JPH0543949B2 - - Google Patents

Info

Publication number
JPH0543949B2
JPH0543949B2 JP63314449A JP31444988A JPH0543949B2 JP H0543949 B2 JPH0543949 B2 JP H0543949B2 JP 63314449 A JP63314449 A JP 63314449A JP 31444988 A JP31444988 A JP 31444988A JP H0543949 B2 JPH0543949 B2 JP H0543949B2
Authority
JP
Japan
Prior art keywords
ice
making
water
compartment
making compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63314449A
Other languages
Japanese (ja)
Other versions
JPH02161273A (en
Inventor
Yasuo Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP63314449A priority Critical patent/JPH02161273A/en
Publication of JPH02161273A publication Critical patent/JPH02161273A/en
Publication of JPH0543949B2 publication Critical patent/JPH0543949B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、例えば球体状や多面体状をなす氷
塊群を全自動で大量に製造し得る自動製氷機にお
いて、製氷室の過冷却を防止すると共に電力の浪
費を防ぎ得る自動製氷機の異常冷却防止装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention prevents overcooling of the ice-making compartment and reduces the power The present invention relates to an abnormal cooling prevention device for an automatic ice maker that can prevent waste of water.

従来技術 各種の産業分野で、サイコロ状の角氷や所要厚
みの板氷その他フレーク状の氷片等を大量に連続
製造する自動製氷機が、その用途に応じて好適に
使い分けられている。例えば、前記の角氷を製造
する製氷機として、 製氷室に下向きに多数画成した立方体状の製
氷小室を、その下方から水皿により開閉自在に
閉成し、当該水皿から製氷水を各製氷小室に噴
射供給して、該製氷小室中に角氷を徐々に形成
するようにした所謂クローズドセル方式や、 下方に開放する多数の立方体状の製氷小室に
製氷水を直接供給し、角氷を該製氷小室中に形
成するようにした所謂オープンセル方式が知ら
れている。また、板氷や細粒状のクラツシユア
イスを連続製造する製氷機、その他フレーク状
の氷片を連続製造するオーガ式製氷機等も実施
されている。
BACKGROUND ART In various industrial fields, automatic ice making machines that continuously produce large quantities of dice-shaped ice cubes, ice sheets of a required thickness, and ice flakes are suitably used depending on the application. For example, as an ice maker for producing ice cubes, a large number of cube-shaped ice-making compartments are defined downward in the ice-making compartment, which can be opened and closed from below by a water tray, and ice-making water is poured into each compartment from the water tray. There is a so-called closed cell method in which water is injected into an ice making chamber to gradually form ice cubes in the ice making chamber, and ice making water is directly supplied to a number of cube-shaped ice making chambers that open downward to form ice cubes. A so-called open cell system is known in which ice is formed in the ice making compartment. In addition, ice makers that continuously produce sheet ice or fine-grained crushed ice, and auger-type ice makers that continuously produce ice flakes are also in use.

発明が解決しようとする課題 従来の各種製氷機により製造される氷は、前述
した如く、立方体状の角氷や板氷、その他フレー
ク状の氷片やクラツシユアイスが殆どである。こ
れらの氷で所要の定形を備え、そのまま飲料に浮
かせたり、各種食材の冷却ベツドに供したり出来
るのは、僅かに前記の角氷があるに過ぎない(板
氷も定形は備えているが、通常そのままの寸法で
は使用し得ない)。
Problems to be Solved by the Invention As mentioned above, most of the ice produced by various conventional ice making machines are cube-shaped ice cubes, ice sheets, other flaky ice pieces, and crushed ice. Only the above-mentioned ice cubes have the required shape and can be floated on drinks or used as a cooling bed for various foodstuffs (board ice also has a shape, but (Usually cannot be used with the same dimensions.)

しかるに最近の喫茶店やレストランその他の飲
食施設では、同種営業に対し種々の面で優位に立
つて顧客を吸引するべく、他社との差別化を図る
懸命な努力が払われている。その一環として、例
えば、従来より広く普及している角氷に替えてボ
ール状(球体状)の氷塊を使用し、これにより顧
客に目先の新しい変化を提供しようとする傾向が
み受けられる。
However, in recent years, coffee shops, restaurants, and other eating and drinking establishments have been making strenuous efforts to differentiate themselves from other companies in order to gain an advantage over similar businesses in various ways and attract customers. As part of this, for example, there is a trend to use ball-shaped (spherical) ice cubes instead of the more widely popular ice cubes, thereby providing customers with immediate new changes.

しかしこの球状氷は、広く飲食に供されること
から、空気混入による白濁がなく、清澄な透明氷
塊でなければ商品価値は低下する。また大量に製
造可能であることを必要とするが、従来この種の
要請を満たす球状氷の自動製氷機は存在しなかつ
た。そこで本願の発明者は、透明で清澄な球状氷
を大量に製造し得る製氷機の開発に従事し、前記
の要請を充分に満足する機構を得たので、その基
本概念につき昭和63年1月29日付けで、発明「自
動製氷機」として特許出願を行なつた。(特開平
1−196477号公報参照) 先の出願に係る製氷機は、下方に開放する第
1製氷小室を多数画成し、背面に蒸発器を備えた
第1製氷室と、上方に開放する第2製氷小室を
多数画成した第2製氷室とを基本的に備え、製氷
運転に際し両製氷小室が対応的に閉成して、その
内部に球体等の異形氷を形成する空間を画成する
ものである。この基本構造に係る製氷機で製氷運
転を行なつて、前記空間に球状氷等の氷塊を生成
した後は、除氷運転に移行して両製氷小室から氷
塊を除去してやる必要がある。
However, since this spherical ice is widely used for eating and drinking, its commercial value will decrease unless it is a clear, transparent block of ice that does not become cloudy due to aeration. It is also necessary to be able to produce large quantities of ice, but there has been no automatic ice-making machine for producing spherical ice that satisfies this type of requirement. Therefore, the inventor of the present application engaged in the development of an ice making machine capable of producing a large amount of transparent and clear spherical ice, and having obtained a mechanism that fully satisfies the above requirements, the inventor developed the basic concept in January 1988. On the 29th, he filed a patent application for his invention, an "automatic ice maker." (Refer to Japanese Unexamined Patent Publication No. 196477/1999) The ice making machine according to the earlier application defines a number of first ice making compartments that open downward, and includes a first ice making compartment equipped with an evaporator on the back side, and a first ice making compartment that opens upward. Basically, it is equipped with a second ice-making chamber in which a number of second ice-making chambers are defined, and during ice-making operation, both ice-making chambers close correspondingly to define a space inside which forms irregularly shaped ice such as spheres. It is something to do. After performing ice-making operation with the ice-making machine according to this basic structure and generating ice blocks such as spherical ice in the space, it is necessary to shift to de-icing operation and remove the ice blocks from both ice-making compartments.

このため、第1製氷室を下方から閉成している
第2製氷室を、該第1製氷室に対して強制的に離
脱させるが、このとき氷塊自体は第1および第2
製氷小室の内面に強固に氷結しているので、これ
ら両製氷小室に対し氷結を解除させる順番が重要
となる。蓋し、第1および第2製氷小室を同時に
加熱すと、両製氷小室に対する氷結を解除された
氷塊は、第2製氷室が強制離脱させるに伴ない一
挙に落下してしまう。そしてこの場合は、第2製
氷室に凹設されて上方に開いている第2製氷小室
に氷塊が引掛かつて残留したり、貯氷庫への氷塊
の円滑な落下が妨げられる等の不都合がある。
Therefore, the second ice-making compartment, which closes the first ice-making compartment from below, is forcibly separated from the first ice-making compartment, but at this time, the ice cubes themselves are removed from the first and second ice-making compartments.
Since the inner surface of the ice-making chamber is firmly frozen, the order in which the ice is released from both ice-making chambers is important. When the lid is closed and the first and second ice-making compartments are heated simultaneously, the ice blocks that have been thawed from both ice-making compartments fall all at once as the second ice-making compartment is forcibly removed. In this case, there are inconveniences such as ice blocks getting caught and remaining in the second ice-making compartment, which is recessed in the second ice-making compartment and open upward, or preventing the ice blocks from falling smoothly into the ice storage.

そこで、除氷運転に伴ない第2製氷室を第1製
氷室から強制的に離脱させた際に、得られた氷塊
を一挙に落下させることなく、取敢えず該氷塊を
第1製氷小室に確実に残留させる除氷運転制御方
法につき、昭和63年12月6日付けで、発明「自動
製氷機の除氷制御方法」として特許出願を行なつ
た。(特開平2−154962号公報参照)この方法は、
製氷完了を検知すると第1製氷室の冷却を継続し
たままで第2製氷室を加熱手段により加熱し、こ
れにより先ず第2製氷小室と氷塊との氷結面を融
解させる。従つて、第2製氷室を第1製氷室から
強制的に離脱させても、氷塊は第2製氷室の離脱
に伴ない一挙に落下することなく第1製氷小室に
付着している。次いで、第1製氷室を加熱するこ
とにより、氷塊は貯氷庫に円滑に落下する。
Therefore, when the second ice-making compartment is forcibly separated from the first ice-making compartment during deicing operation, the resulting ice cubes are not dropped all at once, but instead are transferred to the first ice-making compartment. On December 6, 1985, we filed a patent application for an invention titled ``Deicing Control Method for Automatic Ice Maker'' regarding a method for controlling deicing operations to ensure that ice remains in the ice. (Refer to Japanese Patent Application Laid-open No. 2-154962.) This method is
When the completion of ice making is detected, the second ice making compartment is heated by the heating means while the first ice making compartment continues to be cooled, thereby first melting the frozen surfaces of the second ice making compartment and the ice blocks. Therefore, even if the second ice-making compartment is forcibly removed from the first ice-making compartment, the ice cubes do not fall all at once as the second ice-making compartment is removed, but remain attached to the first ice-making compartment. Next, by heating the first ice making compartment, the ice cubes smoothly fall into the ice storage.

しかし、第2製氷室の加熱手段の故障等によ
り、該第2製氷室の加熱に時間が掛かつたり、加
熱されなかつた場合、第1製氷室の冷却が継続さ
れて両製氷室が過冷却され、これにより製氷室や
製氷機構等が破損する重大な問題がある。また、
電力が浪費されることとなりランニングコストが
嵩む難点を生ずる。
However, if the second ice-making compartment takes a long time to heat up or is not heated due to a malfunction of the heating means of the second ice-making compartment, cooling of the first ice-making compartment continues and both ice-making compartments become overcooled. This poses a serious problem of damaging the ice making compartment and ice making mechanism. Also,
This results in a disadvantage that power is wasted and running costs increase.

発明の目的 この発明は、前述した課題に鑑み、これを好適
に解決するべく提案されたものであつて、除氷運
転に際して第1製氷室の冷却を継続することによ
り生ずる製氷室の過冷却を防止すると共に、電力
の浪費を防ぎ得る新規な自動製氷機の異常冷却防
止装置を提供することを目的とする。
Purpose of the Invention The present invention has been proposed in view of the above-mentioned problems to suitably solve the problems. It is an object of the present invention to provide a novel abnormal cooling prevention device for an automatic ice making machine that can prevent the above problems and prevent power consumption.

課題を解決するための手段 前述した課題を克服し、所期の目的を好適に達
成するため本発明は、下方に開放する第1製氷小
室を多数備え、背面に蒸発器を設けた第1製氷室
と、上方に開放する第2製氷小室を多数備え、前
記第1製氷室を下方から閉成可能に配設した第2
製氷室と、除氷運転に際して第2製氷室を加熱す
る加熱手段と、前記第1製氷室に配設した蒸発器
に冷媒を循環供給する圧縮機とを備え、前記第1
および第2製氷小室に画成される空間での氷塊の
形成を検知し、前記蒸発器への冷媒供給を継続し
たままで第2製氷室を前記加熱手段により加熱す
るよう構成した自動製氷機において、製氷完了を
検知して動作を開始するタイマの常閉接点を前記
圧縮機と直列に接続し、前記加熱手段を作動させ
るリレーへの通電が所定の設定時間を超えて継続
したときに前記圧縮機への給電を停止するよう構
成したことを特徴とする。
Means for Solving the Problems In order to overcome the above-mentioned problems and suitably achieve the intended purpose, the present invention provides a first ice-making chamber that is provided with a large number of first ice-making chambers that open downward, and that has an evaporator on the back side. A second ice-making chamber is provided with a large number of second ice-making chambers that open upwardly, and is arranged so that the first ice-making chamber can be closed from below.
an ice-making compartment; a heating means for heating the second ice-making compartment during deicing operation; and a compressor for circulating refrigerant to an evaporator disposed in the first ice-making compartment;
and an automatic ice-making machine configured to detect the formation of ice blocks in a space defined by a second ice-making compartment and heat the second ice-making compartment by the heating means while continuing to supply refrigerant to the evaporator. , a normally closed contact of a timer that detects the completion of ice making and starts its operation is connected in series with the compressor, and when the relay that operates the heating means continues to be energized for a predetermined set time, the compressor starts operating. It is characterized by being configured to stop power supply to the machine.

実施例 次に、本発明に係る自動製氷機の異常冷却防止
装置につき、好適な実施例を挙げて、添付図面を
参照しながら以下説明する。なお、本発明が実施
される自動製氷機によれば、第14図aに示す球
状氷1以外に、第14図bに示す如きダイヤカツ
ト状の多面体氷2の製造も可能である。
Embodiments Next, a preferred embodiment of the abnormal cooling prevention device for an automatic ice maker according to the present invention will be described below with reference to the accompanying drawings. In addition to the spherical ice 1 shown in FIG. 14a, the automatic ice making machine according to the present invention can also produce diamond-cut polyhedral ice 2 as shown in FIG. 14b.

(第1および第2製法室について) 第1図に、本発明に係る異常冷却防止装置が好
適に実施される製氷機構を、製氷状態で概略的に
示し、所要直径をなす多数の球状氷を製造する製
氷室10は、水平に配設した第1氷室11と、こ
の第1製氷室11を下方から開閉自在に閉成可能
な第2製氷室12とから基本的に構成される。す
なわち、製氷機筐体(図示せず)の内部上方に、
熱伝導率の良好な金属を材質とする矩形状の第1
製氷室11が水平に配設固定され、所要の整列パ
ターンで第1製氷小室13が、この第1製氷室1
1に下向きで多数凹設されている。各第1製氷小
室13は半球状の凹部として形成され、一例とし
て直径3cm、深さ1.5cmに設定されている。第1
製氷室11の上面には、第10図に示す冷凍系
(後述)から導出した蒸発器14が蛇行状に密着
固定され、当該冷凍系の運転により蒸発器14に
おける気化冷媒の熱交換が促進されて、第1製氷
室11が氷点下にまで冷却される。
(Regarding the first and second manufacturing process chambers) FIG. 1 schematically shows an ice-making mechanism in which the abnormal cooling prevention device according to the present invention is suitably implemented, in an ice-making state. The ice-making compartment 10 to be manufactured is basically composed of a first ice-making compartment 11 arranged horizontally, and a second ice-making compartment 12 that can be freely opened and closed from below. That is, inside and above the ice maker housing (not shown),
The first rectangular shape is made of metal with good thermal conductivity.
The ice making compartment 11 is arranged and fixed horizontally, and the first ice making compartments 13 are arranged in a required alignment pattern.
1 has many recesses facing downward. Each first ice-making chamber 13 is formed as a hemispherical recess, and is set to have a diameter of 3 cm and a depth of 1.5 cm, for example. 1st
An evaporator 14 derived from a refrigeration system (described later) shown in FIG. 10 is tightly fixed on the top surface of the ice-making compartment 11 in a meandering manner, and heat exchange of the vaporized refrigerant in the evaporator 14 is promoted by operation of the refrigeration system. Then, the first ice making chamber 11 is cooled down to below freezing point.

第1製氷室11の直下には、銅の如き熱良導性
の金属を材質とする第2製氷室12が後述の如く
傾動自在に配設され、その製氷運転に際して、該
第1製氷室11を下方から閉成すると共に、除氷
運転に際して、該第1製氷室11を開放し得るよ
うになつている。すなわち、第2製氷室12に
は、前記第1製氷室11に凹設した第1製氷小室
13と対応して、同じく半球状凹部からなる第2
製氷小室15が上向きに所要の整列パターンで多
数凹設されている。この第2製氷小室15の直径
も、一例として3cmであり、凹部の深さは1.5cm
に設定されている。従つて、第1製氷室11に対
し第2製氷室12を下方から閉成すると、両製氷
小室13,15が相互に対応して各小室内に直径
3cmの球状空間が画成される。
Immediately below the first ice making chamber 11, a second ice making chamber 12 made of a metal with good heat conductivity such as copper is provided so as to be tiltable as described below. The first ice making chamber 11 can be closed from below, and the first ice making chamber 11 can be opened during deicing operation. That is, the second ice-making compartment 12 has a second ice-making compartment 13, which is also made of a hemispherical recess, corresponding to the first ice-making compartment 13 recessed in the first ice-making compartment 11.
A large number of ice-making chambers 15 are recessed upward in a required alignment pattern. The diameter of this second ice making chamber 15 is also 3 cm, as an example, and the depth of the recess is 1.5 cm.
is set to . Therefore, when the second ice-making compartment 12 is closed from below with respect to the first ice-making compartment 11, the ice-making compartments 13 and 15 correspond to each other, and a spherical space with a diameter of 3 cm is defined within each compartment.

第2製氷室12は、前述の如く銅等の熱良導金
属を材質とするブロツク体として構成され、各第
2製氷小室15に製氷水を噴射供給するための水
皿38が、当該第2製氷室12の外底部に第9図
に示すボルト60を介して一体的に固定されてい
る。この第2製氷室12における第2製氷小室1
5の形成面と反対側の面(水皿38と対向する
面)には、第9図に示す如く、相互に隣接する各
第2製氷小室15の間に溝71が形成されてい
る。すなわち、各第2製氷小室15は底面におい
て溝71で囲繞されており、後述する除氷運転に
際し、給水弁WVを介して供給される水道水が溝
71と水皿表面との間に画成される溝通路72に
充満し、第2製氷小室15の加熱促進を図るよう
構成される。
As described above, the second ice making chamber 12 is constructed as a block body made of a heat conductive metal such as copper, and the water tray 38 for injecting and supplying ice making water to each of the second ice making chambers 15 is connected to the second ice making chamber 12. It is integrally fixed to the outer bottom of the ice making chamber 12 via bolts 60 shown in FIG. Second ice making compartment 1 in this second ice making compartment 12
As shown in FIG. 9, grooves 71 are formed on the surface opposite to the surface on which ice cubes 5 are formed (the surface facing the water tray 38) between the adjacent second ice-making compartments 15. That is, each of the second ice-making compartments 15 is surrounded by a groove 71 on the bottom surface, and during deicing operation to be described later, tap water supplied via the water supply valve WV is defined between the groove 71 and the surface of the water tray. The ice-making chamber 15 is filled with the groove passage 72 to promote heating of the second ice-making chamber 15.

なお、第2製氷室12における溝71の所定位
置には、該溝71の深さ寸法と同一の支柱73が
突設され、この支柱73に突設した穴73aに前
記ボルト60が挿通される。そして、第2製氷室
12は、支柱73の先端部と後述する通孔12a
の穿設部位とを水皿38の表面に当接させた状態
で、水皿38にボルト固定される。
A support 73 having the same depth as the groove 71 is provided at a predetermined position of the groove 71 in the second ice making chamber 12, and the bolt 60 is inserted into a hole 73a provided in the support 73. . The second ice making chamber 12 is connected to the tip of the support 73 and through hole 12a, which will be described later.
The bolt is fixed to the water tray 38 with the perforated portion thereof in contact with the surface of the water tray 38.

前記水皿38は、その後端部が直角に立上がつ
て後部64が形成され、この後部64の開放端に
おいて製氷機筐体(図示せず)の固定部位に、枢
軸16により傾動旋回可能に枢支され、後述のア
クチユエータモータAMによつて第2製氷室12
と共に回動付勢される。すなわち、第6図に示す
如く時計方向に回動すれば、水皿38に一体固定
した第2製氷室12は第1製氷小室13を開放
し、また反時計方向に回動すれば、第1図に示す
如く、第2製氷室12は第1製氷小室13を閉成
する。水皿38の裏面には、各第2製氷小室15
と連通する噴水孔25が対応的に穿設され、これ
ら噴水孔25に製氷水を供給する分配管24が同
じく水皿38の裏面に蛇行配置されている。また
水皿38の下方には、前記分配管24に製氷水を
供給するための製氷水タンク19が一体的に設け
られている。
The water tray 38 has a rear end raised at a right angle to form a rear portion 64, and the open end of the rear portion 64 is attached to a fixed portion of an ice maker housing (not shown) so as to be tiltable and pivotable by a pivot 16. The second ice making compartment 12 is
It is also urged to rotate. That is, if it is rotated clockwise as shown in FIG. 6, the second ice-making chamber 12, which is integrally fixed to the water tray 38, opens the first ice-making chamber 13, and if it is rotated counterclockwise, the second ice-making chamber 12, which is integrally fixed to the water tray 38, opens the first ice-making chamber 13. As shown in the figure, the second ice making compartment 12 closes the first ice making compartment 13. On the back side of the water tray 38, each second ice making compartment 15 is provided.
Fountain holes 25 communicating with the water tray 38 are correspondingly bored, and a distribution pipe 24 for supplying ice-making water to these fountain holes 25 is also arranged in a meandering manner on the back surface of the water tray 38. Further, below the water tray 38, an ice-making water tank 19 for supplying ice-making water to the distribution pipe 24 is integrally provided.

図に示す如く、第2製氷室12における各第2
製氷小室15の底部に通孔12aが穿設され、前
記水皿38と第2製氷室12とを固定した際に、
各噴水孔25が前記通孔12aと対応一致するよ
う寸法設定されている。そしてこの通孔12a
は、後述する製氷運転に際し、両製氷小室13,
15に画成された氷形成用空間に製氷水を供給す
ると共に、該空間中で氷結するに到らなかつた製
氷水(以下「未氷結水」という)を好適に排出す
るべく機能する。なお、水皿38の各噴水孔25
に隣接して戻り孔26が穿設され、前記通孔12
aから排出された未氷結水は、この戻り孔26を
介して製氷水タンク19に帰還される。
As shown in the figure, each second ice maker in the second ice making compartment 12
A through hole 12a is bored in the bottom of the small ice making chamber 15, and when the water tray 38 and the second ice making chamber 12 are fixed,
Each fountain hole 25 is dimensioned to correspond to the through hole 12a. And this through hole 12a
During the ice making operation described later, both ice making compartments 13,
It functions to supply ice-making water to the ice-forming space defined by 15 and to appropriately discharge ice-making water that has not yet frozen in the space (hereinafter referred to as "unfrozen water"). In addition, each fountain hole 25 of the water tray 38
A return hole 26 is bored adjacent to the through hole 12.
The unfrozen water discharged from a is returned to the ice-making water tank 19 through the return hole 26.

(水皿傾動機構と水循環系とについて) 水皿38を傾動させるアクチユエータモータ
AMは減速機を備え、その回転軸にカムレバー1
7およびレバー片37が半径方向に延出するよう
固定され、前記カムレバー17の先端17aと水
皿38の前方端部との間に、コイルスプリング1
8が弾力的に係着されている。前記カムレバー1
7の基部に形成したカム面17bは、水皿38の
側部61の上面にカム係合可能に寸法設定されて
いる。また、前記第1製氷室11を支持する固定
部位に切換スイツチS2が配設され、除氷運転に伴
なうモータAMの回転により前記レバー片37が
回動すると、前記切換スイツチS2を第11図に示
す接点a−b側から接点a−c側に切換え、モー
タAMを停止させ、前記水皿38を傾動状態で停
止させる。また、冷凍系の弁を切り換えて、前記
蒸発器14にホツトガスを流通させる機能も果
す。
(About the water pan tilting mechanism and water circulation system) Actuator motor that tilts the water pan 38
AM is equipped with a reducer, and a cam lever is attached to the rotating shaft.
7 and a lever piece 37 are fixed so as to extend in the radial direction, and a coil spring 1 is installed between the tip 17a of the cam lever 17 and the front end of the water tray 38.
8 is elastically attached. The cam lever 1
The cam surface 17b formed at the base of the water tray 38 is dimensioned so as to be able to engage with the upper surface of the side portion 61 of the water tray 38. Further, a changeover switch S2 is disposed at a fixed portion that supports the first ice making chamber 11, and when the lever piece 37 rotates due to the rotation of the motor AM accompanying the deicing operation, the changeover switch S2 is turned off. Switching is made from the contacts a-b to the contacts a-c shown in FIG. 11, the motor AM is stopped, and the water tray 38 is stopped in a tilted state. It also functions to switch the refrigeration system valve and circulate hot gas to the evaporator 14.

前記製氷水タンク19の底部側面から導出した
給水管21は、給水ポンプ22を介してタンク側
方に設けた圧力室23に連通し、更に圧力室23
から前記分配管24に連通している。従つて、製
氷水タンク19からポンプ22を介して圧送され
る製氷水は、分配管24に穿設した前記各噴水孔
25および第2製氷室12に穿設した前記通孔1
2aを介して、各第2製氷小室15中に噴射供給
されるものである。なお、後述する製氷運転に際
し両製氷小室13,15で氷結するに到らなかつ
た未氷結水は、通孔12aおよび前記水皿38に
穿設した前記戻り孔26から製氷水タンク19に
戻し得るようになつている。
A water supply pipe 21 led out from the bottom side of the ice-making water tank 19 communicates with a pressure chamber 23 provided on the side of the tank via a water supply pump 22.
The pipe 24 is connected to the distribution pipe 24. Therefore, the ice-making water pumped from the ice-making water tank 19 via the pump 22 flows through each of the water fountain holes 25 formed in the distribution pipe 24 and the through hole 1 formed in the second ice-making chamber 12.
The ice is injected into each of the second ice making chambers 15 through the ice making chambers 2a. In addition, during the ice-making operation described later, unfrozen water that has not frozen in both ice-making chambers 13 and 15 can be returned to the ice-making water tank 19 through the return hole 26 formed in the through hole 12a and the water tray 38. It's becoming like that.

更に、水更38の前方には、前述の側部61よ
り所定寸法だけ低く設定した堰止め部62が配設
され、この堰止め部62の両端部は両側部61,
61に密着されている。また、水皿38には、第
2製氷室12の前方側端部と堰止め部62との間
に所要径の排水孔63が穿設されている。これに
より水皿38の内部表面には、両側部61,6
1、堰止め部62および前記後部64で囲繞され
た水溜部65が形成される。そして該水溜部65
に貯溜された水は、前記第2製氷室12の周囲に
画成した前記溝通路72中に充満し、各第2製氷
小室15を加熱する。更に該水溜部65に貯溜さ
れた水の一部は、前記排水孔63から製氷水タン
ク19に流下し、他の水は堰止め部62の上端か
らオーバーフローして、水皿38の前方側よりタ
ンク19に流入するようにしてある。なお、製氷
水タンク19への給水は、外部水道系に接続して
いる給水管27の給水弁WVを開放することによ
り行なわれる。
Further, in front of the water basin 38, a damming part 62 is provided which is set lower than the side part 61 by a predetermined dimension, and both ends of this damming part 62 are connected to both sides 61,
It is closely attached to 61. Further, a drainage hole 63 of a required diameter is bored in the water tray 38 between the front end of the second ice making chamber 12 and the damming part 62. As a result, the inner surface of the water tray 38 has both side portions 61 and 6.
1. A water reservoir portion 65 surrounded by the dam portion 62 and the rear portion 64 is formed. And the water reservoir part 65
The water stored in the second ice-making compartment 12 is filled with the groove passage 72 defined around the second ice-making compartment 12 and heats each of the second ice-making compartments 15. Further, a part of the water stored in the water reservoir 65 flows down from the drain hole 63 to the ice-making water tank 19, and the other water overflows from the upper end of the dam 62 and flows from the front side of the water tray 38. It is arranged to flow into the tank 19. Note that water is supplied to the ice-making water tank 19 by opening the water supply valve WV of the water supply pipe 27 connected to the external water supply system.

(感温機構について) 第1製氷室11の上面における所定位置に、製
氷完了検知手段として機能する製氷検知サーモ
Th1の感温部(プローブ)が配設されている。こ
の製氷検知サーモTh1は、製氷運転中は第11図
に示す接点c−aを閉成すると共に接点c−bを
開放し、製氷運転が終了すると、前記接点c−a
を開放すると共に接点c−bを閉成し得るよう設
定されている。また同じ第1製氷室上面の別位置
に、除氷完了検知手段として機能する除氷検知サ
ーモTh2の感温部が配設され、この除氷検知サー
モTh2は、第1製氷小室13が冷却状態にある場
合にのみ接点を開放し、該製氷小室13から氷が
放出されて温度上昇を来すと、該接点を閉成する
よう設定されている。
(About the temperature sensing mechanism) An ice-making detection thermometer is installed at a predetermined position on the upper surface of the first ice-making compartment 11, and functions as an ice-making completion detection means.
A Th 1 temperature sensing part (probe) is installed. This ice-making detection thermo Th1 closes the contact c-a shown in FIG. 11 and opens the contact c-b during the ice-making operation, and when the ice-making operation ends, the contact c-a
It is set so that it can open the contact point c-b and close the contact point c-b. In addition, a temperature sensing part of a deicing detection thermometer Th 2 which functions as a deicing completion detection means is arranged at a different position on the top surface of the first ice making chamber. The contacts are set to open only when the ice making compartment 13 is in a cooling state, and to close when ice is released from the ice making compartment 13 and the temperature rises.

更に、第2製氷室12における所要の側部にサ
ーモTh3の感温部が配設され、該サーモTh3の電
気信号を発する本体は、水皿38の前記後部64
に取付けられている。この温度検知サーモTh3
は、該第2製氷室12の温度を監視するべく機能
する。なお、温度検知サーモTh3は、第2製氷室
12の温度が所定値以上になると接点a−cが閉
成して接点a−bが開放し、所定値以下になると
接点a−cが開放して接点a−bが閉成するよう
設定されている。
Furthermore, a temperature-sensing part of a thermostat Th 3 is disposed at a required side part of the second ice-making compartment 12 , and the main body of the thermostat Th 3 that emits an electric signal is located at the rear part 64 of the water tray 38 .
installed on. This temperature sensing thermo Th 3
functions to monitor the temperature of the second ice making compartment 12. In addition, in the temperature detection thermometer Th3 , when the temperature of the second ice making compartment 12 exceeds a predetermined value, contacts a-c close and contacts a-b open, and when the temperature falls below a predetermined value, contacts a-c open. The setting is such that contacts a and b are closed.

(氷案内板について) 製氷水タンク19の下方には、製氷残水等を受
けて機外へ排出するための排水皿69が配設さ
れ、該排水皿69の上方に、軸68に固定した氷
案内板67が臨んでいる。この氷案内板67は、
その製氷運転中において、筐体の固定部から延出
垂下する位置決め部材70に当接して位置決めさ
れ、第1図に示す如く、タンク19の開放先端部
に近接した位置で停止している。この状態におい
て、タンク19中の製氷水がオーバーフローする
と、第5図に示すように、この水は前記氷案内板
67の裏面に沿つて流下した後、前記排水皿69
から機外へ排出される。また除氷運転の際には、
第6図に示す如く、氷案内板67が固定されてい
る前記軸68を、図示しない駆動手段により反時
計方向に駆動すれば、この氷案内板67は傾動状
態にある(後述)第2製氷室12の上面に倒れ込
み、各第2製氷小室15を塞ぐに到る。そして第
7図に示す如く、第1製氷室11から落下する球
状氷を、この氷案内板67において滑落させて貯
氷庫(図示せず)へ円滑に案内する。
(Regarding the ice guide plate) A drain tray 69 is provided below the ice-making water tank 19 to catch residual ice-making water and discharge it to the outside of the machine. An ice guide board 67 is facing. This ice guide plate 67 is
During the ice-making operation, it is positioned by coming into contact with a positioning member 70 that extends and hangs down from the fixed part of the housing, and is stopped at a position close to the open end of the tank 19, as shown in FIG. In this state, when the ice-making water in the tank 19 overflows, this water flows down along the back surface of the ice guide plate 67 and then flows into the drain tray 69, as shown in FIG.
is ejected from the aircraft. Also, during deicing operation,
As shown in FIG. 6, when the shaft 68 to which the ice guide plate 67 is fixed is driven counterclockwise by a driving means (not shown), the ice guide plate 67 is in a tilted state (described later). It collapses onto the top surface of the chamber 12 and blocks each of the second ice-making chambers 15. As shown in FIG. 7, the spherical ice falling from the first ice making compartment 11 is slid down on this ice guide plate 67 and smoothly guided to an ice storage (not shown).

なお、水皿38(第2製氷室)が原位置に復帰
する際には、氷案内板67は水平状態に復帰する
水皿38により押圧されて時計方向に旋回し、第
1図に示す如く、前記位置決め部材70に当接し
て停止する。この氷案内板67は、軸68を支点
にして重心の移動で傾動させられる。
Note that when the water tray 38 (second ice making chamber) returns to its original position, the ice guide plate 67 is pressed by the water tray 38 returning to the horizontal state and rotates clockwise, as shown in FIG. , comes into contact with the positioning member 70 and stops. This ice guide plate 67 is tilted by moving the center of gravity using the shaft 68 as a fulcrum.

(冷凍系について) 第10図は、製氷機における冷凍系の概略構成
を示すものであつて、圧縮機CMで圧縮された気
化冷媒は、吐出管34を経て凝縮器28で凝縮液
化し、ドライヤ29で脱湿された後キヤピラリー
チユーブ30で減圧され、蒸発器14に流入して
ここで一挙に膨張して蒸発し、第1製氷室11と
熱交換を行なつて、各第1製氷小室13を氷点下
にまで冷却させる。この蒸発器14で蒸発した気
化冷媒と未蒸発の液化冷媒とは、気液混相状態で
アキユムレータ31に流入し、ここで気液分離が
なされる。そして気相冷媒は、吸入管32を経て
圧縮機CMに帰還し、液相冷媒は当該アキユムレ
ータ31内に貯留される。
(About the refrigeration system) Fig. 10 shows a schematic configuration of the refrigeration system in the ice maker. The vaporized refrigerant compressed by the compressor CM passes through the discharge pipe 34, is condensed and liquefied in the condenser 28, and is then transferred to the dryer. After being dehumidified in step 29, the pressure is reduced in the capillary reach tube 30, and it flows into the evaporator 14 where it expands and evaporates all at once, exchanging heat with the first ice making chamber 11, and forming the first ice making chamber 11. 13 is cooled to below freezing. The vaporized refrigerant evaporated in the evaporator 14 and the unevaporated liquefied refrigerant flow into the accumulator 31 in a gas-liquid mixed phase state, where they are separated into gas and liquid. The gas phase refrigerant then returns to the compressor CM through the suction pipe 32, and the liquid phase refrigerant is stored in the accumulator 31.

更に、圧縮機CMの吐出管34からホツトガス
管33が分岐され、このホツトガス管33はホツ
トガス弁HVを経て、蒸発器14の入口側に連通
されている。このホツトガス弁HVは、除氷運転
の際にのみ開放し、製氷運転時は閉成する制御が
なされる。すなわち、除氷運転時にホツトガス弁
HVが開放して、圧縮機CMから吐出される高温
冷媒を、前記ホツトガス管33を介して蒸発器1
4にバイパスさせ、各第1製氷小室13を加温す
ることにより、小室内部に生成される球状水の周
面を融解させて、各氷塊を自重により落下させ
る。また蒸発器14から流出した高温冷媒は、ア
キユムレータ31に流入し、このアキユムレータ
31中に滞留している液相冷媒を加熱して蒸発さ
せ、気相冷媒として吸入管32から圧縮機CMに
再び帰還させる。なお、図中の符号FMは、凝縮
器28用のフアンモータを示す。
Furthermore, a hot gas pipe 33 is branched from the discharge pipe 34 of the compressor CM, and this hot gas pipe 33 is communicated with the inlet side of the evaporator 14 via a hot gas valve HV. This hot gas valve HV is controlled to open only during deicing operation and close during ice making operation. In other words, during deicing operation, the hot gas valve
When the HV is opened, the high temperature refrigerant discharged from the compressor CM is sent to the evaporator 1 via the hot gas pipe 33.
4 and heat each first ice-making chamber 13, the circumferential surface of the spherical water generated inside the chamber is melted, and each ice block is caused to fall by its own weight. Further, the high temperature refrigerant flowing out from the evaporator 14 flows into the accumulator 31, heats and evaporates the liquid phase refrigerant staying in this accumulator 31, and returns it to the compressor CM from the suction pipe 32 as a gas phase refrigerant. let Note that the symbol FM in the figure indicates a fan motor for the condenser 28.

(電気制御回路について) 第11図に、実施例に係る自動製氷機の電気制
御回路図の一例を示す。図において、電源供給ラ
インRと接続点Dとの間に、ヒユーズFと貯氷検
知スイツチS1とが直列に設けられ、この接続点D
と電源供給ラインTとの間に、タイマTの常閉接
点T−bと圧縮機CMとが直列に接続されてい
る。また除氷運転に際して、前記第2製氷室12
の傾動により付勢される切換スイツチS2の端子a
が接続点Dに接続され、この切換スイツチS2の切
換接点bとラインTとの間に、フアンモータFM
が接続されている。更に切換スイツチS2の切換接
点bは、製氷検知サーモTh1の接点cに接続され
ている。
(Regarding the electrical control circuit) FIG. 11 shows an example of an electrical control circuit diagram of the automatic ice maker according to the embodiment. In the figure, a fuse F and an ice accumulation detection switch S1 are provided in series between the power supply line R and the connection point D.
The normally closed contact T-b of the timer T and the compressor CM are connected in series between the power supply line T and the power supply line T. In addition, during deicing operation, the second ice making chamber 12
Terminal a of changeover switch S2 is energized by the tilting of
is connected to connection point D, and a fan motor FM is connected between switching contact b of this switching switch S2 and line T.
is connected. Furthermore, the changeover contact b of the changeover switch S2 is connected to the contact c of the ice-making detection thermometer Th1 .

製氷検知サーモTh1の接点aとラインTとの間
には、ポンプ22の駆動用モータPMが接続さ
れ、該サーモTh1の接点bは前記温度検知サーモ
Th3の接点aに接続されると共に、該サーモTh3
の切換接点bとラインTとの間にタイマTとリレ
ーXとが並列に接続されている。なお、このタイ
マTは、前記製氷検知サーモTh1が製氷完了を検
知した(製氷検知サーモTh1の接点がc−a側か
らc−b側に切換わる)ことにより動作を開始
し、そして所定の設定時間が経過すると前記常閉
接点T−bを開放するよう構成されている。
A drive motor PM of the pump 22 is connected between the contact a of the ice-making detection thermometer Th 1 and the line T, and the contact b of the ice-making detection thermometer Th 1 is connected to the temperature detection thermometer Th 1.
It is connected to the contact a of Th 3 , and the thermo Th 3
A timer T and a relay X are connected in parallel between the switching contact b and the line T. Note that this timer T starts operating when the ice-making detection thermometer Th 1 detects the completion of ice-making (the contact of the ice-making detection thermometer Th 1 switches from the c-a side to the c-b side), and then operates at a predetermined time. The normally closed contact T-b is configured to open when a set time has elapsed.

前記温度検知サーモTh3の他方の切換接点c
は、モータAMの傾動駆動用端子mに接続されて
いる。また該モータAMの端子kはラインTに接
続されると共に、その復帰駆動用端子nは、除氷
検知サーモTh2の接点を介して切換スイツチS2
切換接点cに接続されている。更に切換スイツチ
S2の接点cとラインTとの間には、ホツトガス弁
HVが接続されている。
The other switching contact c of the temperature detection thermometer Th 3
is connected to the tilt drive terminal m of the motor AM. Further, the terminal k of the motor AM is connected to the line T, and its return drive terminal n is connected to the changeover contact c of the changeover switch S2 via the contact of the de-icing detection thermometer Th2 . Furthermore, the changeover switch
A hot gas valve is installed between contact c of S2 and line T.
HV is connected.

前記接続点DとラインTとの間には、前記リレ
ーXとの常開接点X−aを介して給水弁WVが接
続されている。また、該給水弁WVは、リレーX
の常閉接点X−bを介して切換スイツチS2の切換
接点cに接続されている。
A water supply valve WV is connected between the connection point D and the line T via a normally open contact X-a with the relay X. In addition, the water supply valve WV is connected to the relay
is connected to the changeover contact c of the changeover switch S2 via the normally closed contact X-b.

実施例の作用 次に、実施例に係る異常冷却防止装置の作用に
つき説明する。製氷運転に際し、第1図に示す如
く第2製氷室12は、第1製氷室11を下方から
閉成して、各第1製氷小室13と各第2製氷小室
15とを対応させ、内部に氷形成用空間を画成し
ている。この状態で、自動製氷機の電源を投入す
る。このとき、貯氷庫に氷塊は貯留されていない
ので、貯氷検知スイツチS2は閉成し、切換スイツ
チS2は接点a−b側に接続されている。また第1
製氷室11の温度は室温程度に保持されているた
め、製氷検知サーモTh1は接点c−a側に接続さ
れている。従つて、電源投入と同時に圧縮機
CM、フアンモータFM、ポンプモータPMへの
通電が開始され、製氷運転に入る。これにより第
1製氷室11に設けた蒸発器14に冷媒が循環供
給され、当該第1製氷室11の冷却がなされる。
また製氷水タンク19からの製氷水は分配管24
にポンプ圧送され、該分配管24の各噴水孔25
および第2製氷室12の通孔12aを介して、両
製氷小室13,15に画成される球状空間中に噴
射される。
Effects of the Example Next, the effects of the abnormal cooling prevention device according to the example will be explained. During ice-making operation, as shown in FIG. 1, the second ice-making chamber 12 closes the first ice-making chamber 11 from below, makes each first ice-making chamber 13 and each second ice-making chamber 15 correspond to each other, and internally It defines a space for ice formation. In this state, turn on the power to the automatic ice maker. At this time, since no ice cubes are stored in the ice storage, the ice storage detection switch S2 is closed, and the changeover switch S2 is connected to the contact a-b side. Also the first
Since the temperature of the ice-making chamber 11 is maintained at about room temperature, the ice-making detection thermometer Th1 is connected to the contact ca side. Therefore, when the power is turned on, the compressor
Power to the CM, fan motor FM, and pump motor PM starts, and ice-making operation begins. As a result, the refrigerant is circulated and supplied to the evaporator 14 provided in the first ice-making compartment 11, and the first ice-making compartment 11 is cooled.
In addition, the ice making water from the ice making water tank 19 is distributed to the distribution pipe 24.
is pumped to each fountain hole 25 of the distribution pipe 24.
The ice is then injected through the through hole 12a of the second ice-making chamber 12 into the spherical space defined by both the small ice-making chambers 13 and 15.

噴射された製氷水は、第1製氷小室13の内面
に接触して冷却され、下方の第2製氷小室15を
潤した後、前記通孔12aを介して前記球状空間
から排出される。この未氷結水は、水皿38に穿
設した前記戻り孔26を介して、製氷水タンク1
9に戻されて再度の循環に供される。そして製氷
水の循環が反復される内に、タンク19中に貯留
される製氷水全体の温度が次第に低下すると共
に、第2製氷小室15の温度も同様に次第に低下
する。
The injected ice-making water contacts the inner surface of the first ice-making chamber 13 and is cooled, moistens the second ice-making chamber 15 located below, and then is discharged from the spherical space through the through hole 12a. This unfrozen water is transferred to the ice-making water tank 1 through the return hole 26 formed in the water tray 38.
9 and subjected to circulation again. As the circulation of the ice-making water is repeated, the temperature of the entire ice-making water stored in the tank 19 gradually decreases, and the temperature of the second ice-making chamber 15 also gradually decreases.

そして、先ず第1製氷小室13の内壁面で製氷
水の一部が凍結して氷層が形成され始め(第2図
参照)、未氷結水は通孔12aおよび戻り孔26
からタンク19に帰還する運転を重ねる間に、前
記氷層の成長が更に進行して、第3図および第4
図に示す如く、最終的に両製氷小室13,15に
形成される球状空間中に球状氷1が生成される。
なお、第2図に示す製氷状態となつたタイミング
をもつて製氷運転を終了させると、第14図cに
示す如き中空の球状氷1が得られる。このように
して得た中空氷は、その内部空間にチエリー等の
食材や、ジユース等の飲料および花びら等の観賞
材を入れることによつて、新たな氷の需要を喚起
させることができる。更に、この中空氷の穴あき
部(噴水孔25と戻り孔26とに対応する部分)
を下唇にあてて吹くことにより、笛(氷笛)とし
ても使用できて、独特の趣きが得られる。
First, a portion of the ice-making water freezes on the inner wall surface of the first ice-making chamber 13 and an ice layer begins to form (see Fig. 2), and the unfrozen water flows through the through hole 12a and the return hole 26.
During the repeated operation of returning from the ice to the tank 19, the growth of the ice layer further progresses, as shown in Figures 3 and 4.
As shown in the figure, spherical ice 1 is finally generated in the spherical spaces formed in both ice-making chambers 13 and 15.
If the ice-making operation is ended at the timing when the ice-making state shown in FIG. 2 is reached, hollow spherical ice 1 as shown in FIG. 14c is obtained. The hollow ice obtained in this way can stimulate new demand for ice by filling the inner space with food such as cherry blossoms, beverages such as youth, and ornamental materials such as flower petals. Furthermore, a perforated part of this hollow ice (a part corresponding to the fountain hole 25 and the return hole 26)
It can also be used as a flute (ice flute) by placing it against the lower lip and blowing, giving it a unique feel.

第4図に示す如く、球状氷の製造が完了し、第
1製氷室11の温度が所要の温度域まで低下する
と、これを検知した製氷検知サーモTh1が接点c
−a側から接点c−b側に切換わり、ポンプモー
タPMへの通電が停止され、製氷水の循環供給を
停止する(第12図のタイミングチヤート参照)。
なお、圧縮機CMおよびフアンモータFMへの通
電は継続されるので、蒸発器14への冷媒の供給
を続行する。また第2製氷室12は、球状水1の
生成により所要温度以下に低下しているので、前
記温度検知サーモTh3は接点a−b側に接続され
ており、従つてリレーXが通電励磁されて、これ
と協働する常開接点X−aが閉成し、給水弁WV
を開放する。これにより、第5図に示す如く、外
部水道系に接続する給水管27から水皿38の表
面に画成してある前記水溜部65に給水を開始す
る。
As shown in FIG. 4, when the production of spherical ice is completed and the temperature of the first ice-making chamber 11 falls to the required temperature range, the ice-making detection thermo Th 1 detecting this drops to the contact point c.
The contact is switched from the -a side to the contact c-b side, the power supply to the pump motor PM is stopped, and the circulating supply of ice-making water is stopped (see the timing chart in FIG. 12).
Note that since the compressor CM and the fan motor FM continue to be energized, the supply of refrigerant to the evaporator 14 continues. Furthermore, since the temperature in the second ice making chamber 12 has dropped below the required temperature due to the generation of the spherical water 1, the temperature detection thermometer Th3 is connected to the contact a-b side, and therefore the relay X is energized and energized. Then, the normally open contact X-a that cooperates with this closes, and the water supply valve WV
to open. As a result, as shown in FIG. 5, water starts to be supplied from the water supply pipe 27 connected to the external water supply system to the water reservoir 65 defined on the surface of the water tray 38.

更にタイマTへの通電がなされて、所要設定時
限のカウントが開始される。そして、該タイマT
がカウントアツプするまでは、その常閉接点に直
列接続した前記圧縮機CMへの通電がなされて第
1製氷室11の冷却が継続される。
Further, the timer T is energized and starts counting the required set time period. Then, the timer T
Until the count up, the compressor CM connected in series to the normally closed contact is energized to continue cooling the first ice making chamber 11.

一方前記給水弁WVを介して供給される水道水
は、排水孔63からタンク19に流下する量に比
べ多量であるので、水溜部65での水位は次第に
上昇し、遂には水皿38の堰止め部62からオー
バーフローするに到る。オーバーフローする際の
水溜部65の水面レベルは、第2製氷室12の上
端近傍に到来するよう設定しておくことにより、
常温の水道水は第2製氷室12を主として加熱す
ることができる。なお、リレーXの常閉接点X−
bは開放するので、前記ホツトガス弁HVは閉成
している。
On the other hand, since the amount of tap water supplied via the water supply valve WV is large compared to the amount flowing down from the drain hole 63 to the tank 19, the water level in the water reservoir 65 gradually rises, and finally the weir of the water tray 38 This results in overflow from the stopper portion 62. By setting the water surface level of the water reservoir 65 at the time of overflow to be near the upper end of the second ice making chamber 12,
Tap water at normal temperature can be mainly heated in the second ice making chamber 12. In addition, normally closed contact X- of relay
Since b is open, the hot gas valve HV is closed.

ここで、第1製氷室11は引続き冷却されてい
るので、該第1製氷室11は製氷完了温度近くに
維持されており、製氷検知サーモTh1は接点c−
b側に接続されている。また、第1製氷室11お
よび氷形成用空間に生成された氷塊を介して第2
製氷室12も冷却されるが、氷塊による冷却能力
よりも前記水溜部65に貯溜される水の熱容量の
方が大きいので、該第2製氷室12の温度は徐々
に上昇する。
Here, since the first ice-making compartment 11 is being continuously cooled, the first ice-making compartment 11 is maintained near the ice-making completion temperature, and the ice-making detection thermometer Th 1 is connected to the contact c-
Connected to the b side. In addition, the ice cubes generated in the first ice making chamber 11 and the ice forming space are
The ice making compartment 12 is also cooled, but since the heat capacity of the water stored in the water reservoir 65 is greater than the cooling capacity of the ice blocks, the temperature of the second ice making compartment 12 gradually rises.

前記堰止め部62からのオーバーフロー水は、
水皿38の先端からタンク19内に流下する。こ
の水皿先端部から流入する水と、前記排水孔63
から流下する水とによりタンク19内の水位は次
第に上昇し、短時間でタンク先端部から溢流して
前記待機位置にある氷案内板67に沿いつつ排水
皿69から機外へ排出される。
The overflow water from the dam 62 is
The water flows down from the tip of the water dish 38 into the tank 19. The water flowing from the tip of this water tray and the drain hole 63
The water level in the tank 19 gradually rises due to the water flowing down from the tank 19, and in a short time it overflows from the tip of the tank and is discharged from the drain tray 69 to the outside of the machine along the ice guide plate 67 in the standby position.

第2製氷室12は、水溜部65および溝通路7
2に貯溜される水道水で加熱されて温度上昇し、
第2製氷小室15の壁面と球氷との氷結力が低下
する。また、第1製氷室11との近接面に形成さ
れた氷の固着力も弱まる。ここで、前記タイマT
はカウントを続行しているが、該タイマTがカウ
ントアツプする前に、第2製氷室12の温度上昇
を前記サーモTh3が検出すると、その接点a−b
を接点a−c側に切換える。これにより、タイマ
Tへの通電が遮断され、その常開接点T−bを開
放することなく初期状態に復帰する。また、リレ
ーXが滅勢されて常開接点X−aを開放すると共
に、常閉接点X−bを閉成し、第12図のタイミ
ングチヤート図に示す如く、給水弁WVを閉成す
る。更に、アクチユエータモータAMの傾動駆動
用端子mを介して通電がなされ、当該モータAM
を駆動することにより、そのカムレバー17が第
1図において反時計方向への回動を開始する。
The second ice making chamber 12 includes a water reservoir 65 and a groove passage 7.
It is heated by the tap water stored in 2 and the temperature rises,
The freezing force between the wall surface of the second ice-making chamber 15 and the ice balls is reduced. Furthermore, the adhesion force of the ice formed on the surface adjacent to the first ice making chamber 11 is also weakened. Here, the timer T
continues counting, but if the thermometer Th3 detects a temperature rise in the second ice making compartment 12 before the timer T counts up, the contacts a-b
Switch to contacts a-c side. As a result, the power supply to the timer T is cut off, and the timer T returns to its initial state without opening its normally open contact T-b. Further, relay X is deenergized to open normally open contact X-a and close normally closed contact X-b, thereby closing water supply valve WV as shown in the timing chart of FIG. Furthermore, electricity is supplied through the tilting drive terminal m of the actuator motor AM, and the motor AM
By driving the cam lever 17, the cam lever 17 starts rotating counterclockwise in FIG.

これにより、第6図に示す如く、カムレバー1
7の基部に形成したカム面17bが水皿38の側
部61の上面を強制的に下方に押圧する。既に述
べた如く、第2製氷室12は水道水により加熱さ
れて、第1製氷室11と球状氷1との固着力は低
下しているので、当該水皿38および第2製氷室
12は、第1製氷室11から強制剥離されて斜め
下方に傾動し始める。この水皿38およびタンク
19の傾動により、当該タンク19内の製氷水と
水溜部内の水とは外部に廃棄される。
As a result, as shown in FIG. 6, the cam lever 1
A cam surface 17b formed at the base of the water tray 7 forcibly presses the upper surface of the side portion 61 of the water tray 38 downward. As already mentioned, the second ice making compartment 12 is heated by tap water and the adhesion force between the first ice making compartment 11 and the spherical ice 1 is reduced, so the water tray 38 and the second ice making compartment 12 are It is forcibly separated from the first ice making chamber 11 and begins to tilt diagonally downward. By tilting the water tray 38 and the tank 19, the ice-making water in the tank 19 and the water in the water reservoir are disposed of to the outside.

ここで、除氷運転に際して第2製氷室12の加
熱手段である水道水が、断水等の原因により水溜
部65に供給されなかつたと仮定すると、第2製
氷室12の温度は上昇しない。従つて、第13図
のタイミングチヤート図に示す如く、第2製氷室
12の温度を検出する前記サーモTh3は、接点a
−bを閉成した状態のままであり、しかも前記タ
イマTのカウントは継続される。そして、所要の
設定時限が経過して、タイマTがカウントアツプ
すると、該タイマTの常閉接点T−bを開放して
圧縮機CMへの通電を停止させる。これにより第
2製氷室12の温度が上昇しないまま第1製氷室
11の冷却が継続され、該第1製氷室11と接触
する第2製氷室12や水皿38が過冷却されるこ
とがない。
Here, assuming that tap water, which is the heating means for the second ice making compartment 12, is not supplied to the water reservoir 65 during the deicing operation due to a water outage or the like, the temperature of the second ice making compartment 12 does not rise. Therefore, as shown in the timing chart of FIG.
-b remains closed, and the timer T continues counting. Then, when the required set time period has elapsed and the timer T counts up, the normally closed contact T-b of the timer T is opened to stop the power supply to the compressor CM. As a result, cooling of the first ice-making compartment 11 is continued without the temperature of the second ice-making compartment 12 rising, and the second ice-making compartment 12 and the water tray 38 that come into contact with the first ice-making compartment 11 are not overcooled. .

なお、タイマTの所定時限は、両製氷室11,
12や水皿38が過冷却されて、例えば水皿38
に配設した分配管24内に残留する製氷水が凍結
したり、第2製氷室12と水皿38との連結部
が、該第2製氷室12の収縮等による変形によつ
て破損の畏れが生ずる前にタイムアツプするよう
設定されている。
Note that the predetermined time limit of timer T is for both ice making compartments 11,
12 or the water tray 38 are supercooled, for example, the water tray 38
There is a risk that the ice-making water remaining in the distribution pipe 24 disposed at It is set to time up before the occurrence of the error.

その後、断水が解消して水溜部65に水道水が
供給されると、第2製氷室12が加熱され、この
温度上昇を前記サーモTh3が検出すると、その接
点a−bを接点a−c側に切換える。これにより
タイマTへの通電が遮断され、その常閉接点T−
bが閉成し、圧縮機CMの運転が再開される。そ
して、第1製氷室11の冷却がなされ、第1製氷
小室13と球状氷1との固着力の低下を防ぐ。ま
た、アクチユエータモータAMの傾動駆動用端子
mを介して通電がなされ、当該モータAMを駆動
することにより、そのカムレバー17を介して第
2製氷室12を傾動させる。このように、第2製
氷室12の加熱時間が長くなつた場合であつて
も、両製氷室11,12や水皿38等を過冷却す
ることなく、通常の除氷運転を継続することがで
きる。
Thereafter, when the water cutoff is resolved and tap water is supplied to the water reservoir 65, the second ice making chamber 12 is heated, and when the thermometer Th3 detects this temperature rise, the contacts a and b are connected to the contacts a and c. switch to the side. This cuts off the power to timer T, and its normally closed contact T-
b is closed and compressor CM resumes operation. Then, the first ice-making chamber 11 is cooled, and the adhesion force between the first ice-making chamber 13 and the spherical ice 1 is prevented from decreasing. Also, electricity is supplied through the tilt drive terminal m of the actuator motor AM, and by driving the motor AM, the second ice making chamber 12 is tilted through the cam lever 17 thereof. In this way, even if the heating time of the second ice making compartment 12 becomes longer, normal deicing operation can be continued without overcooling both ice making compartments 11, 12, the water tray 38, etc. can.

前記水皿38の傾動途中において、軸68に一
体的に配設された反転レバー(図示せず)を水皿
組の一部で押すことにより前記の氷案内板67が
反転し、水皿38に寄りかかつた状態で傾動す
る。水皿38が最大限に傾動したタイミングをも
つて、前記レバー片37が切換スイツチS2を押圧
付勢し、その接点a−bを接点a−c側に切換え
る。これによりモータAMはその回転を停止して
水皿38の傾動を停止させる。氷案内板67は、
先に述べた如く、第2製氷室12の上面を覆つて
氷塊滑落用の円滑面を提供している。
During the tilting of the water tray 38, by pushing a reversing lever (not shown) integrally provided on the shaft 68 with a part of the water tray assembly, the ice guide plate 67 is reversed, and the water tray 38 is rotated. Tilt while leaning on. At the timing when the water tray 38 is tilted to the maximum, the lever piece 37 presses and biases the changeover switch S2 , switching its contacts a-b to the contacts a-c side. As a result, the motor AM stops its rotation and the tilting of the water tray 38 is stopped. The ice guide plate 67 is
As mentioned above, the upper surface of the second ice making chamber 12 is covered to provide a smooth surface for sliding ice cubes down.

更に、前記スイツチS2の切換えにより、凝縮器
用フアンモータFMが停止すると共に、ホツトガ
ス弁HVが開放して蒸発器14にホツトガスが供
給され、第1製氷室11の加温がなされて、第1
製氷小室13の内面と球状氷1との氷結面の融解
を開始する。また、給水弁WVが開弁して傾動停
止している水皿38および第2製氷室12の洗浄
を行なう。
Furthermore, by switching the switch S2 , the condenser fan motor FM is stopped, the hot gas valve HV is opened, hot gas is supplied to the evaporator 14, the first ice making compartment 11 is heated, and the first ice making chamber 11 is heated.
The frozen surface between the inner surface of the ice-making chamber 13 and the spherical ice 1 begins to melt. In addition, the water supply valve WV is opened to clean the water tray 38 and the second ice making compartment 12, which are not tilted.

前記第1製氷室11は、前述の如く、水皿38
が傾動開放するまで冷却が続行されているので、
球状氷1と第1製氷小室13の内面との氷結力
(固着力)は強く、第2製氷室12の開放時に球
状氷1は、第6図に示すように、第1製氷小室1
3に固着している。しかるに、蒸発器14には先
程よりホツトガスが循環しているから、第1製氷
室11は温度上昇中である。そして、第1製氷小
室13が或る程度加温されると、第7図に示す如
く、小室壁面と球状氷1との氷結が解除されて自
重落下し、傾動待機している前記氷案内板67の
表面に落着し貯氷庫(図示せず)に滑落回収され
る。なお、除氷検知サーモTh2は、その開放状態
を保持しているので、アクチユエータモータAM
の復帰指令は未だ出されない。
As mentioned above, the first ice making chamber 11 has a water tray 38.
Cooling continues until the tip is opened, so
The freezing force (adhesion force) between the spherical ice 1 and the inner surface of the first ice-making chamber 13 is strong, and when the second ice-making chamber 12 is opened, the spherical ice 1 sticks to the first ice-making chamber 1 as shown in FIG.
It's stuck at 3. However, since hot gas has been circulating in the evaporator 14 since a while ago, the temperature in the first ice making chamber 11 is rising. When the first ice making chamber 13 is heated to a certain degree, as shown in FIG. 7, the spherical ice 1 is unfrozen from the chamber wall and falls under its own weight, causing the ice guide plate, which is waiting to be tilted, to It lands on the surface of ice cube 67 and is collected by sliding into an ice storage (not shown). Note that since the de-icing detection thermo Th 2 maintains its open state, the actuator motor AM
A reinstatement order has not yet been issued.

このように、球状氷1が全て第1製氷小室13
から離脱すると(第8図参照)、第1製氷室11
は蒸発器14に循環しているホツトガスにより一
挙に温度上昇する。この温度上昇を除氷検知サー
モTh2が検知すると、該サーモTh2は閉成してア
クチユエータモータAMにおける復帰駆動用端子
nへの通電がなされ、該モータAMが逆回転して
カムレバー17を駆動する。従つて該レバー17
と水皿38との間に弾力的に係着したコイルスプ
リング18により、水皿38および製氷水タンク
19を反時計方向に回動付勢し、水平状態に復帰
させることによつて、第1製氷室11を再び下方
から閉成する。なお、水皿38上に供給されて前
記水溜部65に貯留する水道水は、前記排水孔6
3を介して製氷水タンク19に流入し、水位の低
下したタンク19に新たな製氷水として供給され
る。
In this way, all the spherical ice 1 is stored in the first ice making chamber 13.
(See Figure 8), the first ice making compartment 11
The temperature rises all at once due to the hot gas circulating in the evaporator 14. When the de-icing detection thermo Th 2 detects this temperature rise, the thermo Th 2 closes and the return drive terminal n of the actuator motor AM is energized, and the motor AM reversely rotates and the cam lever 17 to drive. Therefore, the lever 17
The coil spring 18 elastically engaged between the water tray 38 and the water tray 38 rotates the water tray 38 and the ice-making water tank 19 counterclockwise and returns them to the horizontal state. The ice making chamber 11 is closed again from below. Note that tap water supplied onto the water tray 38 and stored in the water reservoir 65 flows through the drain hole 6.
3 into the ice-making water tank 19, and is supplied as new ice-making water to the tank 19 whose water level has decreased.

次いで、前記モータAMの逆回転によりカムレ
バー17も逆回転し、前記切換えスイツチS2を押
圧付勢して、その接点a−cをa−b側に切換え
る。これにより給水弁WVおよびホツトガス弁
HVが閉成して、製氷水およびホツトガスの供給
が停止される。そして、初期状態に復帰して製氷
運転が再開され、前述した動作を繰り返す。製氷
運転と除氷運転とが反復されて、貯氷庫に所定量
の球状氷が貯留されると、貯氷検知スイツチS1
開放して製氷機の運転が停止される。
Next, due to the reverse rotation of the motor AM, the cam lever 17 is also rotated in the reverse direction, pressing and energizing the changeover switch S2 to switch its contacts ac to the ab side. This allows the water supply valve WV and hot gas valve to
The HV is closed and the supply of ice making water and hot gas is stopped. Then, the ice making operation is resumed by returning to the initial state, and the above-described operations are repeated. When the ice making operation and the ice removal operation are repeated and a predetermined amount of spherical ice is stored in the ice storage, the ice storage detection switch S1 is opened and the operation of the ice maker is stopped.

図示例では、加熱手段として外部水道水を使用
する場合につき説明したが、これに限定されるも
のではない。例えば、第2製氷室にヒータを埋設
し、除氷運転に際して該ヒータの通電加熱を行な
うようにしてもよい。また、水道水とヒータとを
併用したり、前記水溜部に冷凍系の高温部を浸漬
して水道水を加温することにより、第2製氷室の
加熱促進を図つてもよい。
Although the illustrated example uses external tap water as the heating means, the present invention is not limited to this. For example, a heater may be embedded in the second ice-making compartment, and the heater may be heated with electricity during the deicing operation. Further, heating of the second ice making compartment may be accelerated by using tap water and a heater together, or by immersing a high temperature part of a refrigeration system in the water reservoir to warm the tap water.

発明の効果 以上説明した如く、本発明に係る異常冷却防止
装置によれば、下方に開放する第1製氷小室を備
えた第1製氷室と、上方に開放する第2製氷小室
が画成された第2製氷室とを基本的に備え、両製
氷小室の閉成により内部画成される氷形成用空間
で氷塊を生成する製氷機に関連して、除氷運転に
際し第2製氷室の加熱が所定時間を経過しても終
了しない場合は、第1製氷室の冷却を停止するも
のであつて、製氷室や水皿等の製氷機構の過冷却
を防止し得る。また、第1製氷室の冷却運転が必
要以上に継続しないので、電力の浪費を防いでラ
ンニングコストの低減を図ることができる。なお
球状氷の製造につき説明したが、本発明はこれに
限定されるものではなく、他の形状を有する多面
体水の製造にも実施できることは勿論である。
Effects of the Invention As explained above, according to the abnormal cooling prevention device according to the present invention, a first ice-making compartment including a first ice-making compartment that opens downward and a second ice-making compartment that opens upward are defined. In relation to an ice maker that basically includes a second ice maker and generates ice blocks in an ice forming space defined internally by closing both ice maker compartments, the second ice maker is heated during deicing operation. If the cooling does not end even after a predetermined period of time has elapsed, cooling of the first ice-making compartment is stopped, and overcooling of the ice-making mechanism such as the ice-making compartment and the water tray can be prevented. Furthermore, since the cooling operation of the first ice-making chamber does not continue for longer than necessary, it is possible to prevent power consumption and reduce running costs. Although the explanation has been given regarding the production of spherical ice, the present invention is not limited to this, and it goes without saying that it can also be implemented to produce polyhedral water having other shapes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第8図は本発明に係る異常冷却防止装
置が好適に実施される自動製氷機における製氷機
構の概略構成を夫々示す縦断面図であつて、第1
図は第1製氷室に対し第2製氷室を閉成して、製
氷運転を開始した初期の状態を示し、第2図は製
氷が進行して両製氷小室中に中空の球状氷が形成
された状態を示し、第3図は製氷完了に近づき始
めた段階において、両製氷小室中に略中実な球状
氷が形成され、タンク中の製氷水の水位が低下し
ている状態を示し、第4図は略製氷が完了して両
製氷小室中に中実な球状氷が形成された状態を示
し、第5図は製氷が完了して給水弁が開放し、水
溜部での水位上昇により堰止め部からオーバーフ
ローした水が、氷案内板の裏面に沿つて流下して
排水皿から機外へ排出される状態を示し、第6図
はアクチユエータモータが付勢されて第2製氷室
を時計方向に傾動開放し、氷案内板を第2製氷室
の上面に倒れ込ませて各第2製氷小室を塞いだ状
態を示し、第7図は第1製氷室から球状氷が落下
して、その直下に傾斜位置する氷案内板を滑落す
る状態を示し、第8図は除氷が完了して、第2製
氷室が反時計方向に回動復帰し始めると共に、氷
案内板も原位置に戻される状態を夫々示し、第9
図は第1図に示す第2製氷室を縦断した状態で裏
面側から観察した概略斜視図、第10図は自動製
氷機における一般的な冷凍系の回路図、第11図
は実施例に係る製氷機を運転制御する製氷制御回
路の一例を示す回路図、第12図は実施例に係る
製氷装置を、第11図に示す製氷制御回路により
運転制御した際のタイミングチヤート図、第13
図は水道水が一時的に断水した場合に、実施例に
係る製氷装置を、第11図に示す製氷制御回路に
より運転制御した際のタイミングチヤート図、第
14図aは球状氷を示す説明図、第14図bは多
面状氷を示す説明図、第14図cは中空の球状氷
を示す説明図である。 11……第1製氷室、12……第2製氷室、1
3……第1製氷小室、14……蒸発器、15……
第2製氷小室、CM……圧縮機、T……タイマ、
T−b……常閉接点、X……リレー。
1 to 8 are vertical cross-sectional views showing the schematic structure of an ice making mechanism in an automatic ice making machine in which the abnormal cooling prevention device according to the present invention is suitably implemented, respectively.
The figure shows the initial state when the second ice-making compartment is closed to the first ice-making compartment and ice-making operation has started. Figure 2 shows the state in which hollow spherical ice is formed in both ice-making compartments as ice-making progresses. Figure 3 shows a state where almost solid spherical ice is formed in both ice-making chambers and the water level of the ice-making water in the tank is decreasing as the ice-making process approaches completion. Figure 4 shows a state in which ice making is approximately completed and solid spherical ice is formed in both ice making chambers, and Figure 5 shows a state in which ice making is completed and the water supply valve is opened, and the water level rises in the water reservoir and the weir is closed. The water that overflows from the stop part flows down along the back surface of the ice guide plate and is discharged from the drain tray to the outside of the machine. Figure 6 shows the state in which the actuator motor is energized and the second ice making compartment is opened. The ice guide plate is tilted clockwise to open, and the ice guide plate falls onto the upper surface of the second ice-making compartment to block each of the second ice-making compartments. Figure 8 shows the state in which the ice guide plate located slanted directly below the ice slides down, and when the ice removal is completed, the second ice maker begins to rotate counterclockwise and returns to its original position, and the ice guide plate also returns to its original position. The states to be returned are shown respectively, and the ninth
The figure is a schematic perspective view of the second ice-making compartment shown in Figure 1 viewed from the back side in a longitudinally sectional state, Figure 10 is a circuit diagram of a general refrigeration system in an automatic ice-making machine, and Figure 11 is an example. FIG. 12 is a circuit diagram showing an example of an ice-making control circuit that controls the operation of an ice-making machine; FIG. 12 is a timing chart when the ice-making apparatus according to the embodiment is controlled by the ice-making control circuit shown in FIG. 11;
The figure is a timing chart when the operation of the ice making device according to the embodiment is controlled by the ice making control circuit shown in FIG. 11 when the tap water is temporarily cut off, and FIG. 14 a is an explanatory diagram showing spherical ice. , FIG. 14b is an explanatory diagram showing multifaceted ice, and FIG. 14c is an explanatory diagram showing hollow spherical ice. 11...First ice making room, 12...Second ice making room, 1
3...First ice making compartment, 14...Evaporator, 15...
2nd ice making compartment, CM...compressor, T...timer,
T-b...normally closed contact, X...relay.

Claims (1)

【特許請求の範囲】 1 下方に開放する第1製氷小室13を多数備
え、背面に蒸発器14を設けた第1製氷室11
と、 上方に開放する第2製氷小室15を多数備え、
前記第1製氷室11を下方から閉成可能に配設し
た第2製氷室12と、 除氷運転に際して第2製氷室12を加熱する加
熱手段と、 前記第1製氷室11に配設した蒸発器14に冷
媒を循環供給する圧縮機CMとを備え、 前記第1および第2製氷小室13,15に画成
される空間での氷塊の形成を検知し、前記蒸発器
14への冷媒供給を継続したままで第2製氷室1
2を前記加熱手段により加熱するよう構成した自
動製氷機において、 製氷完了を検知して動作を開始するタイマTの
常閉接点T−bを前記圧縮機CMと直列に接続
し、前記加熱手段を作動させるリレーXへの通電
が所定の設定時間を超えて継続したときに前記圧
縮機CMへの給電を停止するよう構成した ことを特徴とする自動製氷機の異常冷却防止装
置。
[Claims] 1. A first ice-making chamber 11 equipped with a large number of first ice-making chambers 13 that open downward and an evaporator 14 on the back side.
and a large number of second ice-making chambers 15 that open upward,
a second ice-making compartment 12 disposed to be able to close the first ice-making compartment 11 from below; a heating means for heating the second ice-making compartment 12 during deicing operation; and an evaporator disposed in the first ice-making compartment 11. A compressor CM that circulates and supplies refrigerant to the evaporator 14 detects the formation of ice blocks in the space defined by the first and second ice-making compartments 13 and 15, and controls the supply of refrigerant to the evaporator 14. 2nd ice making compartment 1 while continuing
In an automatic ice maker configured to heat ice 2 by the heating means, a normally closed contact T-b of a timer T that starts operating upon detecting completion of ice making is connected in series with the compressor CM, and the heating means is heated by the compressor CM. An abnormal cooling prevention device for an automatic ice maker, characterized in that the power supply to the compressor CM is stopped when the energization of the activated relay X continues beyond a predetermined set time.
JP63314449A 1988-12-13 1988-12-13 Abnormal cooling prevention device of automatic ice machine Granted JPH02161273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63314449A JPH02161273A (en) 1988-12-13 1988-12-13 Abnormal cooling prevention device of automatic ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63314449A JPH02161273A (en) 1988-12-13 1988-12-13 Abnormal cooling prevention device of automatic ice machine

Publications (2)

Publication Number Publication Date
JPH02161273A JPH02161273A (en) 1990-06-21
JPH0543949B2 true JPH0543949B2 (en) 1993-07-05

Family

ID=18053493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63314449A Granted JPH02161273A (en) 1988-12-13 1988-12-13 Abnormal cooling prevention device of automatic ice machine

Country Status (1)

Country Link
JP (1) JPH02161273A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016521342A (en) * 2013-03-22 2016-07-21 フリーダム ファイナンス オーストラリア Method and apparatus for forming a hollow cryocontainer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824725B2 (en) 2007-03-30 2010-11-02 The Coca-Cola Company Methods for extending the shelf life of partially solidified flowable compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016521342A (en) * 2013-03-22 2016-07-21 フリーダム ファイナンス オーストラリア Method and apparatus for forming a hollow cryocontainer

Also Published As

Publication number Publication date
JPH02161273A (en) 1990-06-21

Similar Documents

Publication Publication Date Title
US4910974A (en) Automatic ice making machine
JPH024185A (en) Promotion of ice making in automatic ice making machine
JPH0544587B2 (en)
JPH0541913B2 (en)
JPH01210778A (en) Ice removing structure for automatic ice-making machine
JPH0544586B2 (en)
JPH0543949B2 (en)
JPH02143068A (en) Ice guiding device in automatic ice making machine
JPH0543951B2 (en)
JPH0551832B2 (en)
JPH0551834B2 (en)
JPH0551831B2 (en)
JPH0565780B2 (en)
JPH02140575A (en) Ice making structure in automatic ice making machine
JPH0543948B2 (en)
JPH01234768A (en) Ice making structure of automatic ice making machine
JPH0551830B2 (en)
JPH0554027B2 (en)
JPH02161272A (en) Ice making structure of automatic ice machine
JPH02143069A (en) Water guiding structure of automatic ice making machine
JPH02140576A (en) Ice removing structure in automatic ice making machine
JPH01260271A (en) Automatic ice-making machinery and control of ice-making operation
JPH0551835B2 (en)
JP2009216255A (en) Inverted-cell type ice making machine
JPH0615279Y2 (en) Evaporator structure of automatic ice machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees