
17aと水皿38の前方端部との間に、コイルスプリン
グ18が弾力的に係着されている。前記カムレバー17
の基部に形成したカム面17bは、水皿38の側部61
の上面にカム係合可能に寸法設定されている。また第1
製氷室11を支持する固定部位に切換スイッチS2が配
設され、除氷運転に伴なうモータAMの回転により前記
レバー片37が回動すると、前記切換スイッチS2が切
換えられて、モータAMを停止させ、前記水皿38を傾
動状態で停止させる。また冷凍系の弁を切り換えて、前
記蒸発器14にホットガスを流通させる機能も果す。(Regarding the water tray f1 movement mechanism and water circulation system) The actuator motor AM for tilting the water tray 38 is equipped with a speed reducer, and the cam lever 17 and the lever piece 37 are fixed to the rotating shaft thereof so as to extend in the radial direction. A coil spring 18 is elastically engaged between the tip 17a of the water tray 17 and the front end of the water tray 38. The cam lever 17
The cam surface 17b formed at the base of the water tray 38
The dimensions are set so that the cam can be engaged with the upper surface of the. Also the first
A changeover switch S2 is disposed at a fixed portion that supports the ice making chamber 11. When the lever piece 37 rotates due to rotation of the motor AM during deicing operation, the changeover switch S2 is changed over to switch the motor AM. Then, the water tray 38 is stopped in a tilted state. It also functions to switch the refrigeration system valve and circulate hot gas to the evaporator 14.
前記製氷水タンク19の底部側面から導出した給水管2
1は、給水ポンプ22を介してタンク側方に設けた圧力
室23に連通し、更に圧力室23から前記分配管24に
連通している。従って、製氷水タンク19からポンプ2
2を介して圧送される製氷水は、分配管24に穿設した
前記各噴水孔25および給排部材71に穿設した前記供
給孔71aを介して、各第211氷小室15中に噴射供
給されるものである。なお、後述する製氷運転に際し両
製氷小室13.15で氷結するに到らなかった未氷結水
は、供給孔71aに隣設して穿設した排出孔71bおよ
び前記水皿38に穿設した前記戻り孔26から製氷水タ
ンク19に戻し得るようになっている。Water supply pipe 2 led out from the bottom side of the ice-making water tank 19
1 communicates with a pressure chamber 23 provided on the side of the tank via a water supply pump 22, and further communicates from the pressure chamber 23 with the distribution pipe 24. Therefore, from the ice making water tank 19 to the pump 2
2, the ice-making water is injected into each of the 211th ice compartments 15 through the water fountain holes 25 formed in the distribution pipe 24 and the supply holes 71a formed in the supply/discharge member 71. It is something that will be done. In addition, during the ice-making operation to be described later, unfrozen water that has not frozen in both ice-making chambers 13 and 15 is discharged through a discharge hole 71b drilled adjacent to the supply hole 71a and a drain hole 71b drilled in the water tray 38. The water can be returned to the ice making water tank 19 through the return hole 26.
更に、水皿38の前方には、前述の側部61より所定寸
法だけ低く設定した堰止め部62が配設され、この堰止
め部62の両端部は両側部61゜61に密着されている
。また水皿38には、第2製氷室12の前方側端部と堰
止め部62との間に所要径の排水孔63が穿設されてい
る。これによ・り水皿38の内部表面には1両側部61
,61.堰止め部62および前記後部64で囲繞された
水溜部65が形成される。そして該水溜部65に貯溜さ
れた水の一部は、前記排水孔63から製氷水タンク19
に流下し、他の水は堰止め部62の上端からオーバーフ
ローして、水皿38の前方側よりタンク19に流入する
ようにしである。なお、製氷水タンク19への給水は、
外部水道系に接続している給水管27の給水弁W■を開
放することにより行なわれる。Further, in front of the water tray 38, a dam part 62 is provided which is set to be lower than the side part 61 by a predetermined dimension, and both ends of this dam part 62 are in close contact with both side parts 61. . Further, a drainage hole 63 of a required diameter is bored in the water tray 38 between the front end of the second ice making chamber 12 and the damming part 62. As a result, the inner surface of the water tray 38 has one side portion 61.
,61. A water reservoir portion 65 surrounded by the dam portion 62 and the rear portion 64 is formed. A part of the water stored in the water reservoir section 65 is drained from the drainage hole 63 to the ice making water tank 19.
Other water overflows from the upper end of the dam 62 and flows into the tank 19 from the front side of the water tray 38. In addition, the water supply to the ice making water tank 19 is as follows.
This is done by opening the water supply valve W2 of the water supply pipe 27 connected to the external water supply system.
(感温機構について)
第1製氷室11の上面における所定位置に、製氷完了検
知手段として機能する製氷検知サーモTh1の感温部(
プローブ)が配設され、また同じ第1製氷室上面の別位
置に、除氷完了検知手段として機能する除氷検知サーモ
Th、の感温部が配設されている。更に、第2製氷室1
2における所要の側部にサーモTh、の感温部が配設さ
れ、該サーモTh、の電気信号を発する本体は、水皿3
8の前記後部64に取付けられている。(About the temperature-sensing mechanism) A temperature-sensing section (
A temperature sensing section of a de-icing detection thermometer Th, which functions as a de-icing completion detecting means, is disposed at a different position on the top surface of the first ice-making chamber. Furthermore, the second ice making room 1
A temperature-sensing part of a thermometer Th is disposed on a required side of the thermometer Th, and the main body of the thermometer Th that emits an electric signal is a water tray 3.
8.
(水案内板について)
製氷水タンク19の下方には、製氷残水等を受けて機外
へ排出するための排水皿69が配設され、該排水皿69
の上方に、軸68に固定した水案内板67が臨んでいる
。この水案内板67は、その製氷運転中において、筐体
の固定部から延出垂下する位置決め部材70に当接して
位置決めされ、第3図に示す如く、タンク19の開放先
端部に近接した位置で停止している。この状態において
、タンク19中の製氷水がオーバーフローすると、第7
図に示すように、この水は前記水案内板67の裏面に沿
って流下した後、前記排水皿69から機外へ排出される
。また除氷運転の際には、第8図に示す如く、水案内板
67が固定されている前記軸68を1図示しない駆動手
段により反時計方向に駆動すれば、この水案内板67は
傾動状態にある(後述)第2製氷室12の上面に倒れ込
み、各第2fRI氷小室15を塞ぐに到る。そして第9
図に示す如く、第1製氷室11から落下する離氷を、こ
の水案内板67において滑落させて貯水庫(図示せず)
へ円滑に案内する。(About the water guide plate) A drain tray 69 is provided below the ice-making water tank 19 to receive ice-making residual water and discharge it to the outside of the machine.
A water guide plate 67 fixed to a shaft 68 faces above. During the ice-making operation, the water guide plate 67 is positioned in contact with a positioning member 70 that extends and hangs down from the fixed part of the housing, and is positioned close to the open end of the tank 19 as shown in FIG. It has stopped at In this state, if the ice-making water in the tank 19 overflows, the
As shown in the figure, this water flows down along the back surface of the water guide plate 67 and is then discharged from the drain tray 69 to the outside of the machine. Further, during deicing operation, as shown in FIG. 8, if the shaft 68 to which the water guide plate 67 is fixed is driven counterclockwise by a driving means (not shown), the water guide plate 67 can be tilted. It collapses onto the upper surface of the second ice making compartment 12 in the state (described later) and blocks each of the second fRI ice compartments 15. and the ninth
As shown in the figure, the free ice falling from the first ice-making compartment 11 is caused to slide down on this water guide plate 67 to form a water storage (not shown).
Guide you smoothly.
なお、水皿38(第21製氷室)が原位置に復帰する際
には、水案内板67は水平状態に復帰する水皿38によ
り押圧されて時計方向に旋回し、第3図に示す如く、前
記位置決め部材70に当接して停止する。この水案内板
67は、軸68を支点にして重心の移動で傾動させられ
る。Note that when the water tray 38 (the 21st ice making compartment) returns to its original position, the water guide plate 67 is pressed by the water tray 38 returning to the horizontal state and rotates clockwise, as shown in FIG. , comes into contact with the positioning member 70 and stops. This water guide plate 67 is tilted by moving the center of gravity using the shaft 68 as a fulcrum.
(給排部材の変形例について)
次に、第12図は第1図に示す給排部材71の変形例で
あって、該給排部材71には、水皿38に穿設した噴水
孔25および戻り孔26に共通的に連通ずる大径の通孔
71cが穿設されている。(Regarding a modification of the supply/discharge member) Next, FIG. 12 shows a modification of the supply/discharge member 71 shown in FIG. A large-diameter through hole 71c that commonly communicates with the return hole 26 is bored.
すなわち、この通孔71cは、製氷運転に際し両製氷小
室13.15中に製氷水を供給すると共に、両製氷小室
13.15で氷結するに到らなかった未氷結水を排出す
るべく機能する。この給排部材71は熱不良導体で構成
されているので、製氷運転に際して前記第1および第2
製氷小室13.15で画成された氷形成用空間中に中実
な氷塊が形成されるまでは1通孔71cが氷層により閉
塞されることなく、製氷水の円滑な供給が達成される。That is, this through hole 71c functions to supply ice-making water into both ice-making chambers 13.15 during ice-making operation, and to discharge unfrozen water that has not frozen in both ice-making chambers 13.15. Since this supply/discharge member 71 is made of a thermally poor conductor, the first and second
Until a solid block of ice is formed in the ice forming space defined by the ice making chamber 13.15, the first hole 71c is not blocked by the ice layer, and smooth supply of ice making water is achieved. .
実施例の作用
次に、実施例に係る製氷構造の作用につき説明する。製
氷運転に際し、第3図に示す如く第2製氷室12は、第
1製氷室11を下方から閉成して。Function of the embodiment Next, the function of the ice making structure according to the embodiment will be explained. During ice-making operation, the second ice-making chamber 12 closes the first ice-making chamber 11 from below, as shown in FIG.
各第1製氷小室13と各第2製氷小室15とを対応させ
、内部に氷形成用空間を画成している。この状態で自動
製氷機の電源を投入すると、製氷運転が開始され、第1
製氷室11に設けた蒸発器14に冷媒が循環供給され、
当該第1製氷室11の冷却がなされる。また製氷水タン
ク19からの製氷水は分配管24にポンプ圧送され、該
分配管24の各噴水孔25および給排部材71の供給孔
71aを介して、両製氷小室13.15に画成される球
状空間中に噴射される。Each of the first ice-making compartments 13 and each of the second ice-making compartments 15 are associated with each other to define an ice-forming space inside. If you turn on the power to the automatic ice maker in this state, ice making operation will start and the first
Refrigerant is circulated and supplied to the evaporator 14 provided in the ice-making compartment 11,
The first ice making chamber 11 is cooled. In addition, ice-making water from the ice-making water tank 19 is pumped to the distribution pipe 24, and is defined into both ice-making chambers 13.15 via each water fountain 25 of the distribution pipe 24 and the supply hole 71a of the supply/discharge member 71. It is injected into a spherical space.
噴射された製氷水は、第1製氷小室13の内面に接触し
て冷却され、下方の第2製氷小室15を潤した後、前記
複数の排出孔71bを介して前記球状空間から排出され
る。この未氷結水は、水皿38に穿設した前記戻り孔2
6を介して、1!氷水タンク19に戻されて再度の循環
に供される。そして製氷水の循環が反復される内に、タ
ンク19中に貯留される製氷水全体の温度が次第に低下
すると共に、第2製氷小室15の温度も同様に次第に低
下する。The injected ice-making water comes into contact with the inner surface of the first ice-making chamber 13 and is cooled, moistening the second ice-making chamber 15 below, and then is discharged from the spherical space through the plurality of discharge holes 71b. This unfrozen water flows through the return hole 2 formed in the water tray 38.
1 through 6! It is returned to the ice water tank 19 and subjected to circulation again. As the circulation of the ice-making water is repeated, the temperature of the entire ice-making water stored in the tank 19 gradually decreases, and the temperature of the second ice-making chamber 15 also gradually decreases.
そして、先ず第1製氷小室13および第2製氷小室15
の内壁面で製氷水の一部が凍結して氷層が形成され始め
(第4図および第11図(a)参照)、未氷結水は排出
孔71bおよび戻り孔26からタンク19に帰還する運
転を重ねる間に、前記氷層の成長が更に進行する。そし
て、第6図および第11図(c)に示す如く、最終的に
両製氷小室13゜15に形成される球状空間中に球状氷
1が生成される。なお、第11図(a)に示す製氷状態
となったタイミングをもって製氷運転を終了させると。First, the first ice-making compartment 13 and the second ice-making compartment 15
A part of the ice-making water freezes on the inner wall surface of the tank 19 and an ice layer begins to form (see FIG. 4 and FIG. 11(a)), and the unfrozen water returns to the tank 19 through the discharge hole 71b and the return hole 26. During repeated operations, the growth of the ice layer further progresses. Then, as shown in FIGS. 6 and 11(c), spherical ice 1 is finally generated in the spherical spaces formed in both ice-making chambers 13.15. Note that the ice-making operation is ended at the timing when the ice-making state shown in FIG. 11(a) is reached.
故意に第13図(Q)に示す如き中空の球状氷1を製造
することもできる。このようにして得た中空氷は、その
内部空間にチェリー等の食材や、ジュース等の飲料およ
び花びら等の観賞材を入れることによって、新たな氷の
需要を喚起させることができる。更に、この中空氷の穴
あき部(供給孔71aと排出孔71bとに対応する部分
)を下唇にあてて吹くことにより、笛(氷層)としても
使用できて、独特の趣きが得られる。It is also possible to intentionally produce hollow spherical ice 1 as shown in FIG. 13(Q). The hollow ice obtained in this manner can stimulate new demand for ice by filling the interior space with food such as cherries, drinks such as juice, and ornamental materials such as flower petals. Furthermore, by placing the perforated part of the hollow ice (the part corresponding to the supply hole 71a and the discharge hole 71b) against the lower lip and blowing, it can be used as a whistle (ice layer), giving a unique taste. .
製氷進行状態を更に詳細に説明すると、第2製氷室12
は、前述の如く銅等の金属を材質とする熱良導体で構成
されているので、第111I氷室11からの熱伝導が良
好になされ、早期に第1製氷室11と路間−の適正冷却
温度となる。このため。To explain the progress of ice making in more detail, the second ice making chamber 12
As mentioned above, since it is made of a good thermal conductor made of metal such as copper, the heat conduction from the 111I ice compartment 11 is good, and the appropriate cooling temperature between the first ice compartment 11 and the lane can be quickly reached. becomes. For this reason.
第1R氷室11で氷層が形成されると同時に、第2製氷
室12でも氷層が形成されて、第11図(a)に示す状
態となる。ここで、前記給排部材71は熱不良導体で構
成されているので、第2製氷室12からの熱伝導は良好
になされない、すなわち、第2製氷室12の温度に比較
して給排部材71の温度は高く、製氷運転が進行しても
、第11図(b)に示す如く、当該給排部材71の上面
や供給孔71aおよび排出孔71bの孔内に氷層は成長
しない、従って、供給孔71aおよび排出孔71bが氷
層で覆われ、球状氷の中心部に未氷結の空洞があるにも
拘らず、製氷水の供給が停止されることはない、そして
、最終的に第11図(c)に示すに如く、中実な球状氷
1が形成される。At the same time that an ice layer is formed in the first R ice compartment 11, an ice layer is also formed in the second ice making compartment 12, resulting in the state shown in FIG. 11(a). Here, since the supply/discharge member 71 is made of a poor thermal conductor, heat conduction from the second ice making compartment 12 is not good. 71 is high, and even if the ice making operation progresses, no ice layer will grow on the upper surface of the supply/discharge member 71 or inside the supply hole 71a and the discharge hole 71b, as shown in FIG. 11(b). Even though the supply hole 71a and the discharge hole 71b are covered with a layer of ice and there is an unfrozen cavity in the center of the spherical ice, the supply of ice making water is not stopped, and finally, the ice making water supply is not stopped. As shown in FIG. 11(c), solid spherical ice 1 is formed.
第6図に示す如く、球状氷の製造が完了し、第1製氷室
11の温度が所要の温度域まで低下すると、この温度低
下を製氷検知サーモTh1が検知し。As shown in FIG. 6, when the production of spherical ice is completed and the temperature of the first ice making chamber 11 drops to a required temperature range, the ice making detection thermo Th1 detects this temperature drop.
製氷水の循環供給を停止すると共に、蒸発器14への冷
媒の供給を続行する。そして第7図に示す如く、給水弁
Wvを開放して、水皿38の表面に画成しである前記水
溜部65に給水をσば始する。The circulating supply of ice-making water is stopped, and the supply of refrigerant to the evaporator 14 is continued. Then, as shown in FIG. 7, the water supply valve Wv is opened to start supplying water to the water reservoir 65 defined on the surface of the water tray 38.
給水弁WVを介して供給される水道水は、排水孔63か
らタンク19に流下する量に比べ多量であるので、水溜
部65での水位は次第に上昇し、遂には水皿38の堰止
め部62からオーバーフローするに到る。オーバーフロ
ーする際の水溜部65の水面レベルは、第2製氷室12
の」一端近傍に到来するよう設定しておくことにより、
常温の水道水は第2製氷室12を主として加熱すること
ができる。Since the amount of tap water supplied via the water supply valve WV is large compared to the amount flowing down from the drain hole 63 to the tank 19, the water level in the water reservoir 65 gradually rises and finally reaches the dam part of the water tray 38. 62, resulting in an overflow. The water surface level of the water reservoir section 65 when overflowing is the same as that of the second ice making chamber 12.
By setting the signal to arrive near one end of the
Tap water at normal temperature can be mainly heated in the second ice making chamber 12.
前記堰止め部62からのオーバーフロー水は、水皿38
の先端からタンク19内に流下する。この水皿先端部か
ら流入する水と、前記排水孔63から流下する水とによ
りタンク19内の水位は次第に上昇し、短時間でタンク
先端部から溢流して前記待機位置にある水案内板67に
沿いつつ排水皿69から機外へ排出される。The overflow water from the dam 62 is transferred to the water tray 38.
The water flows down into the tank 19 from the tip. The water level in the tank 19 gradually rises due to the water flowing in from the tip of the water dish and the water flowing down from the drain hole 63, and the water overflows from the tip of the tank in a short time, causing the water guide plate 67 to be in the standby position. It is discharged from the drain tray 69 to the outside of the machine along the same direction.
第2製氷室12は、水溜部65に流入する水道水で加熱
されて温度上昇し、第2製氷小室15の壁面と球状氷1
との氷結力が低下する。また、第1製氷室11との近接
面に形成された氷の固着力も弱まる。このように第2製
氷室12の温度が上昇すると、これを前記サーモTh、
が検出して、給水弁W■を閉成すると共に、前記アクチ
ュエータAMが付勢されて、第3図において反時計方向
への回動を開始する。これにより、第8図に示す如くカ
ムレバー17が回転し、その基部に形成したカム面17
bが水皿38の側部上面を強制的に下方に押圧する。既
に述べた如く、第21!氷室12は水道水により加熱さ
れて、第111氷室11と球状氷1との固着力は低下し
ているので、当該水皿38および第2製氷室12は、第
ill氷室11から強制剥離されて斜め下方に傾動し始
める。この水皿38およびタンク19の傾動により、当
該タンク19内の製氷水と水溜部内の水とは外部に廃棄
される。The second ice-making chamber 12 is heated by the tap water flowing into the water reservoir 65 and its temperature rises, and the wall surface of the second ice-making chamber 15 and the spherical ice 1
Freezing power decreases. Furthermore, the adhesion force of the ice formed on the surface adjacent to the first ice making chamber 11 is also weakened. When the temperature of the second ice making chamber 12 rises in this way, the temperature of the second ice making chamber 12 increases.
is detected and closes the water supply valve W2, and at the same time, the actuator AM is energized and starts rotating counterclockwise in FIG. As a result, the cam lever 17 rotates as shown in FIG. 8, and the cam surface 17 formed at its base rotates.
b forcibly presses the side upper surface of the water tray 38 downward. As already mentioned, the 21st! Since the ice compartment 12 is heated by tap water and the adhesion between the 111th ice compartment 11 and the spherical ice 1 is reduced, the water tray 38 and the second ice compartment 12 are forcibly separated from the ice compartment 11. It begins to tilt diagonally downward. By tilting the water tray 38 and the tank 19, the ice-making water in the tank 19 and the water in the water reservoir are disposed of to the outside.
水皿38の傾動途中において、軸68に一体的に配設さ
れた反転レバー(図示せず)を水皿組の一部で押すこと
により前記の水案内板67が反転し、水111138に
寄りかかった状態で傾動する。水皿38が最大限に傾動
したタイミングをもって、前記レバー片37が切換スイ
ッチS2を押圧付勢し。During the tilting of the water pan 38, by pushing a reversing lever (not shown) integrally provided on the shaft 68 with a part of the water pan assembly, the water guide plate 67 is reversed, and the water guide plate 67 is moved toward the water 111138. It tilts in the suspended state. At the timing when the water tray 38 is tilted to the maximum, the lever piece 37 presses and biases the changeover switch S2.
これによりモータAMはその回転を停止して水皿38の
傾動を停止させる。水案内板67は、先に述べた如く、
第2製氷室12の上面を覆って氷塊滑落用の円滑面を提
供している。As a result, the motor AM stops its rotation and the tilting of the water tray 38 is stopped. As mentioned above, the water guide plate 67 is
The upper surface of the second ice making chamber 12 is covered to provide a smooth surface for sliding ice cubes down.
更に、前記スイッチS2の切換えにより、凝縮器用ファ
ンモータ(図示せず)が停止し、ホットガス弁(図示せ
ず)が開放して蒸発器14にホットガスが供給され、第
ill氷室11の加温がなされて、第1製氷小室13の
内面と球状氷1との氷結面の融解を開始する。なお第1
製氷室11は、前述の如く、水皿38が傾動開放するま
で冷却が続行されているので1球状氷1と第1製氷小室
13の内面との氷結力(固着力)は強く、第2製氷室1
2の開放時に球状水1は、第8図に示すように、第1製
氷小室13に固着している。しかるに、蒸発器14には
先程よりホットガスが循環しているから、第11!氷室
11は温度上昇中である。そして、第1製氷小室13が
成る程度加温されると、小室壁面と球状水との氷結が解
除されて自重落下し、傾動待機している前記水案内板6
7の表面に落着し貯水庫(図示せず)に滑落回収される
(第9図参照)。Further, by switching the switch S2, the condenser fan motor (not shown) is stopped, the hot gas valve (not shown) is opened, hot gas is supplied to the evaporator 14, and the ice compartment 11 is heated. As the temperature is increased, the frozen surface between the inner surface of the first ice-making chamber 13 and the spherical ice 1 starts to melt. Note that the first
As described above, since the ice making chamber 11 continues to cool until the water tray 38 is tilted open, the freezing force (adhesion force) between the first spherical ice 1 and the inner surface of the first ice making chamber 13 is strong, and the second ice making chamber 11 continues to cool. Room 1
When the ice cube 2 is opened, the spherical water 1 is fixed in the first ice making chamber 13, as shown in FIG. However, since hot gas is circulating in the evaporator 14 from earlier, the 11th! The temperature of the ice chamber 11 is rising. When the first ice-making chamber 13 is heated to an extent that the spherical water is unfrozen from the chamber wall, the water guide plate 6 falls under its own weight and is on standby.
7 and is collected by sliding into a water storage (not shown) (see FIG. 9).
このように、球状水1が全て第1製氷小室13から離脱
する(第10図参照)と、第1fM氷室11は蒸発器1
4に循環しているホットガスにより一挙に温度上昇する
。この温度上昇を除氷検知サーモTh2が検知すると、
除氷運転を完了させると共に、前記モータAMが逆回転
してカムレバー17を駆動する。従って該レバー17と
水皿38との間に弾力的に係着したコイルスプリング1
8により、水皿38および製氷水タンク19を反時計方
向に回動付勢し、水平状態に復帰させることによって、
第11!氷室11を再び下方から閉成する。In this way, when all the spherical water 1 leaves the first ice-making chamber 13 (see FIG. 10), the first fM ice chamber 11 moves to the evaporator 1.
The temperature rises all at once due to the hot gas circulating in step 4. When the deicing detection thermo Th2 detects this temperature rise,
At the same time as the deicing operation is completed, the motor AM reversely rotates to drive the cam lever 17. Therefore, the coil spring 1 is elastically engaged between the lever 17 and the water tray 38.
8, the water tray 38 and the ice-making water tank 19 are rotated counterclockwise and returned to the horizontal state.
11th! The ice chamber 11 is closed again from below.
次いで、前記モータAMの逆回転によりカムレバー17
も逆回転し、前記切換えスイッチ8つを押圧付勢して前
記冷凍系の弁を切換え、前記蒸発器14へのホットガス
の供給を停止する。また、給水弁Wvを開放して、水位
の低下したタンク19に新たな製氷水を供給する。そし
て、製氷運転が再開されて前述した動作を繰り返す。Next, the cam lever 17 is rotated by the reverse rotation of the motor AM.
The evaporator 14 also rotates in the reverse direction, presses and energizes the eight changeover switches to change over the valves of the refrigeration system, and stops supplying hot gas to the evaporator 14. Furthermore, the water supply valve Wv is opened to supply new ice-making water to the tank 19 whose water level has decreased. Then, the ice making operation is restarted and the above-described operation is repeated.
発明の詳細
な説明した如く、本発明に係る製氷構造によれば、下方
に開放する第1製氷小室を備えた第1製氷室と、上方に
開放する第2製氷小室が画成された第2製氷室とを基本
的に備え、両製氷小室の閉成により内部画成される氷形
成用空間で氷塊を生成する製氷機に関連して、前記第2
製氷室に穿設される製氷水の供給および排出を行なう通
孔の画成部位を熱不良導体で構成したので、前記氷形成
用空間に中実な氷塊が形成、されるまでは、製氷水の供
給と排出とが円滑に行なわれる。従って、前記氷形成用
空間中に、常に中心部に空洞のない中実な氷塊を製造す
ることができる。As described in detail, the ice-making structure according to the present invention has a first ice-making compartment including a first ice-making compartment that opens downward, and a second ice-making compartment that defines a second ice-making compartment that opens upward. The second ice-making machine basically includes an ice-making compartment and generates ice blocks in an ice-forming space defined internally by closing both ice-making compartments.
Since the defining portion of the hole drilled in the ice-making compartment for supplying and discharging ice-making water is made of a thermally poor conductor, the ice-making water does not flow until a solid block of ice is formed in the ice-forming space. supply and discharge are carried out smoothly. Therefore, a solid block of ice without a cavity in the center can always be produced in the ice forming space.
また、第2製氷室自体は熱良導体で構成されているので
、製氷および除氷に要する時間は短縮でき、省エネルギ
ーが有効に図られる。なお球状水の製造につき説明した
が、本発明はこれに限定されるものでなく、他の形状を
有する多面体水の製造にも実施できることは勿論である
。Further, since the second ice making chamber itself is made of a good thermal conductor, the time required for ice making and ice removal can be shortened, and energy saving can be effectively achieved. Although the explanation has been made regarding the production of spherical water, the present invention is not limited to this, and it goes without saying that it can also be implemented to produce polyhedral water having other shapes.
図面は本発明の好適実施例に係る製氷構造を示すもので
あって、第1図は実施例に係る製氷構造の要部を示す縦
断面図、第2図は第2製氷室および水皿を示す要部概略
斜視図、第3図〜第10図は、本発明の好適実施例に係
る製氷構造の概略構成を夫々示す縦断面図であって、第
3図は第11%氷室に対し第2製氷室を閉成して、製氷
運転を開始した初期の状態を示し、第4図は製氷が進行
して両製氷小室中に中空の球状水が形成された状態を示
し、第5図は製氷完了に近づき始めた段階において、両
製氷小室中に略中実な球状水が形成され、タンク中の製
氷水の水位が低下している状態を示し、第6図は略製氷
が完了して両製氷小室中に中実な球状水が形成された状
態を示し、第7図は製氷が完了して給水弁が開放し、水
溜部での水位上昇により堰止め部からオーバーフローし
た水が、水案内板の裏面に沿って流下して排水皿から機
外へ排出される状態を示し、第8図はアクチュエータモ
ータが付勢されて第2製氷室を時計方向に傾動開放し、
水案内板を第2製氷室の」−面に倒れ込ませて各第2製
氷小室を塞いだ状態を示し、第9図は第1製氷室から球
状水が落下して、その直下に傾斜位置する水案内板を滑
落する状態を示し、第10図は除氷が完了して、第2製
氷室が反時計方向に回動復帰し始めると共に、水案内板
も原位置に戻される状態を夫々示し、第11図(a)。
(b)、(Q)は第1製氷小室および第2製氷小室に氷
塊が生成される状態を経時的に示す説明図、第12図は
本発明に係る製氷構造に採用される給排部材の変形例を
示す要部縦断面図、第13図(a)は球状水を示す説明
図、第13図(b)は多面状水を示す説明図、第13図
(c)は中空の球状水を示す説明図である。
11・・・第1製氷室
12a・・・通孔
14・・・蒸発器
71a・・・供給孔
71c・・・通孔
2・・・第2製氷室
3・・・第1製氷小室
5・・・第2製氷小室
1b・・・排出孔The drawings show an ice making structure according to a preferred embodiment of the present invention, in which FIG. 1 is a longitudinal sectional view showing the main parts of the ice making structure according to the embodiment, and FIG. 2 shows a second ice making chamber and a water tray. 3 to 10 are vertical cross-sectional views showing the schematic structure of the ice making structure according to the preferred embodiment of the present invention, and FIG. Figure 4 shows the initial state when the ice making chambers 2 and 2 are closed and ice making operation has started, Figure 4 shows the state in which hollow spherical water has been formed in both ice chambers as ice making progresses, and Figure 5 shows the state where hollow spherical water has been formed in both ice chambers. Figure 6 shows a state where almost solid spherical water is formed in both ice-making chambers and the water level of the ice-making water in the tank is decreasing as the ice-making process approaches completion. Figure 7 shows a state in which solid spherical water is formed in both ice-making chambers. Figure 7 shows the state in which ice-making is completed and the water supply valve is opened, and the water that overflows from the dam due to the rise in the water level in the water reservoir is Fig. 8 shows a state where the ice flows down along the back surface of the guide plate and is discharged from the drain tray to the outside of the machine. In Fig. 8, the actuator motor is energized and the second ice making compartment is tilted clockwise to open.
Figure 9 shows a state in which the water guide plate is collapsed onto the ``-'' side of the second ice-making compartment to block each of the second ice-making compartments. Figure 10 shows the state in which the water guide plate slides down, and Figure 10 shows the state in which the second ice-making chamber begins to rotate counterclockwise and the water guide plate is returned to its original position after deicing is completed. 11(a). (b) and (Q) are explanatory diagrams showing the state in which ice blocks are generated in the first ice-making chamber and the second ice-making chamber over time, and FIG. 12 is an illustration of the supply/discharge member adopted in the ice-making structure according to the present invention. 13(a) is an explanatory diagram showing spherical water; FIG. 13(b) is an explanatory diagram showing polyhedral water; FIG. 13(c) is a hollow spherical water sectional view. FIG. 11... First ice making chamber 12a... Through hole 14... Evaporator 71a... Supply hole 71c... Through hole 2... Second ice making chamber 3... First ice making small chamber 5. ...Second ice making chamber 1b...Discharge hole
Claims (1)
を形成し、氷結するに到らなかった製氷水は再循環に供
するようにした自動製氷機において、背面に蒸発器(1
4)を備えて機内に固定配置され、下方に開放する所要
形状の第1製氷小室(13)を多数形成した第1製氷室
(11)と、 この第1製氷室(11)に対して接離自在に配設され、
前記第1製氷小室(13)の夫々を下方から対応的に閉
成し得る所要形状の第2製氷小室(15)を多数形成し
た第2製氷室(12)とからなり、 前記第2製氷室(12)の底部に穿設される製氷水の供
給および排出を行なう通孔(71a、71b、71c)
の画成部位を熱不良導体で構成した ことを特徴とする自動製氷機の製氷構造。 〔2〕製氷水の供給孔(71a)および排出孔(71b
)を穿設した熱不良導体を材質とする給排部材(71)
が、各第2製氷小室(15)の底部に穿設した通孔(1
2a)に嵌挿される請求項1記載の自動製氷機の製氷構
造。[Scope of Claims] [1] An automatic ice-making machine in which ice-making water is injected into an ice-making chamber to form ice cubes in the ice-making chamber, and ice-making water that has not yet frozen is recirculated, Evaporator (1
4), which is fixedly arranged inside the machine and has a number of first ice-making compartments (13) of a desired shape that open downward; are arranged freely,
a second ice-making compartment (12) formed with a large number of second ice-making compartments (15) each having a desired shape that can correspondingly close each of the first ice-making compartments (13) from below; (12) Through holes (71a, 71b, 71c) for supplying and discharging ice-making water drilled at the bottom
An ice-making structure of an automatic ice-making machine characterized in that a defining part of the ice-making machine is made of a thermally poor conductor. [2] Ice making water supply hole (71a) and discharge hole (71b
) A supply/discharge member (71) made of a thermally poor conductor with holes drilled therein.
However, through holes (1) drilled at the bottom of each second ice making compartment (15)
2a) The ice making structure of the automatic ice making machine according to claim 1, which is fitted into the ice making structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63314448A JPH02161271A (en) | 1988-12-13 | 1988-12-13 | Ice making structure of automatic ice machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63314448A JPH02161271A (en) | 1988-12-13 | 1988-12-13 | Ice making structure of automatic ice machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02161271A true JPH02161271A (en) | 1990-06-21 |
JPH0543948B2 JPH0543948B2 (en) | 1993-07-05 |
Family
ID=18053481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63314448A Granted JPH02161271A (en) | 1988-12-13 | 1988-12-13 | Ice making structure of automatic ice machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02161271A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6857277B2 (en) * | 2000-09-01 | 2005-02-22 | Katsuzo Somura | Process and equipment for manufacturing clear, solid ice of spherical and other shapes |
KR101142031B1 (en) * | 2011-06-13 | 2012-05-18 | 구경희 | Ball ice making apparatus |
-
1988
- 1988-12-13 JP JP63314448A patent/JPH02161271A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6857277B2 (en) * | 2000-09-01 | 2005-02-22 | Katsuzo Somura | Process and equipment for manufacturing clear, solid ice of spherical and other shapes |
KR100750467B1 (en) * | 2000-09-01 | 2007-08-22 | 가쓰조 소무라 | Method and apparatus for producing stereoscopic ice of transparent sphere |
KR101142031B1 (en) * | 2011-06-13 | 2012-05-18 | 구경희 | Ball ice making apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0543948B2 (en) | 1993-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4910974A (en) | Automatic ice making machine | |
JPH0532668B2 (en) | ||
JPH0544587B2 (en) | ||
JPH02143070A (en) | Ice removing structure of automatic ice making machine | |
JPH01210778A (en) | Ice removing structure for automatic ice-making machine | |
JPH0544586B2 (en) | ||
JPH02161271A (en) | Ice making structure of automatic ice machine | |
JPH02143068A (en) | Ice guiding device in automatic ice making machine | |
JPH02140575A (en) | Ice making structure in automatic ice making machine | |
JPH02161272A (en) | Ice making structure of automatic ice machine | |
JPH02143071A (en) | Ice removing structure for automatic ice making machine | |
JPH02140576A (en) | Ice removing structure in automatic ice making machine | |
JPH02143072A (en) | Ice removing structure for automatic ice making machine | |
JPH0615279Y2 (en) | Evaporator structure of automatic ice machine | |
JPH0551832B2 (en) | ||
JPH0543951B2 (en) | ||
JPH02143069A (en) | Water guiding structure of automatic ice making machine | |
JPH01234768A (en) | Ice making structure of automatic ice making machine | |
JPH0543949B2 (en) | ||
JPH0551834B2 (en) | ||
JPH01230968A (en) | Mechanical construction of automatic ice making machine | |
JPH061141B2 (en) | Automatic ice machine | |
JPH0710216Y2 (en) | Automatic ice machine | |
JPH01225875A (en) | Ice guide structure for automatic ice-making machine | |
JPH0565780B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |