JPH02143071A - Ice removing structure for automatic ice making machine - Google Patents

Ice removing structure for automatic ice making machine

Info

Publication number
JPH02143071A
JPH02143071A JP29571088A JP29571088A JPH02143071A JP H02143071 A JPH02143071 A JP H02143071A JP 29571088 A JP29571088 A JP 29571088A JP 29571088 A JP29571088 A JP 29571088A JP H02143071 A JPH02143071 A JP H02143071A
Authority
JP
Japan
Prior art keywords
ice
water
making
ice making
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29571088A
Other languages
Japanese (ja)
Inventor
Yasuo Hara
安夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP29571088A priority Critical patent/JPH02143071A/en
Publication of JPH02143071A publication Critical patent/JPH02143071A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To remove ice blocks from second ice making small chambers smoothly by a method wherein downwardly opened grooves are formed at the rear side of a second ice making chamber so as to surround about and communicate the respective second ice making small chambers while groove passages 72, through which water from an external source flows, are defined by sealing the downwardly opened groove with a water pan. CONSTITUTION:Downwardly opened grooves 71 are formed at the rear side of a second ice making chamber 12 so as to surround and communicate respective second ice making small chambers 15 while groove passages 72 are defined by sealing the downwardly opened grooves 71 by a water pan 38. When the preparation of spherical ice blocks 1 is finished in the spaces of ice making small chambers 13, 15 of opposing first and second ice making chambers 11, 12 by circulating refrigerant into evaporators 14, a water supplying valve WV is opened to make city water to flow into the groove passage 72 through a water reservoir 65 to heat the wall surfaces of the second ice making small chambers 15 and melt frozen surfaces between the walls of the small chambers and the spherical ice blocks 1 while the water is made to flow into a tank 19 through the water discharging hole 63 of the water pan 38 and overflowed water is made to flow into a water discharging pan 69 along a water guide plate 67. Next, the second ice making chamber 12 is separated from the first ice making chamber 11 by pivoting a cam lever 17 and, thereafter, hot gas is introduced into the evaporators 14 to release the spherical ice blocks 1 from the first ice making small chambers 13.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、例えば球体状や多面体状をなす氷塊群を全
自動で大量に製造し得る自l!lI製氷機において、製
氷室中で12造した氷塊群を、当該製氷室から円滑に除
氷し得るよう構成した除氷構造に関するものである。
[Detailed Description of the Invention] Industrial Field of Application This invention is capable of producing large quantities of ice cubes in the form of, for example, spheres or polyhedrons in a fully automatic manner! This invention relates to a deicing structure configured to smoothly remove ice from the ice making compartment of 12 ice blocks made in the ice making compartment in an ice making machine.

従来技術 各種の産業分野で、サイコロ状の角氷や所要厚みの板氷
その化フレーク状の氷片等を大量に連続製造する自動製
氷機が、その用途に応じて好適に使い分けられている0
例えば、前記の角氷を製造する製氷機として。
BACKGROUND ART In various industrial fields, automatic ice making machines that continuously produce large quantities of dice-shaped ice cubes, sheet ice of a required thickness, flake-shaped ice pieces, etc., are suitably used depending on the application.
For example, as an ice maker that produces the aforementioned ice cubes.

■製氷室に下向きに多数画成した立方体状の製氷小室を
、その下方から水皿により開閉自在に閉成し、当該水皿
から製氷水を各製氷小室に噴射供給して、該製氷小室中
に角氷を徐々に形成するようにした所謂クローズドセル
方式や。
■ A large number of cube-shaped ice-making compartments are defined downward in the ice-making compartment, which can be opened and closed by a water tray from below, and ice-making water is injected from the water tray to each ice-making compartment to fill the ice-making compartments. The so-called closed-cell method is used to gradually form ice cubes.

■下方に開放する多数の立方体状の製氷小室に製氷水を
直接供給し、角氷を該製氷小室中に形成するようにした
所謂オープンセル方式が知られている。また、板氷や細
粒状のクラッシュアイスを連続製造する製氷機、その他
フレーク状の氷片を連続製造するオーガ式製氷機等も実
施されている。
(2) A so-called open cell system is known in which ice-making water is directly supplied to a large number of cube-shaped ice-making chambers that open downward, and ice cubes are formed in the ice-making chambers. In addition, ice makers that continuously produce sheet ice or fine crushed ice, and auger-type ice makers that continuously produce ice flakes are also in use.

発明が解決しようとする課題 従来の各種製氷機により製造される氷は、前述した如く
、立方体状の角氷や板氷、その他フレーク状の氷片やク
ラッシュアイスが殆どである。これらの氷で所要の定形
を備え、そのまま飲料に浮かせたり、各種食材の冷却ベ
ツドに供したり出来るのは、僅かに前記の角氷があるに
過ぎない(板氷も定形は備えているが、通常そのままの
寸法では使用し得ない)6 しかるに最近の喫茶店やレストランその他の飲食施設で
は、同種営業に対し種々の面で優位に立って顧客を吸引
するべく、他社との差別化を図る懸命な努力が払われて
いる。その−環として、例えば、従来より広く普及して
いる角氷に替えてボール状(球体状)の氷塊を使用し、
これにより顧客に目先の新しい変化を提供しようとする
傾向がみ受けられる。
Problems to be Solved by the Invention As mentioned above, most of the ice produced by various conventional ice making machines are cube-shaped ice cubes, sheet ice, other flaky ice pieces, and crushed ice. Only the above-mentioned ice cubes have the required shape and can be floated on drinks or used as a cooling bed for various foodstuffs (board ice also has a shape, but However, in recent years, coffee shops, restaurants, and other eating and drinking establishments have been working hard to differentiate themselves from other companies in order to gain an advantage over similar businesses in various ways and attract customers. Efforts are being made. As the ring, for example, a ball-shaped (spherical) block of ice can be used instead of the ice cubes that have been widely used in the past.
As a result, there is a tendency to try to provide immediate new changes to customers.

しかしこの球状水は、広く飲食に供されることから、空
気混入による白濁がなく、清澄な透明氷塊でなければ商
品価値は低下する。また大量に製造可能であることを必
要とするが、従来この種の要請を満たす球状水の自動製
氷機は存在しなかった。そこで本願の発明者は、透明で
清澄な球状水を大量に製造し得る製氷機の開発に従事し
、前記の要請を充分に満足する機構を得たので、その基
本概念につき昭和63年18月29日付けで、発明「自
動製氷機」として特許出願を行なった。
However, since this spherical water is widely used for eating and drinking, its commercial value will decrease unless it is clear and transparent ice cubes without cloudiness due to aeration. It also needs to be able to be produced in large quantities, but there has been no automatic ice-making machine for spherical water that meets this type of requirement. Therefore, the inventor of the present application engaged in the development of an ice making machine capable of producing a large amount of transparent and clear spherical water, and having obtained a mechanism that fully satisfies the above requirements, the inventor of the present application developed the basic concept in August 1988. On the 29th, he filed a patent application for his invention, an "automatic ice maker."

先の出願に係る製氷機は、■下方に開放する第1製氷小
室を多数画成し、背面に蒸発器を備えた第1製氷室と、
■上方に開放する第2製氷小室を多数画成した第2製氷
室とを基本的に備え、製氷運転に際し両製氷小室が対応
的に閉成して、その内部に球体等の異形水を形成する空
間を画成するものである。この基本構造に係る製氷機で
は、除氷運転に際して、第111氷小室に結氷した球状
水は、蒸発器にホットガスを通過させることにより、積
極的に融解剥離させることが可能である。しかし該製氷
機は、更に第2製氷室を備えているために、これに画成
した第2製氷小室に結氷した球状水を如何にして円滑に
除去するか、が解決課題となっていた。
The ice-making machine according to the previous application includes: ■ a first ice-making compartment that defines a number of first ice-making compartments that open downward and is equipped with an evaporator on the back;
■Basically equipped with a second ice-making chamber that defines a number of second ice-making chambers that open upward, and during ice-making operation, both ice-making chambers close correspondingly to form irregularly shaped water such as spheres inside. It defines the space where In the ice maker having this basic structure, during deicing operation, the spherical water that has frozen in the 111th ice chamber can be actively melted and peeled off by passing hot gas through the evaporator. However, since the ice-making machine is further equipped with a second ice-making chamber, the problem to be solved is how to smoothly remove the frozen spherical water from the second ice-making chamber defined therein.

発明の目的 この発明は、前述した課題に鑑み、これを好適に解決す
るべく提案されたものであって、除氷運転に際して、第
2製氷室に画成した第2製氷小室に結氷した球状や多面
体状の氷塊を円滑に除去し得る新規な構成に係る除氷構
造を提供することを目的とする。
Purpose of the Invention The present invention has been proposed in view of the above-mentioned problems and to suitably solve the problems. It is an object of the present invention to provide a deicing structure with a novel configuration that can smoothly remove polyhedral ice blocks.

課題を解決するための手段 前述した11題を克服し、所期の目的を好適に達成する
ため本発明は、製氷水を製氷室に噴射供給して該製氷室
内に氷塊を形成し、氷結するに到らなかった製氷水は再
循環に供するようにした自動製氷機において、背面に蒸
発器を備えて機内に固定配置され、下方に開放する所要
形状の第1製氷小室を多数形成した第1製氷室と、この
第1製氷室に対して接離自在に配設され、前記第1製氷
小室の夫々を下方から対応的に閉成し得る所要形状の第
2製氷小室を多数形成した第2製氷室と、該第2製氷室
の下方に配設されて、第1製氷小室および第2製氷小室
に製氷水を供給する水皿とからなり、前記第2製氷室の
裏面に各第2製氷小室を囲繞して連通し合う下方に開放
する溝を形成すると共に、この溝を前記水皿により密閉
して、外部から供給される水を流通させる溝通路を画成
したことを特徴とする。
Means for Solving the Problems In order to overcome the above-mentioned 11 problems and suitably achieve the intended purpose, the present invention provides a system for injecting ice-making water into an ice-making chamber to form ice cubes in the ice-making chamber and freezing the ice-making chamber. This automatic ice maker is designed to recirculate ice-making water that has not reached the desired temperature.The ice-making machine is equipped with an evaporator on the back, is fixedly placed inside the machine, and has a number of first ice-making chambers of a desired shape that open downward. A second ice-making chamber formed with a large number of second ice-making chambers each having a desired shape and arranged to be movable toward and away from the first ice-making chamber and capable of correspondingly closing each of the first ice-making chambers from below. It consists of an ice-making compartment and a water tray disposed below the second ice-making compartment to supply ice-making water to the first ice-making compartment and the second ice-making compartment. The present invention is characterized in that a groove is formed that surrounds and communicates with the small chamber and opens downward, and the groove is sealed by the water tray to define a groove passage through which water supplied from the outside flows.

実施例 次に、本発明に係る自動製氷機の除氷構造につき、好適
な実施例を挙げて、添付図面を参照しながら以下説明す
る。なお、本発明の実施例では。
Embodiments Next, the deicing structure of an automatic ice maker according to the present invention will be described below with reference to preferred embodiments and the accompanying drawings. In addition, in the embodiment of the present invention.

第11図(a)に示す球状水1を連続製造する自動製氷
機につき説明するが、後述する製氷小室の内部形状を変
更するだけで、第11図(b)に示す如きダイヤカット
状の多面体氷2の製造にも容易に対応し得る。
An automatic ice making machine that continuously produces the spherical water 1 shown in FIG. 11(a) will be explained, but by simply changing the internal shape of the ice making chamber described later, a diamond-cut polyhedron as shown in FIG. 11(b) can be obtained. It can also be easily applied to the production of ice 2.

(除氷構造について) 第1図は1本発明に係る自動製氷機の主要製氷構造を製
氷状態で概略的に示し、所要直径をなす多数の球状氷を
製造する製氷室1oは、水平に配設した第1.製氷室1
1と、この第1製氷室11を下方から開閉自在に開成可
能な第21!2氷室12とから基本的に構成される。す
なわち、製氷機筐体(図示せず)の内部上方に、熱伝導
率の良好な金属を材質とする矩形状の第1製氷室11が
水平に配設固定され、所要の整列パターンで第1製氷小
室13が、この第1製氷室11に下向きで多数凹設され
ている。各第1製氷小室13は半球状の凹部として形成
され、−例として直径3■、深さ1.51に設定されて
いる。第1製氷室11の上面には。
(Regarding ice removal structure) Fig. 1 schematically shows the main ice making structure of the automatic ice making machine according to the present invention in an ice making state. The first Ice making room 1
1, and a 21!2 ice compartment 12 which can be freely opened and closed from below. That is, a rectangular first ice-making chamber 11 made of a metal with good thermal conductivity is arranged and fixed horizontally in the upper part of the inside of an ice-making machine housing (not shown), and the first ice-making chamber 11 is arranged and fixed horizontally in a predetermined alignment pattern. A large number of small ice-making chambers 13 are recessed downward in the first ice-making chamber 11. Each of the first ice-making chambers 13 is formed as a hemispherical recess, and is set to have a diameter of 3 cm and a depth of 1.5 cm, for example. On the top surface of the first ice making compartment 11.

冷凍系(図示せず)から導出した蒸発器14が蛇行状に
密着固定され、当該冷凍系の運転により蒸発器14にお
ける気化冷媒の熱交換が促進されて。
An evaporator 14 led out from a refrigeration system (not shown) is closely fixed in a meandering manner, and heat exchange of the vaporized refrigerant in the evaporator 14 is promoted by operation of the refrigeration system.

第1製氷室11が氷点下にまで冷却される。The first ice making compartment 11 is cooled down to below freezing point.

第1製氷室11の直下には、銅の如き熱良導性の金属を
材質とする第2製氷室12が後述の如く傾動自在に配設
され、その製氷運転に際して、該第1製氷室11を下方
から閉成すると共に、除水運転に際して、該第1製氷室
11を開放し得るようになっている。すなわち、第2製
氷室12には、前記第1製氷室11に凹設した第1製氷
小室13と対応して、同じく半球状凹部からなる第2製
氷小室15が上向きに所要の整列パターンで多数凹設さ
れている。この第2製氷小室15の直径も、−例として
3CI11であり、凹部の深さは1.5印に設定されて
いる。従って、第1vi氷室11に対し第2製氷室12
を下方から閉成すると、両製氷小室13.15が相互に
対応して各小室内に直径30の球状空間が画成される。
Immediately below the first ice making chamber 11, a second ice making chamber 12 made of a metal with good heat conductivity such as copper is provided so as to be tiltable as described later. The first ice making chamber 11 can be closed from below, and the first ice making chamber 11 can be opened during water removal operation. That is, in the second ice-making compartment 12, in correspondence with the first ice-making compartment 13 recessed in the first ice-making compartment 11, a large number of second ice-making compartments 15, which also have hemispherical recesses, are arranged upward in a required alignment pattern. It is recessed. The diameter of this second ice-making chamber 15 is also, for example, 3CI11, and the depth of the recess is set to 1.5 marks. Therefore, for the first vi ice compartment 11, the second ice compartment 12
When closed from below, both ice-making compartments 13, 15 correspond to each other, and a spherical space with a diameter of 30 mm is defined within each compartment.

第2製氷室12は、前述の如く銅等の熱良導全屈を材質
とするブロック体として構成され、各第2i氷小室15
に製氷水を噴射供給するための水皿38が、当該第2製
氷室12の外底部に第2図に示すボルト60を介して一
体的に固定されている。この第2製氷室12における第
2製氷小室15の形成面と反対側の面(水皿38と対向
する面)には、第2図に示す如く、相互に隣接する各第
2製氷小室15の間において、下方に開放する溝71が
形成されている。すなわち、各第2製氷小室15は第2
製氷室12の裏面において溝71で囲繞されると共に、
この)が71の下方開口は水皿38で密閉されている。
As described above, the second ice making chamber 12 is constructed as a block body made of a material with good thermal conductivity such as copper, and each of the second ice chambers 15
A water tray 38 for spraying and supplying ice-making water to the ice-making chamber 12 is integrally fixed to the outer bottom of the second ice-making chamber 12 via bolts 60 shown in FIG. As shown in FIG. 2, on the surface of the second ice-making compartment 12 opposite to the surface on which the second ice-making compartments 15 are formed (the surface facing the water tray 38), each of the second ice-making compartments 15 adjacent to each other is provided. A groove 71 that opens downward is formed between them. That is, each second ice making compartment 15 is
Surrounded by a groove 71 on the back surface of the ice making chamber 12,
The lower opening of this ) 71 is sealed with a water tray 38 .

そして、後述する除氷運転に際し、給水弁WVを介して
供給される水道水は、該溝71と水皿表面との間に画成
される溝通路72に充満し、第2製氷小室15の加熱促
進を図るよう構成される。
During the deicing operation, which will be described later, the tap water supplied via the water supply valve WV fills the groove passage 72 defined between the groove 71 and the surface of the water tray, and fills the second ice making chamber 15 with tap water. It is configured to promote heating.

なお、第2製氷室12における溝71の所定位置には、
該溝71の深さ寸法と同一の支柱73が突設され、この
支柱73に穿設した穴73aに前記ボルト60が挿通さ
れる。そして、第2製氷室12は、支柱73の先端部と
後述する通孔12aの穿設部位とを水皿38の表面に当
接させた状態で、水皿38にボルト固定される。
In addition, in the predetermined position of the groove 71 in the second ice making chamber 12,
A support 73 having the same depth as the groove 71 is provided in a protruding manner, and the bolt 60 is inserted into a hole 73a formed in the support 73. The second ice-making chamber 12 is bolted to the water tray 38 with the tip of the support 73 and the hole 12a (described later) in contact with the surface of the water tray 38.

前記水皿38は、その後端部が直角に立上がって後部6
4が形成され、この後部64の開放端において製氷機筐
体(図示せず)の固定部位に、枢軸16により傾動旋回
可能に枢支され、 f!!述のアクチュエータモータA
Mによって第2製氷室]、2と共に回動付勢される。す
なわち、第7図に示す如く時計方向に回動すれば、水皿
38に一体固定した第2製氷室12は第1製氷小室13
を開放し、また反時計方向に回動ずれば、第1図に示す
如く、第2製氷室12は第1製氷小室13を閉成する。
The water tray 38 has a rear end that stands up at a right angle to the rear portion 6.
4 is formed at the open end of this rear part 64 and pivoted to a fixed part of the ice maker housing (not shown) by a pivot 16 so as to be tiltable and rotatable, and f! ! Actuator motor A mentioned above
[Second ice making chamber], 2 is rotationally biased by M. That is, by rotating clockwise as shown in FIG.
When it is opened and rotated counterclockwise, the second ice-making chamber 12 closes the first ice-making chamber 13, as shown in FIG.

水皿38の裏面には、各第2製氷/11室15と連通ず
る噴水孔25が対応的に穿設され、これら噴水孔25に
製氷水を供給する分配管24が同じく水皿38の裏面に
蛇行配置されている。また水皿38の下方には、前記分
配管24に製氷水を供給するための製氷水タンク19が
一体的に設けられている。
On the back side of the water tray 38, fountain holes 25 communicating with each of the second ice making/11 chambers 15 are correspondingly bored, and a distribution pipe 24 for supplying ice making water to these fountain holes 25 is also provided on the back side of the water tray 38. It is arranged in a meandering manner. Further, below the water tray 38, an ice-making water tank 19 for supplying ice-making water to the distribution pipe 24 is integrally provided.

図に示す如く、第2製氷室12における各第2製氷小室
15の底部に通孔12aが穿設され、前記水皿38と第
2製氷室12とを固定した際に、各噴水孔25が前記通
孔12aと対応一致するよう寸法設定されている。そし
てこの通孔12aは、後述する製氷運転に際し、両製氷
小室13.15に画成された氷形成用空間に製氷水を供
給すると共に、該空間中で氷結するに到らなかった製氷
水(以下「未氷結水」という)を好適に排出するべく機
能する。なお、水皿38の各噴水孔25に隣接して戻り
孔26が穿設され、前記通孔12aから排出された未氷
結水は、この戻り孔26を介して製氷水タンク19に帰
還される。
As shown in the figure, a through hole 12a is bored at the bottom of each second ice making compartment 15 in the second ice making compartment 12, and when the water tray 38 and the second ice making compartment 12 are fixed, each water fountain hole 25 is opened. The dimensions are set to correspond to the through hole 12a. During the ice-making operation, which will be described later, this through hole 12a supplies ice-making water to the ice-forming spaces defined in both ice-making chambers 13. It functions to suitably discharge water (hereinafter referred to as "unfrozen water"). A return hole 26 is provided adjacent to each fountain hole 25 of the water tray 38, and the unfrozen water discharged from the through hole 12a is returned to the ice-making water tank 19 through the return hole 26. .

(水皿傾動機構と水循環系とについて)水皿38を傾動
させるアクチュエータモータAMは減速機を備え、その
回転軸にカムレバー17およびレバー片37が半径方向
に延出するよう固定され、前記カムレバー17の先端1
7aと水皿38の前方端部との間に、コイルスプリング
18が弾力的に係着されている。前記カムレバー17の
基部に形成したカム面17bは、水皿38の側部61の
上面にカム係合可能に寸法設定されている。また第1製
氷室11を支持する固定部位に切換スイッチS、が配設
され、除氷運転に伴なうモータAMの回転により前記レ
バー片37が回動すると、前記切換スイッチS2が切換
えられて、モータAMを停止させ、前記水皿38を傾動
状態で停止させる。また冷凍系の弁を切り換えて、前記
蒸発器14にホットガスを流通させる機能も果す。
(Regarding the water pan tilting mechanism and water circulation system) The actuator motor AM for tilting the water pan 38 is equipped with a speed reducer, and the cam lever 17 and the lever piece 37 are fixed to the rotating shaft thereof so as to extend in the radial direction. tip 1
A coil spring 18 is elastically engaged between 7a and the front end of the water tray 38. A cam surface 17b formed at the base of the cam lever 17 is dimensioned to be able to cam engage with the upper surface of the side portion 61 of the water tray 38. Further, a changeover switch S is disposed at a fixed portion that supports the first ice making chamber 11, and when the lever piece 37 is rotated by the rotation of the motor AM accompanying the deicing operation, the changeover switch S2 is changed over. , the motor AM is stopped, and the water tray 38 is stopped in a tilted state. It also functions to switch the refrigeration system valve and circulate hot gas to the evaporator 14.

前記製氷水タンク19の底部側面から導出した給水管2
1は、給水ポンプ22を介してタンク側方に設けた圧力
室23に連通し、更に圧力室23から前記分配管24に
連通している。従って、製氷水タンク19からポンプ2
2を介して圧送される製氷水は、分配管24に穿設した
前記各噴水孔25および第2製氷室12に穿設した前記
通孔12aを介して、各第2製氷小室15中に噴射供給
されるものである。なお、後述する製氷運転に際し両製
氷/h室13.15で氷結するに到らなかった未氷結水
は、通孔12aおよび前記水皿38に穿設した前記戻り
孔26から製氷水タンク19に戻し得るようになってい
る。
Water supply pipe 2 led out from the bottom side of the ice-making water tank 19
1 communicates with a pressure chamber 23 provided on the side of the tank via a water supply pump 22, and further communicates from the pressure chamber 23 with the distribution pipe 24. Therefore, from the ice making water tank 19 to the pump 2
2 is injected into each of the second ice making compartments 15 through the water fountain holes 25 drilled in the distribution pipe 24 and the through holes 12a drilled in the second ice making compartment 12. It is supplied. In addition, during the ice-making operation described later, unfrozen water that has not frozen in both ice-making/h chambers 13.15 is transferred to the ice-making water tank 19 from the return hole 26 formed in the through hole 12a and the water tray 38. It is now possible to return it.

更に、水皿38の前方には、前述の側部61より所定寸
法だけ低く設定した堰止め部62が配設され、この堰止
め部62の両端部は両側部61゜61に密着されている
。また水皿38には、第2製氷室12の前方側端部と堰
止め部62との間に所要径の排水孔63が穿設されてい
る。これにより水皿38の内部表面には、両側部61,
6]、、堰止め部62および前記後部64で囲続された
水溜部65が形成される。このとき、水溜部65に貯溜
された水は、前記第2製氷室12のVf171と水皿3
8との間に画成された溝通路72中に充満し、各第2製
氷小室15を加熱する。そして該水溜部65に貯溜され
た水の一部は、前記排水孔63から製氷水タンク19に
流下し、他の水は堰止め部62の上端からオーバーフロ
ーして、水皿38の前方側よりタンク19に流入するよ
うにしである。
Further, in front of the water tray 38, a dam part 62 is provided which is set to be lower than the side part 61 by a predetermined dimension, and both ends of this dam part 62 are in close contact with both side parts 61. . Further, a drainage hole 63 of a required diameter is bored in the water tray 38 between the front end of the second ice making chamber 12 and the damming part 62. As a result, the inner surface of the water tray 38 has both sides 61,
6], A water reservoir portion 65 is formed which is surrounded by the dam portion 62 and the rear portion 64. At this time, the water stored in the water reservoir 65 is transferred to the Vf171 of the second ice making chamber 12 and the water tray 3.
8 and heats each of the second ice-making chambers 15. A part of the water stored in the water reservoir 65 flows down from the drain hole 63 to the ice-making water tank 19, and the other water overflows from the upper end of the dam 62 and flows from the front side of the water tray 38. It is arranged so that it flows into the tank 19.

なお、製氷水タンク19への給水は、外部水道系に接続
している給水管27の給水弁WVを開放することにより
行なわれる。
Note that water is supplied to the ice-making water tank 19 by opening the water supply valve WV of the water supply pipe 27 connected to the external water supply system.

(感温機構について) 第1i2氷室11の上面における所定位置に、製氷完了
検知手段として機能する製氷検知サーモTh、の感温部
(プローブ)が配設され、また同じ第1製氷室上面の別
位置に、除氷完了検知手段として機能する除氷検知サー
モTh2の感温部が配設されている。更に、第2製氷室
12における所要の側部にサーモTh、の感温部が配設
され、該サーモTh、の電気信号を発する本体は、水皿
38の前記後部64に取付けられている。
(About the temperature-sensing mechanism) A temperature-sensing part (probe) of an ice-making detection thermometer Th, which functions as an ice-making completion detection means, is disposed at a predetermined position on the upper surface of the 1i2 ice chamber 11, and another temperature-sensing section (probe) of the ice-making detection thermometer Th, which functions as an ice-making completion detecting means, is provided at a predetermined position on the upper surface of the 1i2 ice chamber 11. A temperature sensing part of a deicing detection thermometer Th2 functioning as a deicing completion detecting means is disposed at the position. Further, a temperature-sensing section of a thermometer Th is disposed at a required side of the second ice-making chamber 12, and the main body of the thermometer Th, which emits an electric signal, is attached to the rear portion 64 of the water tray 38.

(水案内板について) 製氷水タンク19の下方には、製氷残水等を受けて機外
へ排出するための排水皿69が配設され、該排水皿69
の上方に、軸68に固定した水案内板67が臨んでいる
。この水案内板67は、その製氷運転中において、筐体
の固定部から延出垂下する位置決め部材70に当接して
位置決めされ、第1図に示す如くタンク19の開放先端
部に近接した位置で停止している。この状態において、
タンク19中の製氷水がオーバーフローすると、第6図
に示すように、この水は前記水案内板67の裏面に沿っ
て流下した後、前記排水皿69から機外へ排出される。
(About the water guide plate) A drain tray 69 is provided below the ice-making water tank 19 to receive ice-making residual water and discharge it to the outside of the machine.
A water guide plate 67 fixed to a shaft 68 faces above. During the ice-making operation, the water guide plate 67 is positioned in contact with a positioning member 70 that extends and hangs down from the fixed part of the housing, and is positioned close to the open end of the tank 19 as shown in FIG. It's stopped. In this state,
When the ice-making water in the tank 19 overflows, as shown in FIG. 6, this water flows down along the back surface of the water guide plate 67 and is then discharged from the drain tray 69 to the outside of the machine.

また除氷運転の際には、第7図に示す如く、水案内板6
7が固定されている前記軸68を5図示しない駆動手段
により反時計方向に駆動すれば、この水案内板67は傾
動状態にある(後述)第2製氷室12の上面に倒れ込み
、各第2製氷小室15を塞ぐに到る。そして第8図に示
す如く、第1製氷室11から落下する結氷を、この水案
内板67において滑落させて貯水庫(図示せず)へ円滑
に案内する。
Also, during deicing operation, as shown in Figure 7, the water guide plate 6
When the shaft 68 to which 7 is fixed is driven counterclockwise by a drive means (not shown), this water guide plate 67 will fall onto the upper surface of the second ice making chamber 12 which is in a tilted state (described later), and each second This results in the ice making chamber 15 being blocked. As shown in FIG. 8, the ice falling from the first ice making chamber 11 is caused to slide down on this water guiding plate 67 and is smoothly guided to a water storage (not shown).

なお、水皿38(第2製氷室)が原位置に復帰する際に
は、水案内板67は水平状態に復帰する水皿38により
押圧されて時計方向に旋回し、第1図に示す如く、前記
位置決め部材70に当接して停止する。この水案内板6
7は、軸68を支点にして重心の移動で傾動させられる
Note that when the water tray 38 (second ice making compartment) returns to its original position, the water guide plate 67 is pressed by the water tray 38 returning to the horizontal state and rotates clockwise, as shown in FIG. , comes into contact with the positioning member 70 and stops. This water guide plate 6
7 is tilted by moving the center of gravity using the shaft 68 as a fulcrum.

次に、第10図は本発明に係る除氷構造に採用される第
2製氷室12の変形例であって、該第2製氷室12は板
金等の薄肉材からなり、この薄肉材に半球状四部からな
る第2製氷小室15ガ上向きに所要の整列パターンで多
数凹設されている。
Next, FIG. 10 shows a modification of the second ice making chamber 12 adopted in the deicing structure according to the present invention, and the second ice making chamber 12 is made of a thin material such as a sheet metal, and the thin material has a hemispherical shape. A large number of second ice-making chambers 15, each consisting of four shaped parts, are recessed upward in a desired alignment pattern.

更に詳細に説明すれば、各第2製氷小室15は、薄肉材
の裏面側(水皿38と対向する側)に陥凹形成され、こ
の裏面側において隣接し合う他の第2製氷小室15との
間に、所要の溝71が形成される。そして、第2製氷室
12は、各第2製氷小室1.5の頂部を前記水皿38に
当接した状態で固定され、前記溝71と水皿38の表面
との間に、後述する除氷運転に際して外部水道水の流通
路として機能する溝通路72が画成される。
More specifically, each of the second ice-making compartments 15 is recessed on the back side of the thin material (the side facing the water tray 38), and is connected to other adjacent second ice-making compartments 15 on this back side. A required groove 71 is formed between them. The second ice-making chamber 12 is fixed with the top of each second ice-making chamber 1.5 in contact with the water tray 38, and between the groove 71 and the surface of the water tray 38 there is a A groove passage 72 is defined which functions as a flow passage for external tap water during ice operation.

また、各第2製氷小室15の頂部には、水皿38の噴水
孔25と連通する通孔12aが穿設され、この通孔12
aは後述する製氷運転に際し。
Furthermore, a through hole 12a communicating with the fountain hole 25 of the water tray 38 is bored at the top of each second ice making chamber 15.
a is for the ice making operation described later.

両製氷小室13.15に画成された氷形成用空間に製氷
水を供給すると共に、該空間中で氷結するに到らなかっ
た未氷結水を排出するべく機能する。
It functions to supply ice-making water to the ice-forming space defined in both ice-making compartments 13, 15, and to discharge unfrozen water that has not yet frozen in the space.

実施例の作用 次に、実施例に係る除氷構造の作用につき説明する。先
ず製氷運転に際し、第1図に示す如く第2製氷室12は
、第1製氷室11を下方から閉成して、各第1製氷小室
13と各第2製氷小室15とを対応させ、内部に氷形成
用空間を画成している。この状態で自動製氷機の電源を
投入すると、製氷運転が開始され、第1製氷小室13に
設けた蒸5!!器14に冷媒が循環供給され、当該第1
製氷室11の冷却がなされる。また製氷水タンク19か
らの製氷水は分配管24にポンプ圧送され、該分配管2
4の各噴水孔25および第2製氷室12の通孔12aを
介して、両製氷小室13.15に画成される球状空間中
に噴射される。
Function of the embodiment Next, the function of the de-icing structure according to the embodiment will be explained. First, in the ice-making operation, as shown in FIG. 1, the second ice-making chamber 12 closes the first ice-making chamber 11 from below, makes each first ice-making chamber 13 correspond to each second ice-making chamber 15, and closes the inside of the second ice-making chamber 12. It defines a space for ice formation. When the automatic ice maker is turned on in this state, ice making operation starts, and the steamer 5 installed in the first ice making compartment 13! ! Refrigerant is circulated and supplied to the first
The ice making compartment 11 is cooled. In addition, the ice making water from the ice making water tank 19 is pumped to the distribution pipe 24, and the ice making water is pumped to the distribution pipe 24.
The ice is injected into the spherical space defined by both ice-making compartments 13.15 through the four water fountain holes 25 and the through-hole 12a of the second ice-making compartment 12.

噴射された製氷水は、第1製氷小室13の内面に接触し
て冷却され、下方の第2製氷小室15を潤した後、前記
通孔12aを介して前記球状空間から排出される。この
未氷結水は、水皿38に穿設した前記戻り孔26を介し
て、製氷水タンク19に戻されて再度の循環に供される
。そして製氷水の循環が反復される内に、タンク19中
に貯留される製氷水全体の温度が次第に低下すると共に
、第2製氷小室15の温度も同様に次第に低下する。
The injected ice-making water contacts the inner surface of the first ice-making chamber 13 and is cooled, moistens the second ice-making chamber 15 located below, and then is discharged from the spherical space through the through hole 12a. This unfrozen water is returned to the ice-making water tank 19 through the return hole 26 formed in the water tray 38 and is circulated again. As the circulation of the ice-making water is repeated, the temperature of the entire ice-making water stored in the tank 19 gradually decreases, and the temperature of the second ice-making chamber 15 also gradually decreases.

そして、先ず第1製氷小室13の内壁面で製氷水の一部
が凍結して氷層が形成され始め(第3図参照)、未氷結
水は通孔12aおよび戻り孔26からタンク19に帰還
する運転を重ねる間に、前記氷層の成長が更に進行して
、第4図および第5図に示す如く、最終的に両製氷小室
13 、1.5に形成される球状空間中に球状氷1が生
成される。なお、第3図に示す製氷状態となったタイミ
ングをもって製氷運転を終了させると、第11図(c)
に示す如き中空の球状氷が得られる。このようにして得
た中空氷は、その内部空間にチェリー等の食材や、ジュ
ース等の飲料および花びら等の観賞材を入れることによ
って、新たな氷の需要を喚起させることができる。更に
、この中空氷の穴あき部(噴水孔25と戻り孔26とに
対応する部分)を下唇にあてて吹くことにより、笛(氷
層)としても使用できて。
First, a portion of the ice-making water freezes on the inner wall surface of the first ice-making chamber 13 and an ice layer begins to form (see Figure 3), and the unfrozen water returns to the tank 19 through the through hole 12a and the return hole 26. As these operations are repeated, the growth of the ice layer further progresses, and as shown in FIGS. 1 is generated. In addition, if the ice making operation is ended at the timing when the ice making state shown in Fig. 3 is reached, the state shown in Fig. 11(c)
Hollow spherical ice as shown in Figure 2 is obtained. The hollow ice obtained in this manner can stimulate new demand for ice by filling the inner space with food such as cherries, drinks such as juice, and ornamental materials such as flower petals. Furthermore, by blowing by placing the perforated part of this hollow ice (the part corresponding to the fountain hole 25 and the return hole 26) against the lower lip, it can also be used as a whistle (ice layer).

独特の趣きが得られる。You can get a unique taste.

製氷進行状態を更に詳細に説明すると、第2製氷室12
は、前述の如く銅等の金属を材質とする熱良導体で構成
されているので、第1製氷室11からの熱伝導が良好に
なされ、早期に第1製氷室11と諮問−の適正冷却温度
となる。このため。
To explain the progress of ice making in more detail, the second ice making chamber 12
As mentioned above, since it is made of a good thermal conductor made of metal such as copper, good heat conduction from the first ice making compartment 11 is achieved, and the appropriate cooling temperature between the first ice making compartment 11 and the ice making compartment 11 is quickly reached. becomes. For this reason.

第1製氷室11で氷層が形成されると同時に、fJ2製
氷室12でも氷層が形成されて、第3図に示す状態とな
る。また、第2製氷室12の裏面側に溝71を形成した
ことにより、第2製氷室12の体積が減少し、これによ
り熱負荷が減少して冷却効率が良好になる利点がある。
At the same time that an ice layer is formed in the first ice making compartment 11, an ice layer is also formed in the fJ2 ice making compartment 12, resulting in the state shown in FIG. 3. Further, by forming the groove 71 on the back side of the second ice making chamber 12, the volume of the second ice making chamber 12 is reduced, which has the advantage of reducing heat load and improving cooling efficiency.

第5回に示す如く1球状氷の製造が完了し、第1製氷室
11の温度が所要の温度域まで低下すると、この温度低
下を製氷検知サーモTh1が検知し、製氷水の循環供給
を停止すると共に、蒸発器14への冷媒の供給を続行す
る。そして第6図に示す如く、給水弁Wvを開放して、
水皿38の表面に画成しである前記水溜部65に給水を
開始する。
As shown in Part 5, when the production of one spherical ice is completed and the temperature of the first ice-making chamber 11 drops to the required temperature range, the ice-making detection thermo Th1 detects this temperature drop and stops the circulating supply of ice-making water. At the same time, the supply of refrigerant to the evaporator 14 is continued. Then, as shown in FIG. 6, open the water supply valve Wv,
Supply of water to the water reservoir 65 defined on the surface of the water tray 38 is started.

給水弁Wvを介して供給される水道水は、排水孔63か
らタンク19に流下する量に比べ多量であるので、水溜
部65での水位は次第に上昇し、遂には水皿38の堰止
め部62からオーバーフローするに到る。オーバーフロ
ーする際の水溜部65の水面レベルは、第2製氷室12
の上端近傍に到来するよう設定しておくことにより、常
温の水道水は第2製氷室12を主として加熱することか
できる。
Since the amount of tap water supplied via the water supply valve Wv is large compared to the amount flowing down from the drain hole 63 to the tank 19, the water level in the water reservoir 65 gradually rises and finally reaches the dam part of the water tray 38. 62, resulting in an overflow. The water surface level of the water reservoir section 65 when overflowing is the same as that of the second ice making chamber 12.
By setting the temperature so that the water reaches near the upper end of the ice-making chamber 12, tap water at room temperature can mainly heat the second ice-making chamber 12.

このとき、第2製氷室12における各第2須氷小室15
の囲りに溝71が形成されているので。
At this time, each second ice compartment 15 in the second ice making compartment 12
Since the groove 71 is formed around the .

この溝71と水皿38の表面との間に画成される溝通路
72に水が充満し、これにより水と第212水室12と
の接触面積が充分大きく確保される。
The groove passage 72 defined between the groove 71 and the surface of the water tray 38 is filled with water, thereby ensuring a sufficiently large contact area between the water and the 212th water chamber 12.

従って、水と第2製氷室12との熱交換効率が向上し、
除氷運転に要する時間を短縮化し得る。
Therefore, the heat exchange efficiency between the water and the second ice making chamber 12 is improved,
The time required for deicing operation can be shortened.

前記堰止め部62からのオーバーフロー水は、水皿38
の先端からタンク19内に流下する。この水皿先端部か
ら流入する水と、前記排水孔63から流下する水とによ
りタンク19内の水位は次第に上昇し、短時間でタンク
先端部から溢流して前記待機位置にある水案内板67に
沿いつつ排水皿69から機外へ排出される。
The overflow water from the dam 62 is transferred to the water tray 38.
The water flows down into the tank 19 from the tip. The water level in the tank 19 gradually rises due to the water flowing in from the tip of the water dish and the water flowing down from the drain hole 63, and the water overflows from the tip of the tank in a short time, causing the water guide plate 67 to be in the standby position. It is discharged from the drain tray 69 to the outside of the machine along the same direction.

第212氷室12は、水溜部65および溝通路72に貯
溜される水道水で加熱されて温度上昇し、第2製氷小室
15の壁面と疎水との氷結力が低下する。また、第1f
JA氷室11との近接面に形成された氷の固着力も弱ま
る。このように第211氷室12の温度が上昇すると、
これを前記サーモTh。
The 212th ice chamber 12 is heated by the tap water stored in the water reservoir 65 and the groove passage 72, and the temperature rises, and the freezing force between the wall surface of the second ice making chamber 15 and the hydrophobicity decreases. Also, the 1st f
The adhesion force of the ice formed on the surface close to the JA ice room 11 is also weakened. When the temperature of the 211th ice room 12 rises in this way,
This was applied to the Thermo Th.

が検出して、給水弁Wvを閉成すると共に、前記アクチ
ュエータAMが付勢されて、第1図において反時計方向
への回動を開始する。これにより、第7図に示す如く、
カムレバー17が回転し、その基部に形成したカム面1
7bが水皿38の側部上面を強制的に下方に押圧する。
is detected and closes the water supply valve Wv, and at the same time, the actuator AM is energized and starts rotating counterclockwise in FIG. As a result, as shown in Fig. 7,
The cam lever 17 rotates and the cam surface 1 formed at its base
7b forcibly presses the side upper surface of the water tray 38 downward.

既に述べた如く。As already mentioned.

第2製氷室12は水道水により加熱されて3第1製氷室
11と球状氷1との固着力は低下しているので、当該水
皿38および第2製氷室12は、第1製氷室11から強
制剥離されて斜め下方に傾動し始める。この水皿38お
よびタンク19の傾動により、当該タンク19内の製氷
水と水溜部内の水とは外部に廃棄される、 水皿38の傾動途中において、軸68に一体的に配設さ
れた反転レバー(図示せず)を水皿組の一部で押すこと
により前記の水案内板67が反転し。
Since the second ice-making compartment 12 is heated by tap water and the adhesion force between the first ice-making compartment 11 and the spherical ice 1 is reduced, the water tray 38 and the second ice-making compartment 12 are It is forcibly peeled off and begins to tilt diagonally downward. By tilting the water pan 38 and the tank 19, the ice-making water in the tank 19 and the water in the water reservoir are disposed of outside. By pushing a lever (not shown) with a part of the water tray assembly, the water guide plate 67 is reversed.

水皿38に寄りかかった状態で傾動する。水皿38が最
大限に傾動したタイミングをもって、前記レバー片37
が切換スイッチS2を抑圧付勢し。
It tilts while leaning against the water tray 38. At the timing when the water tray 38 is tilted to the maximum, the lever piece 37
suppresses and energizes the changeover switch S2.

これによりモータAMはその回転を停止して水皿38の
傾動を停止させる。水案内板67は、先に述べた如く、
第2製氷室12の上面を覆って氷塊滑落用の円滑面を提
供している。
As a result, the motor AM stops its rotation and the tilting of the water tray 38 is stopped. As mentioned above, the water guide plate 67 is
The upper surface of the second ice making chamber 12 is covered to provide a smooth surface for sliding ice cubes down.

更に、前記スイッチS2の切換えにより、凝縮器用ファ
ンモータ(図示せず)が停止し、ホットガス弁(図示せ
ず)が開放して蒸発器14にホットガスが供給され、第
1製氷室11の加温がなされて。
Furthermore, by switching the switch S2, the condenser fan motor (not shown) is stopped, the hot gas valve (not shown) is opened, hot gas is supplied to the evaporator 14, and the first ice making compartment 11 is supplied with hot gas. Heating has been done.

第1製氷小室13の内面と球状氷との氷結面の融解を開
始する。なお第1製氷室11は、前述の如く、水皿38
が傾動開放するまで冷却が続行されているので1球状氷
1と第1製氷小室13の内面との氷結力(固着力)は強
く、第2製氷室12の開放時に球状氷1は、第7図に示
すように、第1製氷小室13に固着している6しかるに
、蒸発器14には先程よりホットガスが循環しているか
ら、第1製氷室11は温度上昇中である。そして、第1
製氷小室13が成る程度加温されると、小室壁面と球状
氷1との氷結が解除されて自重落下し。
The frozen surface between the inner surface of the first ice making chamber 13 and the spherical ice begins to melt. Note that the first ice making chamber 11 has a water tray 38 as described above.
Since the cooling continues until the spherical ice cube 1 is tilted and opened, the freezing force (adhesion force) between the spherical ice cube 1 and the inner surface of the first ice cube compartment 13 is strong, and when the second ice cube compartment 12 is opened, the spherical ice cube 1 is As shown in the figure, the temperature of the first ice making compartment 11 is increasing because hot gas has been circulating in the evaporator 14 since a while ago. And the first
When the ice-making chamber 13 is heated to a sufficient temperature, the spherical ice 1 is unfrozen from the chamber wall and falls under its own weight.

第8図に示す如く、傾動待機している前記水案内板67
の表面に落着し貯水庫(図示せず)に滑落回収される。
As shown in FIG. 8, the water guide plate 67 is tilted and ready.
It lands on the surface and is collected by sliding into a water storage (not shown).

このように、球状水lが全て第1製氷小室13から離脱
すると、第9図に示す如く、第1製氷室11は蒸発器1
4に循環しているホットガスにより一挙に温度上昇する
。この温度上昇を除氷検知サーモTh2が検知すると、
除氷運転を完了させると共に、前記モータAMが逆回転
してカムレバー17を駆動する。従って該レバー17と
水皿38との間に弾力的に係着したコイルスプリング1
8により、水皿38および製氷水タンク19を反時計方
向に回動付勢し、水平状態に復帰させることによって、
第1製氷室11を再び下方から閉成する。
In this way, when all the spherical water 1 leaves the first ice making chamber 13, the first ice making chamber 11 moves to the evaporator 1, as shown in FIG.
The temperature rises all at once due to the hot gas circulating in step 4. When the deicing detection thermo Th2 detects this temperature rise,
At the same time as the deicing operation is completed, the motor AM reversely rotates to drive the cam lever 17. Therefore, the coil spring 1 is elastically engaged between the lever 17 and the water tray 38.
8, the water tray 38 and the ice-making water tank 19 are rotated counterclockwise and returned to the horizontal state.
The first ice making chamber 11 is closed again from below.

次いで、前記モータAMの逆回転によりカムレバー17
も逆回転し、前記切換えスイッチS2を押圧付勢して前
記冷凍系の弁を切換え、前記蒸発器14へのホットガス
の供給を停止する。また、給水弁Wvを開放して、水位
の低下したタンク19に新たな製氷水を供給する6そし
て、製氷運転が再開されて前述した動作を繰り返す。
Next, the cam lever 17 is rotated by the reverse rotation of the motor AM.
The refrigeration system valve also rotates in the opposite direction, presses and energizes the changeover switch S2, switches the refrigeration system valve, and stops the supply of hot gas to the evaporator 14. Also, the water supply valve Wv is opened to supply new ice-making water to the tank 19 whose water level has decreased6, and the ice-making operation is restarted and the above-described operations are repeated.

発明の詳細 な説明した如く1本発明に係る除氷構造によれば、下方
に開放する第1製氷小室を備えた第1製氷室と、上方に
開放する第2製氷小室が画成された第2製氷室と1両製
氷小室に製氷水を供給する水皿とを基本的に備え1両製
氷小室の開成により内部画成される氷形成用空間で氷塊
を生成する製氷機に関連して、前記第2製氷室の底部に
溝を形成し、この溝と水皿の表面とにより溝通路を画成
し、除氷運転に際して水皿上に供給される外部水道水を
該溝通路中に流下させるよう構成したものである。これ
により、第2製氷ノ」1室に結氷した球状や多面体状の
氷塊を、短時間で円滑に除去し得る。従って、除氷に要
する時間が短縮でき、製氷能力が向上すると共に、除氷
用に供給される水道水や電力の浪費を防いで、省エネル
ギーが有効に図られる。また、第2製氷室に溝を形成す
ることにより、製氷運転に際して該第2製氷室の熱負荷
が減少し、製氷時間の短縮化を図り得る利点もある。
DETAILED DESCRIPTION OF THE INVENTION According to the de-icing structure according to the present invention, the first ice-making chamber includes a first ice-making chamber that opens downward, and a second ice-making chamber that opens upward. In relation to an ice-making machine that basically comprises two ice-making chambers and a water tray for supplying ice-making water to one ice-making chamber and generates ice blocks in an ice-forming space internally defined by opening one ice-making chamber; A groove is formed in the bottom of the second ice-making chamber, the groove and the surface of the water tray define a groove passage, and external tap water supplied onto the water tray during deicing operation flows into the groove passage. It is configured to allow Thereby, the spherical or polyhedral ice cubes that have frozen in the first chamber of the second ice making chamber can be smoothly removed in a short time. Therefore, the time required for deicing can be shortened, ice making capacity is improved, and tap water and electricity supplied for deicing can be prevented from being wasted, thereby effectively saving energy. Further, by forming the groove in the second ice making chamber, there is an advantage that the heat load on the second ice making chamber is reduced during ice making operation, and the ice making time can be shortened.

更に、加熱手段として外部水道水を直接用いる場合につ
き説明したが、ヒータや湯沸し器等で加温した温水を供
給することも実施可能である。また球状水の製造につき
説明したが、本発明はこれに限定されるものではなく、
他の形状を有する多面体水の製造にも実施できることは
勿論である。
Furthermore, although the case has been described in which external tap water is directly used as the heating means, it is also possible to supply hot water heated by a heater, water heater, or the like. Furthermore, although the production of spherical water has been described, the present invention is not limited to this.
Of course, it is also possible to produce polyhedral water having other shapes.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の好適実施例に係る除氷構造を示すもので
あって、第1図は第1製氷室に対し第2製氷室を閉成し
て、製氷運転を開始した初期の状態を示す製氷機構部の
縦断面図、第2図は第1図における第2製氷室を縦断し
た状態を裏面側から観察した概略斜視図、第3図は製氷
が進行して両製氷小室中に中空の球状水が形成された状
態を示す製氷機構部の縦断面図、第4図は製氷完了に近
づき始めた段階において、両衷氷小室中に略中実な球状
水が形成され、タンク中の製氷水の水位が低下している
状態を示す製氷機構部の縦断面図。 第5図は略製氷が完了して両裂氷小室中に中実な球状水
が形成された状態を示す製氷機構部の縦断面図、第6図
は製氷が完了して給水弁が開放し、水溜部での水位上昇
により堰止め部からオーバーフローした水が、水案内板
の裏面に沿って流下して排水皿から機外へ排出される状
態を示す製氷機構部の縦断面図、第7図はアクチュエー
タモータが付勢されて第2製氷室を時計方向に傾動開放
し、水案内板を第21!i氷室の上面に倒れ込ませて各
第2製氷小室を塞いだ状態を示す製氷機構部の縦断面図
、第8図は第1製氷室から球状水が落下して。 その直下に傾斜位置する水案内板を滑落する状態を示す
製氷機構部の縦断面図、第9図は除氷が完了して、第2
製氷室が反時計方向に回動復帰し始めると共に、水案内
板も原位置に戻される状態を夫々示す製氷機構部の縦断
面図、第10図は本発明に係る除氷構造に採用される第
2製氷室の変形例を縦断した状態を裏面側から観察した
概略斜視図、第11図(a)は球状水を示す説明図、第
11図(b)は多面状水を示す説明図、第11図(c)
は中空の球状水を示す説明図である。 11・・・第1盟氷室 13・・・第1製氷小室 15・・・第2製氷小室 71・・・溝 12・・・第2製氷室 14・・・蒸発器 38・・・水皿 72・・・溝通路
The drawings show a deicing structure according to a preferred embodiment of the present invention, and FIG. 1 shows an initial state when the second ice making compartment is closed with respect to the first ice making compartment and ice making operation is started. A vertical cross-sectional view of the ice-making mechanism. Figure 2 is a schematic perspective view of the second ice-making chamber in Figure 1 viewed from the back side. Figure 3 is a vertical cross-sectional view of the ice-making mechanism. Figure 4 is a vertical cross-sectional view of the ice making mechanism showing the state in which spherical water has been formed.As the ice making process approaches completion, approximately solid spherical water is formed in the ice compartments on both sides, and the ice making mechanism in the tank begins to form. FIG. 3 is a longitudinal cross-sectional view of the ice-making mechanism section showing a state in which the water level is decreasing. Figure 5 is a longitudinal cross-sectional view of the ice making mechanism showing a state in which solid spherical water is formed in both ice break chambers after ice making is completed, and Figure 6 is a longitudinal sectional view of the ice making mechanism when ice making is completed and the water supply valve is opened. , a longitudinal cross-sectional view of the ice-making mechanism section showing a state in which water overflowing from the dam section due to a rise in the water level in the water reservoir section flows down along the back surface of the water guide plate and is discharged from the drain tray to the outside of the machine, No. 7 In the figure, the actuator motor is energized to tilt and open the second ice maker in a clockwise direction, and the water guide plate is moved to the 21st! i. A vertical cross-sectional view of the ice making mechanism section showing a state in which the ice making mechanism is collapsed onto the top surface of the ice making compartment to block each of the second ice making compartments. FIG. 8 shows a state in which spherical water falls from the first ice making compartment. FIG. 9 is a vertical cross-sectional view of the ice-making mechanism showing the state in which the ice-making mechanism slides down the water guide plate located at an angle directly below the ice-making mechanism.
FIG. 10 is a longitudinal sectional view of the ice making mechanism section showing a state in which the ice making chamber begins to rotate counterclockwise and the water guide plate is also returned to its original position, which is adopted in the deicing structure according to the present invention. A schematic perspective view of a modified example of the second ice making chamber viewed from the back side, FIG. 11(a) is an explanatory diagram showing spherical water, FIG. 11(b) is an explanatory diagram showing multifaceted water, Figure 11(c)
is an explanatory diagram showing hollow spherical water. 11...First ice compartment 13...First ice making compartment 15...Second ice making compartment 71...Groove 12...Second ice making compartment 14...Evaporator 38...Water tray 72 ...Groove passage

Claims (1)

【特許請求の範囲】 製氷水を製氷室に噴射供給して該製氷室内に氷塊を形成
し、氷結するに到らなかった製氷水は再循環に供するよ
うにした自動製氷機において、背面に蒸発器(14)を
備えて機内に固定配置され、下方に開放する所要形状の
第1製氷小室(13)を多数形成した第1製氷室(11
)と、 この第1製氷室(11)に対して接離自在に配設され前
記第1製氷小室(13)の夫々を下方から対応的に閉成
し得る所要形状の第2製氷小室(15)を多数形成した
第2製氷室(12)と、 該第2製氷室(12)の下方に配設されて、第1製氷小
室(13)および第2製氷小室(15)に製氷水を供給
する水皿(38)とからなり、 前記第2製氷室(12)の裏面に各第2製氷小室(15
)を囲繞して連通し合う下方に開放する溝(71)を形
成すると共に、この溝(71)を前記水皿(38)によ
り密閉して、外部から供給される水を流通させる溝通路
(72)を画成した ことを特徴とする自動製氷機の除氷構造。
[Scope of Claims] An automatic ice maker in which ice making water is injected into an ice making chamber to form ice cubes in the ice making chamber, and the ice making water that has not frozen is recirculated. A first ice-making compartment (11) is provided with a container (14), is fixedly arranged in the machine, and has a number of first ice-making compartments (13) of a desired shape that open downward.
), and a second ice-making chamber (15) of a desired shape, which is disposed so as to be movable toward and away from the first ice-making chamber (11) and capable of correspondingly closing each of the first ice-making chambers (13) from below. ) and a second ice-making compartment (12) which is arranged below the second ice-making compartment (12) and supplies ice-making water to the first ice-making compartment (13) and the second ice-making compartment (15). a water tray (38), and a second ice-making compartment (15) on the back side of the second ice-making compartment (12).
A groove passageway (71) that surrounds and communicates with the groove (71) that opens downward is formed, and the groove (71) is sealed by the water tray (38) to allow water supplied from the outside to flow through the groove (71). 72) A deicing structure for an automatic ice maker, characterized by defining:
JP29571088A 1988-11-22 1988-11-22 Ice removing structure for automatic ice making machine Withdrawn JPH02143071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29571088A JPH02143071A (en) 1988-11-22 1988-11-22 Ice removing structure for automatic ice making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29571088A JPH02143071A (en) 1988-11-22 1988-11-22 Ice removing structure for automatic ice making machine

Publications (1)

Publication Number Publication Date
JPH02143071A true JPH02143071A (en) 1990-06-01

Family

ID=17824155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29571088A Withdrawn JPH02143071A (en) 1988-11-22 1988-11-22 Ice removing structure for automatic ice making machine

Country Status (1)

Country Link
JP (1) JPH02143071A (en)

Similar Documents

Publication Publication Date Title
US4910974A (en) Automatic ice making machine
JPH0532668B2 (en)
JPH0544587B2 (en)
JPH0541913B2 (en)
JPH01210778A (en) Ice removing structure for automatic ice-making machine
JPH0544586B2 (en)
JPH02143068A (en) Ice guiding device in automatic ice making machine
JPH02143071A (en) Ice removing structure for automatic ice making machine
JPH02161271A (en) Ice making structure of automatic ice machine
JPH02140575A (en) Ice making structure in automatic ice making machine
JPH02161272A (en) Ice making structure of automatic ice machine
JPH02140576A (en) Ice removing structure in automatic ice making machine
JPH02143069A (en) Water guiding structure of automatic ice making machine
JPH02143072A (en) Ice removing structure for automatic ice making machine
JPH01234768A (en) Ice making structure of automatic ice making machine
JPH0543949B2 (en)
JPH0543951B2 (en)
JPH0551834B2 (en)
JPH0615279Y2 (en) Evaporator structure of automatic ice machine
JPH0551832B2 (en)
JPH01230968A (en) Mechanical construction of automatic ice making machine
JPH01196477A (en) Automatic ice making machine
JPH0710216Y2 (en) Automatic ice machine
JPH0565780B2 (en)
JPH083895Y2 (en) Uniced water recovery structure of automatic ice maker

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees