JPH024185A - Promotion of ice making in automatic ice making machine - Google Patents

Promotion of ice making in automatic ice making machine

Info

Publication number
JPH024185A
JPH024185A JP15592388A JP15592388A JPH024185A JP H024185 A JPH024185 A JP H024185A JP 15592388 A JP15592388 A JP 15592388A JP 15592388 A JP15592388 A JP 15592388A JP H024185 A JPH024185 A JP H024185A
Authority
JP
Japan
Prior art keywords
ice
making
ice making
chamber
compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15592388A
Other languages
Japanese (ja)
Other versions
JPH0532668B2 (en
Inventor
Yasuo Hara
安夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP15592388A priority Critical patent/JPH024185A/en
Publication of JPH024185A publication Critical patent/JPH024185A/en
Publication of JPH0532668B2 publication Critical patent/JPH0532668B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

PURPOSE:To permit the starting of ice making in a first ice making chamber quickly upon re-starting ice making operation by a method wherein the first ice making chamber is forcibly cooled previously until a second ice making chamber is returned to a closed condition after melting and releasing ice blocks from second ice making small chambers after opening the first ice making chamber. CONSTITUTION:When all of spherical ice blocks 1 are released from second ice making small chambers 15, the temperature of a second ice making chamber 12 is risen gradually. The temperature rise of the second ice making chamber 12 is detected by a temperature detecting thermostat Th3 and the contact of the thermostat is switched from the side of the contact a-c into the side of the contact a-b. According to this switching, a feed water valve WV is closed and the conduction of a heater H is stopped while a terminal for return driving in a motor is conducted. Accordingly, a lever piece 37 is turned reversely by the reverse rotation of the motor and a changeover switch S2 is pushed to switch the contact from the side of the contact a-c into the side of the contact a-b to reopen ice making operation. In this case, ice blocks are not existing in first ice making small chambers 13 during a period of time until the contacts of the changeover switch S2 is switched into the side of the contact 1-b. A compressor is being operated however whereby the cooling of the first ice making chamber 11 in the condition of no load, which is effected by an evaporator 14, may be contin ued.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、球状氷等の如き異形氷塊を自動的に製造す
る自動製氷機の製氷促進方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for promoting ice making in an automatic ice maker that automatically produces irregularly shaped ice blocks such as spherical ice.

従来技術 正六面体状の角氷や所要厚みの板氷その他の氷塊を連続
的に製造する自動製氷機が、各種の産業分野で用途に応
じて好適に使い分けられている。
BACKGROUND OF THE INVENTION Automatic ice making machines that continuously produce regular hexahedral ice cubes, ice sheets of a required thickness, and other ice blocks are suitably used in various industrial fields depending on the application.

例えば、前記の角氷を製造する製氷機として。For example, as an ice maker that produces the aforementioned ice cubes.

■製氷室に下向きに多数画成した立方体状の製氷小室を
、その下方′から水皿により開閉自在に閉成し、当該水
皿から製氷水を各製氷小室に噴射供給して、該小室中に
角氷を徐々に形成するようにした所謂クローズドセル方
式や。
■ A large number of cube-shaped ice-making compartments are defined downward in the ice-making compartment, which can be opened and closed with a water tray from below, and ice-making water is sprayed from the water tray to each ice-making compartment to fill the ice-making compartments. The so-called closed-cell method is used to gradually form ice cubes.

■下方に開放する多数の製氷小室に、製氷水を直接供給
しく水皿を介することなく)、角氷を該小室中に形成す
るようにした所謂オープンセル方式が知られている。
(2) A so-called open cell system is known in which ice cubes are formed in a large number of ice-making chambers that open downward (without passing through a water tray) by supplying ice-making water directly to the chambers.

また、板木を連続製造する製氷機としては、冷凍系に接
続する蒸発器を備えた製氷板を傾斜配置し、この製氷板
の表面または裏面に製氷水を流下供給して、当該製氷板
面上に板木を形成する流下式が広く普及している。更に
前記の製氷機により得られた板氷を破砕して、細粒状の
クラッシュアイスを得る製氷方式や、冷却筒の内壁面に
水を流下凍結させて氷層を形成し、この氷層を回転オー
ガの切削刃により掻き削ってフレーク状の氷を得るオー
ガ式も実施されている。
In addition, as an ice-making machine that continuously produces wood boards, an ice-making plate equipped with an evaporator connected to the refrigeration system is arranged at an angle, and ice-making water is supplied flowing down to the front or back side of the ice-making plate, and the ice-making plate is The flowing style, in which a plank is formed on top, is widely used. Furthermore, there is an ice making method in which the ice sheets obtained by the ice making machine described above are crushed to obtain fine granular crushed ice, and an ice making method in which water flows down and freezes on the inner wall of the cooling cylinder to form an ice layer, and this ice layer is rotated. An auger method is also used to obtain flaky ice by scraping it with an auger's cutting blade.

発明が解決しようとする課題 従来の各種製氷機により製造される氷は、前述した如く
、立方体状の角氷や板氷、その他フレーク状の氷やクラ
ッシュアイスがその全てである。
Problems to be Solved by the Invention As mentioned above, ice manufactured by various conventional ice making machines includes cube-shaped ice cubes, sheet ice, other flaky ice, and crushed ice.

これらの氷の内で所要の定形を備え、そのまま飲料に浮
かせたり、各種食材の冷却用ベツドに使用し得るのは、
僅かに前記の角氷に過ぎない(板氷は、定形を備えて製
造されるが1通常そのままの寸法では使用し得ない)、
シかるに最近の喫茶店やレストランその他のサービス施
設では、同業他社に対し種々の而で優位に立って差別化
を図り、顧客を吸引するための懸命な努力が払われてい
る。その−例として、従来より広く流通している角氷の
使用に替えて球体状の氷を採用し、これにより顧客に1
1先の新しい変化を提供しようとする傾向がみられる。
Among these types of ice, the ones that have the required shape and can be floated on drinks or used as cooling beds for various foodstuffs are:
(Ice ice cubes are manufactured with a fixed shape, but cannot normally be used in their original size),
Recently, coffee shops, restaurants, and other service facilities have been making strenuous efforts to attract customers by differentiating themselves from their competitors in various ways. For example, instead of using cubed ice, which has been widely distributed in the past, we have adopted spherical ice, which will give customers 1.
There is a tendency to try to provide new changes that are one step ahead.

この球状氷は、広く飲食に供されることから、空気混入
による白濁がなく、清澄な透明氷塊で商品価値の高いも
のでなければならず、また大量に製造可能であることを
必要とするが、従来この種の要請を満たす自動製氷機は
存在しなかった。そこで、本願の発明者は、透明で清澄
な球状氷を大量に製造し得る製氷機を開発し、前記の要
請を充分に満足する機構を得るに至ったので、その基本
概念につき昭和63年1月29日付けで、発明「自動製
氷機」として特許出願を行なった。
Since this spherical ice is widely used for eating and drinking, it must be clear and transparent ice cubes with high commercial value without clouding due to air inclusion, and it must also be able to be produced in large quantities. Until now, there has been no automatic ice maker that meets this type of requirement. Therefore, the inventor of the present application developed an ice-making machine capable of producing large amounts of transparent and clear spherical ice, and obtained a mechanism that fully satisfies the above requirements. On April 29th, he filed a patent application for his invention ``Automatic Ice Maker''.

先の出顆に係る製氷機は、■下方に開放する第1l氷室
を多数画成し、背面に蒸発器を備えた第1製氷室と、■
上方に開放する第2製氷小室を多数画成した第2製氷室
とを基本的に備え、製氷運転に際し第1および第2の製
氷小室が対応的に閉成して、その内部に球体状等の氷形
成用空間を画成するよう構成されている。この製氷機で
製氷運転を行なって、前記空間に球状氷等の氷塊を生成
した後は、除氷運転に移行して両製氷小室から氷塊を除
去してやる必要がある。
The ice maker according to the above-mentioned construction consists of: ■ a first ice chamber that defines a number of first liter ice chambers that open downward and is equipped with an evaporator on the back;
Basically, it is equipped with a second ice-making chamber that defines a large number of second ice-making chambers that open upward, and during ice-making operation, the first and second ice-making chambers close correspondingly, and a spherical, etc. The ice forming space is configured to define an ice forming space. After performing ice making operation with this ice maker and producing ice blocks such as spherical ice in the space, it is necessary to shift to deicing operation and remove the ice blocks from both ice making compartments.

そこで、第1製氷室を下方から閉成している第2製氷室
を、該第1製氷室に対し強制的に離脱させるが、このと
き氷塊自体は第1および第2Il氷小室の内面に強固に
氷結しているので、これら両製氷小室に対し氷結を解除
させる順番が重要となる。
Therefore, the second ice-making compartment, which closes the first ice-making compartment from below, is forcibly separated from the first ice-making compartment, but at this time, the ice cubes themselves are firmly attached to the inner surfaces of the first and second ice compartments. Since both ice-making compartments are frozen, the order in which these ice-making compartments are thawed is important.

蓋し、第1および第2製氷小室を同時に加熱すると、両
製氷小室に対する氷結を解除された氷塊は、第2製氷室
が強制離脱されるに伴い一挙に落下し、上方に開いてい
る第2製氷小室に引掛かったり、貯水庫への氷塊の円滑
な落下が妨げられる等の不都合を生ずるからである。
When the lid is closed and the first and second ice-making compartments are heated simultaneously, the unfrozen ice cubes in both ice-making compartments fall all at once as the second ice-making compartment is forcibly removed, and the second ice-making compartment opens upward. This is because it causes inconveniences such as the ice cubes getting caught in the ice making compartment and preventing the ice cubes from falling smoothly into the water storage.

このため本願の発明者は、氷結を解除させる1つの方式
として、r除氷運転に際し第1製氷室と氷塊との結合を
先に解除させた後、第2製氷室を回動させることにより
、その第211氷小室に氷塊を付着させた状態で前記第
1製氷室を開放し1次いで第2製氷小室から氷塊を融解
離脱させる」構成に係る自動製氷機を提案し、同じく昭
和63年1月29日付けで特許出願を行なった。この方
式では。
For this reason, the inventor of the present application has proposed that one method for breaking ice is to first release the connection between the first ice-making chamber and the ice block during de-icing operation, and then rotate the second ice-making chamber. In January 1988, the company proposed an automatic ice maker with a configuration in which the first ice maker is opened with ice blocks attached to the 211th ice compartment, and then the ice blocks are melted and removed from the second ice maker. The patent application was filed on the 29th. In this method.

第2製氷室が第1製氷室を開放した後、その第2製氷小
室から氷塊を融解離脱させて閉成状態に復帰するまでの
成る纒った時間だけ、当該第1製氷小室は無負荷状態で
開放保持されていることになる。また除氷運転から切換
って製氷運転が再開された際に、その時点から蒸発器に
よる第1Il氷室の強制冷却を開始すると、当該第1製
氷室の第1製氷小室が氷結温度に達するまでは、所要の
待ち時間だけタイムラグとして生ずる。そして、この第
1製氷小室を氷結温度に達させるまでの待ち時間は、前
述した纒った時間の間に、第1製氷小室を氷結温度にま
で冷却することにより、充分に補填し得るものである。
After the second ice-making compartment opens the first ice-making compartment, the first ice-making compartment remains unloaded for a period of time until the second ice-making compartment melts and detaches the ice blocks from the second ice-making compartment and returns to the closed state. This means that it is held open. Furthermore, when ice-making operation is resumed after switching from de-icing operation, if forced cooling of the first ice compartment by the evaporator is started from that point on, the first ice-making compartment of the first ice-making compartment will not reach the freezing temperature. , the required waiting time occurs as a time lag. The waiting time for the first ice-making chamber to reach the freezing temperature can be sufficiently compensated for by cooling the first ice-making chamber to the freezing temperature during the above-mentioned time. be.

発明の目的 この発明は、前述した事情に鑑み、第1製氷室を開放し
た第2製氷室が、第2製氷小室から氷塊を融解離脱させ
て閉成状態に復帰するまでの纏った時間を有効に利用し
て、第1製氷室を予め蒸発器により強制冷却しておいて
、Il氷運転の再開に際し速やかに第1製氷室での製氷
を開始し得るようにして、自動製氷機での製氷促進を図
り得る方法を提供することを1的とする。
Purpose of the Invention In view of the above-mentioned circumstances, the present invention is designed to effectively utilize the time it takes for the second ice-making compartment to open the first ice-making compartment, melt the ice cubes from the second ice-making compartment, and return to the closed state. The first ice-making compartment is forcibly cooled by an evaporator in advance, so that ice making in the first ice-making compartment can be started immediately when ice operation is restarted, and ice making with an automatic ice-making machine is performed. The first objective is to provide a method that can promote this.

課題を解決するための手段 前述した課題を克服し、所期の目的を好適に達成するた
め本発明は、製氷機本体の内部に配置され、上面に冷凍
系に接続する蒸発器を備えると共に、下面に第1製氷小
室を多数凹設してなる第1製氷室と、製氷機本体の内部
に回動自在に枢支され、製氷運転に際し前記第製氷小室
を下方から対応的に閉成する第2製氷小室を多数凹設す
ると共に、除氷運転に際し前記第1製氷室から離脱して
該第1製氷小室を開放する第2製氷室とを備え、除氷運
転に際しては、第1製氷室と氷塊との結合を先に解除さ
せた後、第2!II氷室を回動させることにより、その
第2製氷小室に氷塊を付着させた状態で前記第1製氷室
を開放するよう構成した自動製氷機において、 前記第2製氷室が第1製氷室を開放した後、その第2製
氷小室から氷塊を融解離脱させて閉成状態に復帰するま
での間、前記蒸発器による第1製氷室の冷却を継続して
該第1fB氷室を過冷却状態に保持し。
Means for Solving the Problems In order to overcome the above-mentioned problems and suitably achieve the intended purpose, the present invention provides an evaporator disposed inside the ice maker main body and connected to the refrigeration system on the top surface. a first ice-making chamber having a plurality of first ice-making chambers recessed in its lower surface; and a first ice-making chamber rotatably supported inside the ice-making machine body, which correspondingly closes the first ice-making chambers from below during ice-making operation. A second ice-making compartment is provided with a large number of ice-making compartments, and a second ice-making compartment that separates from the first ice-making compartment to open the first ice-making compartment during deicing operation. After breaking the bond with the ice block first, the second! In an automatic ice-making machine configured to open the first ice-making compartment with ice cubes attached to its second ice-making compartment by rotating the ice compartment II, the second ice-making compartment opens the first ice-making compartment. After that, the first ice making compartment is continued to be cooled by the evaporator to maintain the first fB ice compartment in a supercooled state until the ice block is melted and released from the second ice making compartment and the first ice making compartment is returned to the closed state. .

製氷運転の再開時に第1fB氷室の蓄冷効果により該第
1製氷室での氷塊形成を促進させることを特徴とする。
It is characterized in that when the ice-making operation is restarted, the formation of ice blocks in the first ice-making compartment is promoted by the cold storage effect of the first fB ice compartment.

実施例 次に2本発明に係る自動製氷機の製氷促進方法につき、
これを好適に実施し得る装置との関係において、添付図
面を参照しながら以下説明する。
Examples Next, there are two methods for promoting ice making in an automatic ice maker according to the present invention.
A description will be given below with reference to the accompanying drawings in relation to a device that can suitably implement this.

なお、この発明に係る自動製氷機によれば、第5図(a
)に示す球状氷1以外に、第5図(b)に示す如きダイ
ヤカット状の多面体氷2も製造可能であるが、実施例と
しては、多数の球状氷を連続製造する場合について説明
する。
In addition, according to the automatic ice maker according to the present invention, FIG.
In addition to the spherical ice 1 shown in ), it is also possible to manufacture diamond-cut polyhedral ice 2 as shown in FIG.

(製氷機構について) 第1図は、球状氷を自動的に製造する製氷機の主要製氷
機構を、製氷状態で概略的に示すものであって、傾斜配
置した第11製氷室11と、この第1製氷室11を下方
から開閉自在に閉成可能な第2製氷室12とから製氷室
10が基本的に構成されている。第1製氷室11は、熱
良導金属を材質とする矩形状の構造体であって、H氷機
の筐体(図示せず)内部上方に、所要の角度傾斜させて
固定され、下向きに開放する第1製氷小室13が、その
下面部に所要の整列パターンで多数凹設されている。夫
々の第1製氷小室13は半球状凹部として形成され、−
例としてその直径31、凹部の深さ1.5cmに設定さ
れている。
(About the ice-making mechanism) Fig. 1 schematically shows the main ice-making mechanism of an ice-making machine that automatically produces spherical ice in an ice-making state, including the slanted eleventh ice-making chamber 11 and this ice-making mechanism. The ice-making compartment 10 basically includes a second ice-making compartment 12 which can be opened and closed from below. The first ice making chamber 11 is a rectangular structure made of a metal with good thermal conductivity, and is fixed to the inside of the casing (not shown) of the H ice machine at a predetermined angle and tilted downward. A large number of open first ice-making chambers 13 are recessed in the lower surface of the first ice-making chamber 13 in a desired alignment pattern. Each first ice-making compartment 13 is formed as a hemispherical recess, and -
As an example, the diameter is set to 31, and the depth of the recess is set to 1.5 cm.

前記第1製氷室11の上面(つまり各第1製氷小室13
の頂部)に、第2図に示す冷凍系(後述)の−部を構成
する管体からなる蒸発器14が密着固定され、当該冷凍
系を運転することにより、この蒸発器14に冷媒が循環
されて、第1製氷室11が氷点下にまで冷却される。ま
た除氷運転時には。
The upper surface of the first ice-making compartment 11 (that is, each first ice-making compartment 13
An evaporator 14 made of a tube that constitutes the - section of the refrigeration system (described later) shown in Fig. 2 is tightly fixed to the top of the evaporator 14 (the top of the evaporator 14). As a result, the first ice making chamber 11 is cooled down to below freezing point. Also during deicing operation.

第4図に示す制御回路中のホットガス弁HVの開放によ
り、該蒸発器14にホットガスを供給して、第1製氷室
11を加温し得るようになっている。
By opening the hot gas valve HV in the control circuit shown in FIG. 4, hot gas can be supplied to the evaporator 14 and the first ice making chamber 11 can be heated.

この第11i1氷室11における所要の第1製氷小室1
3の頂部に、製氷検知サーモTh、が配設されている。
The required first ice making compartment 1 in this 11i1 ice compartment 11
An ice-making detection thermometer Th is disposed on the top of the ice-making device 3.

この製氷検知サーモ1゛h、は、第4図に示す制御回路
に介装されて、製氷運転中はその接点a −aを閉成(
接点c −bは開放)すると共に、該製氷運転が終了す
ると、前記接点c−aを開放(接点e−bは閉成)し得
るよう設定されている。また、別の第1製氷小室13の
頂部に、除氷検知サーモ’I’h2が配設され、この除
氷検知サーモTh、は。
This ice-making detection thermometer 1゛h is installed in the control circuit shown in Fig. 4, and its contacts a-a are closed during ice-making operation.
The contact point c-b is opened), and the contact point ca is set to be opened (the contact point e-b is closed) when the ice making operation is completed. Further, a de-icing detection thermometer 'I'h2 is disposed at the top of another first ice-making compartment 13, and this de-icing detection thermometer Th.

第1製氷小室13が冷却状態にある場合にのみ接点を開
放し、該製氷小室13から氷が離間して温度上昇を来す
と、該接点を閉成するよう設定されている。
The contact is set to open only when the first ice-making chamber 13 is in a cooling state, and to close when the ice is separated from the ice-making chamber 13 and the temperature rises.

第1製氷室11の直下には、製氷運転に際して、第1製
氷小室13を斜め下方から閉成し、かつ除氷運転に際し
て、第1製氷室11から大きく開放する第2製氷室12
が配設されている。この第2製氷室12も熱良導体金属
を材質とし、その上面に第2製氷小室15(各第1製氷
小室13と対応する半球状凹部からなる)が、上向きに
所要の整列パターンで多数凹設されている。第2製氷小
室15の直径も、−例として31、凹部の深さ1.5個
に設定されている。従って、第1製氷室11を下方から
第2製氷室12により閉成すると、両製氷小室13.1
5の内部に直径30mの球状空間が画成される。
Immediately below the first ice-making compartment 11 is a second ice-making compartment 12 that closes the first small ice-making compartment 13 diagonally from below during ice-making operation and widely opens from the first ice-making compartment 11 during de-icing operation.
is installed. This second ice-making chamber 12 is also made of a metal with good thermal conductivity, and on its upper surface, a large number of second ice-making chambers 15 (consisting of hemispherical recesses corresponding to each of the first ice-making chambers 13) are arranged upward in a required alignment pattern. has been done. The diameter of the second ice making chamber 15 is also set to, for example, 31, and the depth of the recesses is 1.5. Therefore, when the first ice-making compartment 11 is closed by the second ice-making compartment 12 from below, both ice-making compartments 13.1
A spherical space with a diameter of 30 m is defined inside the 5.

第1製氷室11に対し第2製氷室12を、前述の如く大
きく開放可能とするために、この第2製氷室12の一端
部は、製氷機の筐体上部に枢軸16を介して傾動自在に
枢支したブラケット45に取付けられている。従って、
第2製氷室12を。
In order to allow the second ice-making compartment 12 to be opened widely relative to the first ice-making compartment 11, one end of the second ice-making compartment 12 can be freely tilted via a pivot 16 at the top of the ice maker housing. It is attached to a bracket 45 that is pivotally supported. Therefore,
2nd ice making room 12.

この枢軸16を中心に時計方向に大きく回動させると、
その最大角度位置において、第3図(a)に示す如く、
第2製氷小室15を下方に指向させて翻転した状態で、
前記第1製氷小室13を開放する。また、第2製氷室1
2を枢軸16を中心に反時計方向に回動させれば、第1
製氷小室13は再び閉成される。
When rotated largely clockwise around this pivot 16,
At the maximum angular position, as shown in Figure 3(a),
With the second ice making chamber 15 turned downward and turned over,
The first ice making compartment 13 is opened. In addition, the second ice making room 1
2 in the counterclockwise direction around the pivot 16, the first
The ice making compartment 13 is closed again.

なお、第2111j氷室12の開閉手段として、第1図
に示すアクチュエータモータAMが好適に使用される。
Note that as the opening/closing means for the 2111j ice chamber 12, an actuator motor AM shown in FIG. 1 is suitably used.

このモータAMの回転軸に、カムレバー17およびレバ
ー片37が共通固定され、該カムレバー17の先端17
aと第2製氷室12の前方端部との間に、コイルスプリ
ング18が弾力的に係着されている。またカムレバー1
7の基部に形成したカム而17bは、第1製氷室11を
閉成している第2製氷室12の側部と面と係合可能に寸
法設定されている。カムレバー17の長さは、その先端
17aが、第3図(a)に示す如く、第2製氷室12に
係合し、これを大きく翻転させて第2製氷小室15を下
方に指向させ得る寸法に設定しである。更に、第1製氷
室11には、第4図の回路図に示す切換スイッチS2が
配設され、除氷運転に伴うモータAMの回転により前記
レバー片37が回動すると、当該スイッチS2を接点a
−b側から接点a−c側に切換えるようになっている。
A cam lever 17 and a lever piece 37 are commonly fixed to the rotating shaft of this motor AM.
A coil spring 18 is elastically engaged between the ice maker a and the front end of the second ice making chamber 12. Also, cam lever 1
The cam 17b formed at the base of the ice making chamber 7 is dimensioned so as to be able to engage with the side and surface of the second ice making chamber 12 that closes the first ice making chamber 11. The length of the cam lever 17 is such that its tip 17a engages with the second ice-making chamber 12, as shown in FIG. The dimensions are set. Furthermore, the first ice making chamber 11 is provided with a changeover switch S2 shown in the circuit diagram of FIG. a
-b side to contact a-c side.

なお、第2製氷室12の所要部位に温度検知サーモ1゛
h、が配設され、該第2製氷室12の温度を監視し得る
ようになっている。この温度検知サーモTh、は、第2
製氷室12の温度が所定値以下の場合に接点a −c間
が閉成し、所定値以上の場合に接点a−b間が閉成する
よう設定しである。また第2′I!i氷小室15の底部
周辺に、除氷促進用の電熱ヒータHが埋設され、製氷運
転が完了して後述するモータAMの作動により第2製氷
室12が第1製氷室11に対し最大限に離間されると、
該ヒータI]への通電がなされる。各第2製氷小室15
の底部に所要径の通孔12aが穿設され、これを介して
後述する分配管24から製氷水の供給および未氷結水の
排出がなされる。
In addition, a temperature detection thermometer 1゛h is disposed at a required part of the second ice making compartment 12, so that the temperature of the second ice making compartment 12 can be monitored. This temperature detection thermometer Th,
It is set so that when the temperature of the ice making compartment 12 is below a predetermined value, contacts a and c are closed, and when the temperature is above a predetermined value, contacts a and b are closed. 2nd I again! i An electric heater H for promoting deicing is buried around the bottom of the ice compartment 15, and when the ice making operation is completed, the second ice making compartment 12 is heated to the maximum extent compared to the first ice making compartment 11 by the operation of a motor AM, which will be described later. When separated,
The heater I] is energized. Each second ice making compartment 15
A through hole 12a of a required diameter is bored in the bottom of the ice making water and unfrozen water is supplied and discharged from a distribution pipe 24, which will be described later, through the through hole 12a.

第2製氷室12の裏面に、圧力室23を備える分配管2
4が僅かな間隙を保持して近接配置され。
Distribution pipe 2 equipped with a pressure chamber 23 on the back side of the second ice making chamber 12
4 are placed close to each other with a slight gap between them.

該分配管24に前記第2製氷小室15の夫々と対応可能
な噴水孔25が穿設されている。そして、第1図に示す
如く、第2製氷室12を第1製氷室11に対し閉成した
際に、この噴水孔25の夫々が、第2製氷小室15に穿
設した前記通孔12aに対応的に臨むように構成しであ
る。
A fountain hole 25 corresponding to each of the second ice-making chambers 15 is bored in the distribution pipe 24. As shown in FIG. 1, when the second ice-making compartment 12 is closed to the first ice-making compartment 11, each of the water fountain holes 25 connects to the through hole 12a formed in the second ice-making compartment 15. It is designed to be responsive.

第2製氷室12の裏面には、その各周囲下端縁から下方
に延出する側板49が固定され、矩形状の堰を形成して
いる。この側板49からなる矩形状の堰は、第3図の除
氷状態図に示す如く、第2製氷室12を大きく翻転させ
て、その裏面を斜め上方に指向させた際に、給水管27
から供給される水を所要喰溜め、余剰の水はオーバーフ
ローさせて、球状水1の第2H氷小室15からの剥離を
促進する機能を果す。
A side plate 49 extending downward from the lower edge of each periphery is fixed to the back surface of the second ice making chamber 12 to form a rectangular dam. As shown in the deicing state diagram in FIG.
It serves the function of accelerating the separation of the spherical water 1 from the second H ice chamber 15 by accumulating the required amount of water supplied from the ice compartment and overflowing the excess water.

図に示す如く、第1製氷室11および第2製氷室12の
直下に製氷水タンク19が設置され、該タンクの本体か
ら斜め上方に水案内板48が延出している。この水案内
板48は、その最下端縁が下方に屈曲されてタンク19
の上方に臨み、該屈曲端縁を介して未氷結水は該タンク
19に案内され、除氷時の氷塊はこの水案内板48上を
滑落して貯水庫に回収される(第3図(c)参照)、な
お、製氷水タンク19から導出した給水管21は、給水
ポンプ22を介して前記圧力室23に連通され、また給
水弁Wvの開放により、給水管27を介して該タンク1
9への給水がなされる。
As shown in the figure, an ice-making water tank 19 is installed directly below the first ice-making compartment 11 and the second ice-making compartment 12, and a water guide plate 48 extends obliquely upward from the main body of the tank. This water guide plate 48 has its lowermost edge bent downward to form a tank 19.
The unfrozen water is guided to the tank 19 through the bent edge, and the ice cubes during deicing slide down on this water guide plate 48 and are collected in the water storage (see Fig. 3). c)), the water supply pipe 21 led out from the ice-making water tank 19 is communicated with the pressure chamber 23 via the water supply pump 22, and when the water supply valve Wv is opened, the water supply pipe 21 led out from the ice-making water tank 19 is communicated with the pressure chamber 23 via the water supply pipe 27.
9 will be supplied with water.

(冷凍系について) 第2図は、製氷機冷凍系の概略構成を示し、圧縮機CM
で圧縮された気化冷媒は、吐出管34を経て凝縮器28
で凝縮液化し、ドライヤ29で脱湿された後キャピラリ
ーチューブ30で減圧され、蒸発器14中で一挙に膨張
して蒸発することにより、第1製氷室11と熱交換を行
なって各第11!J氷小室13を氷点下にまで冷却させ
る。この蒸発器14で蒸発した気化冷媒と未蒸発の液化
冷媒とは、気液混相状態でアキュムレータ31に流入し
、ここで気液分離がなされる。そして気相冷媒は、吸入
管32を経て圧縮機CMに帰還し、液相冷媒は当該アキ
ュムレータ31内に貯留される。
(About the refrigeration system) Figure 2 shows the schematic configuration of the ice maker refrigeration system, and shows the compressor CM
The vaporized refrigerant compressed in the condenser 28 passes through the discharge pipe 34.
It is condensed and liquefied in the dryer 29, dehumidified in the dryer 29, depressurized in the capillary tube 30, expanded and evaporated all at once in the evaporator 14, thereby exchanging heat with the first ice making chamber 11, and exchanging heat with the first ice making chamber 11. The J ice chamber 13 is cooled down to below freezing. The vaporized refrigerant evaporated in the evaporator 14 and the unevaporated liquefied refrigerant flow into the accumulator 31 in a gas-liquid mixed phase state, where they are separated into gas and liquid. The gas phase refrigerant then returns to the compressor CM via the suction pipe 32, and the liquid phase refrigerant is stored in the accumulator 31.

更に、圧縮機CMの吐出管34からホットガス管33が
分岐され、このホットガス管33はホットガス弁HVを
経て蒸発器14の入口側に連通されている。該ホットガ
ス弁HVは、除氷運転時にのみ開放して、圧縮機CMか
ら吐出される高温冷媒(ホットガス)を、前記ホットガ
ス管33を介して蒸発器14にバイパスさせ、各第1j
ll氷小室13を加温して小室内部に生成される球状氷
の周面を融解させ各氷塊を自重落下させる。また蒸発器
14から流出した高温冷媒は、アキュムレータ31に流
入し、このアキュムレータ31中に滞留している液相冷
媒を加熱して蒸発させ、気相冷媒として吸入管32から
圧縮機CMに再び帰還させる。なお1図中の符号FMは
、凝縮器28用のファンモータを示す。
Furthermore, a hot gas pipe 33 is branched from the discharge pipe 34 of the compressor CM, and this hot gas pipe 33 is communicated with the inlet side of the evaporator 14 via a hot gas valve HV. The hot gas valve HV is opened only during the deicing operation to bypass the high temperature refrigerant (hot gas) discharged from the compressor CM to the evaporator 14 via the hot gas pipe 33.
The ice chamber 13 is heated to melt the circumferential surface of the spherical ice formed inside the chamber and allow each ice block to fall under its own weight. Further, the high temperature refrigerant flowing out from the evaporator 14 flows into the accumulator 31, heats and evaporates the liquid phase refrigerant staying in this accumulator 31, and returns it to the compressor CM from the suction pipe 32 as a gas phase refrigerant. let Note that the symbol FM in FIG. 1 indicates a fan motor for the condenser 28.

(電気制御回路について) この実施例に示す装置を作動させる制御回路の一例を、
第4図に示す1図において、電源供給ラインRと接続点
りとの間に、ヒユーズFと貯水検知スイッチS、とが直
列に設けられ、この接続点りと電源供給ラインTとの間
に、圧縮機CM並びにリレーXの常閉接点X−1bを介
するファンモータF’ Mが夫々並列接続されている。
(About the electrical control circuit) An example of the control circuit that operates the device shown in this example is as follows:
In the diagram shown in FIG. 4, a fuse F and a water storage detection switch S are provided in series between the power supply line R and the connection point, and between this connection point and the power supply line T. , compressor CM, and fan motor F'M via normally closed contact X-1b of relay X are connected in parallel.

また除氷運転時に、第2製氷室12の傾動に伴い切換え
られるスイッチS2の端子aが接続点りに接続され、こ
のスイッチS2の切換接点すは、電源供給ラインTとの
間に以下の素子を並列接続している。
Further, during deicing operation, the terminal a of the switch S2, which is switched as the second ice making chamber 12 is tilted, is connected to the connection point, and the switching contact of this switch S2 is connected to the power supply line T by the following elements. are connected in parallel.

■タイマT ■製氷検知サーモTh□の接点C1接点a、リレーXの
常閉接点X−2b、ポンプモータPMの直列系。
■Timer T ■Series system of ice-making detection thermometer Th□ contact C1 contact a, relay X normally closed contact X-2b, and pump motor PM.

なお、スイッチS2の切換接点すとポンプモータPMと
の間に、タイマTの常閉接点Tbが介装されている。
Note that a normally closed contact Tb of the timer T is interposed between the switching contact of the switch S2 and the pump motor PM.

■リレーXの常開接点X−1a、製氷検知サーモTh、
の接点す、タイマTの常開接点T a 、リレーXの直
列系。
■Normally open contact X-1a of relay X, ice-making detection thermo Th,
, normally open contact T a of timer T, and relay X in series.

■リレーXの常開接点X−2aとホットガス弁HVとの
直列系、なお前記常開接点X−2aとモータAMの傾動
駆動用端子mとの間に、除氷検知サーモTh2が介装さ
れ、該モータAMの端子にはライン′I゛に接続されて
いる。
■A series system between the normally open contact X-2a of the relay X and the hot gas valve HV, and a de-icing detection thermometer Th2 is interposed between the normally open contact The terminal of the motor AM is connected to the line 'I'.

更に、スイッチS2の切換接点Cは、前記温度検知サー
モ’I’ h 、の接点a −b側を介してモータAM
の復帰駆動用端子nに接続され、またスイッチS2の切
換接点CとラインTとの間に、給水弁Wvおよびヒータ
Hが並列接続されている。なお前記タイマTは、11氷
運転の開始と共に所要設定時限の積算を開始し、その所
要設定時限がタイムアツプすると、その常閉接点Tbを
開放すると共に常開接点1゛aを閉成する動作を行なう
Further, the switching contact C of the switch S2 is connected to the motor AM via the contact a-b side of the temperature detection thermometer 'I' h.
A water supply valve Wv and a heater H are connected in parallel between the switching contact C of the switch S2 and the line T. The timer T starts accumulating the required set time at the start of the 11 ice operation, and when the required set time expires, opens the normally closed contact Tb and closes the normally open contact 1'a. Let's do it.

(実施例の作用について) 次に、実施例に係る製氷促進方法につき説明する。先ず
、自動製氷機の電源を投入する。このとき貯水庫内には
氷塊が貯留されていないので、貯水検知スイッチS、は
閉成され、また切換スイッチS2は接点a−b側に接続
されている。第1製氷室11は室温程度に保持されてい
るため、製氷検知サーモTh、は接点c−a側に接続さ
れている。除氷検知サーモTh2は、WI氷運転の進行
中その接点を閉成している(第1!l!氷室11が所定
の温度値以上で接点が閉成する)。更に温度検知サーモ
’rh1は、第2製氷室12が所定の温度値以上になっ
ているので、製氷運転の初期は接点a −b間を閉成し
ている。
(About the effect of the embodiment) Next, the method for promoting ice making according to the embodiment will be explained. First, turn on the automatic ice maker. At this time, since no ice blocks are stored in the water storage, the water storage detection switch S is closed, and the changeover switch S2 is connected to the contacts a and b. Since the first ice making chamber 11 is maintained at about room temperature, the ice making detection thermometer Th is connected to the contact ca side. The deicing detection thermometer Th2 closes its contact while the WI ice operation is in progress (the contact closes when the temperature of the first!l! ice chamber 11 exceeds a predetermined temperature value). Furthermore, since the temperature of the second ice making chamber 12 is higher than a predetermined temperature value, the temperature detection thermometer rh1 closes the contacts a and b at the beginning of the ice making operation.

従って電源投入と同時に、圧縮機CM、ファンモータF
M、ポンプモータPMへの通電が開始されて製氷運転に
入り、第1製氷室11に設けた蒸発器14での冷媒循環
により該第1製氷室11の冷却がなされる。またタンク
19中の製氷水20は分配管24にポンプ圧送され、該
分配管24における各噴水孔25および第1製氷室12
に穿設した前記通孔12aを介して、各対応の第2製氷
小室15中に噴射される。なお、前記タイマTは、製氷
運転の開始と同時に、所要設定時限の積算を開始する。
Therefore, at the same time as the power is turned on, compressor CM and fan motor F
M, energization to the pump motor PM is started and ice-making operation begins, and the first ice-making compartment 11 is cooled by refrigerant circulation in the evaporator 14 provided in the first ice-making compartment 11. In addition, the ice making water 20 in the tank 19 is pumped to the distribution pipe 24, and each water fountain 25 in the distribution pipe 24 and the first ice making chamber 12 are
The ice is injected into the corresponding second ice-making compartments 15 through the through holes 12a formed in the ice cubes. Note that the timer T starts accumulating the required set time at the same time as the start of the ice making operation.

噴射された製氷水は、第1!氷室11の内面に接触して
冷却され、下方の第2製氷小室15を潤した後、該製氷
小室15の底部に穿設した前記通孔12aを介して落下
し、前記水案内板48を経て製氷水タンク19に戻され
、再度の循環に供される。この製氷水の循環が反復され
る間に、タンク19に貯留される製氷水全体の温度は次
第に低下する。また第2製氷室12は、その一部におい
て第1!製氷室11に接触しており、かつ当該第2fR
氷小室15に温度低下した未氷結水が接触循環するので
、第2製氷室12自体の温度も同様に次第に低下して氷
結点以下となる。このため、先ず第1vJ氷小室13の
内壁面で製氷水の一部が凍結して氷層が形成され、未氷
結水は戻り孔を兼ねる通孔12aを経て製氷水タンク1
9に帰還するサイクルを重ねる間に、前記氷層の成長が
更に進行して、最終的に第1および第2製氷小室13゜
15に画成される球状空間中に球状氷1が徐々に生成さ
れる。なお第2製氷室12での氷生成に伴い、温度検知
サーモ’I’ h 3の接点a −bはa −c側に切
換わる。
The sprayed ice making water is the best! After being cooled by contacting the inner surface of the ice chamber 11 and moistening the second ice making chamber 15 below, it falls through the through hole 12a formed at the bottom of the ice making chamber 15, and passes through the water guide plate 48. It is returned to the ice-making water tank 19 and subjected to circulation again. While this ice-making water circulation is repeated, the overall temperature of the ice-making water stored in the tank 19 gradually decreases. In addition, the second ice making compartment 12 has a part in the first ice making compartment 12! It is in contact with the ice making compartment 11, and the 2nd fR
Since the unfrozen water whose temperature has decreased is circulated in the ice compartment 15, the temperature of the second ice making compartment 12 itself gradually decreases to below the freezing point. For this reason, a portion of the ice-making water first freezes on the inner wall surface of the first vJ ice chamber 13 to form an ice layer, and the unfrozen water passes through the through hole 12a, which also serves as a return hole, into the ice-making water tank 1.
9, the growth of the ice layer further progresses, and finally spherical ice 1 is gradually formed in the spherical space defined by the first and second ice making chambers 13 and 15. be done. Note that as ice is generated in the second ice making chamber 12, the contacts a and b of the temperature detection thermometer 'I' h 3 are switched to the a and c sides.

この間に前記タイマTがタイムアツプして、その常閉接
点Tbを開放すると共に、常開接点T aを閉成する。
During this time, the timer T times up and opens the normally closed contact Tb, and closes the normally open contact Ta.

そして、第1および第2製氷小室13.15での製氷が
進行し、第1製氷室11の温度が所要の温度域まで低下
すると、製氷検知サーモThLがこれを検知して該接点
a −aを接点c −bに切換え、これによりポンプモ
ータPMへの通電が停止される。また、閉成中の常開接
点Taを介してリレーXが励磁され、その常閉接点X−
1bが開放して、ファンモータFMへの通電が停止され
る。更に常開接点X−1aの閉成により、リレーXは自
己保持されると共に、常開接点X−2aの閉成によりホ
ットガス弁HVが開放し、圧縮機CMからの高温冷媒を
蒸発器14に循環供給させる(第6図のタイミングチャ
ート図参照)。
When ice making in the first and second ice making chambers 13.15 progresses and the temperature of the first ice making chamber 11 falls to a required temperature range, the ice making detection thermo ThL detects this and the contact a-a is switched to contact c-b, thereby stopping energization to pump motor PM. In addition, the relay X is energized via the normally open contact Ta, which is currently closed,
1b is opened and power supply to fan motor FM is stopped. Further, by closing the normally open contact X-1a, the relay (See the timing chart in Figure 6).

これにより第1製氷室11が加温され、その第1製氷小
室13の内面と球状氷1との氷結面の融解を開始して氷
結力を低下させる。
As a result, the first ice-making chamber 11 is heated, and the freezing surface between the inner surface of the first ice-making chamber 13 and the spherical ice 1 starts to melt, thereby reducing the freezing force.

また除氷検知サーモTh2は接点を閉成しているので、
モータAMの傾動駆動用端子mへの通電がなされ、カム
レバー17の回転により基部カム面17bが第2製氷室
12の側部上面を強制的に下方に押圧する。既に述べた
如く、第1製氷小室13と球状氷との氷結は解除されて
いるから、当該第2製氷室12は、第1製氷室11から
強制剥離されて時計方向に傾動し始める。そして、第2
製氷室12は、その第2製氷小室15に球状氷1を氷結
させたままの状態で、第3図(a)に示す如く、最終的
に略逆転状態にまで翻転して、その裏面を斜め上方に指
向させた姿勢をとるに至る。このとき、第2製氷小室1
5から露出した球状氷1のt半部は、製氷水タンク19
の水案内板48の上方に位置している。
Also, since the de-icing detection thermometer Th2 closes the contact,
The tilt drive terminal m of the motor AM is energized, and the rotation of the cam lever 17 causes the base cam surface 17b to forcibly press the side upper surface of the second ice making chamber 12 downward. As already mentioned, since the first ice making compartment 13 and the spherical ice have been defrozen, the second ice making compartment 12 is forcibly separated from the first ice making compartment 11 and begins to tilt clockwise. And the second
As shown in FIG. 3(a), the ice-making chamber 12, with the spherical ice 1 still frozen in the second ice-making chamber 15, is finally turned over to a substantially reversed state, and the back side thereof is turned over. This leads to a posture that is directed diagonally upward. At this time, the second ice making compartment 1
The t half of the spherical ice 1 exposed from the ice making water tank 19
It is located above the water guide plate 48 of.

第2製氷室12の翻転姿勢が最大に達したタイミングに
おいて、第3図(a)に示す如く、前記レバー片37が
切換スイッチS2を押圧付勢し、その接点a−bを接点
a−Q側に切換える。これにより、モータAMの駆動が
停止されると共にリレーXが減勢され、常開接点X−1
aが開放して該リレーXの自己保持を解除する。また常
閉接点X−1bが閉成復帰してファンモータFMの運転
を再開すると共に常開接点X −2aも開放してホット
ガス弁HVを閉成し、蒸発器14への冷媒供給を再開し
て、再び第1製氷室11の冷却を開始する。
At the timing when the second ice-making compartment 12 reaches its maximum rotational position, the lever piece 37 presses and biases the changeover switch S2, as shown in FIG. Switch to Q side. As a result, the drive of the motor AM is stopped and the relay X is deenergized, so that the normally open contact X-1
a is opened and the self-holding of the relay X is released. In addition, the normally closed contact X-1b returns to closed and resumes operation of the fan motor FM, and the normally open contact X-2a also opens to close the hot gas valve HV and resume refrigerant supply to the evaporator 14. Then, cooling of the first ice making chamber 11 is started again.

この時点で第2製氷室12は、未だ球状氷1が付着して
いるため、温度検知サーモTh、は接点a−c側に切換
ねったままである。従ってスイッチS2の接点a −a
側への切換えにより、給水弁Wvが開放して給水管27
から常温の水道水を第2製氷室12の裏面に供給すると
共に、電熱ヒータHへの通電もなされて第2製氷室12
に対するM極加熱がなされる。第2i!氷室12の裏面
には、前述した如く、側板49により矩形状の堰が形成
されているから、第3図(b)に示す如く、前記常温の
外部水道水はこの堰に所要量溜められて該第2製氷室1
2を温度上昇させ、余剰の水はオーバーフローした後、
水案内板48を介してタンク19に案内回収される。こ
れにより第2@氷小室15と球状氷1との氷結が融解さ
れ、第3図(c)に示すように、当該球状氷1は自重に
より落下して水案内板48を滑落し、貯水庫(図示せず
)に案内回収される。なおタンク19に導びかれた水は
、その水位を上昇させ、所定水位に達するとオーバーフ
ロー管50から外部に排出される。
At this point, since the spherical ice 1 is still attached to the second ice making compartment 12, the temperature detection thermometer Th remains switched to the contact point a-c side. Therefore, the contacts a - a of switch S2
By switching to the side, the water supply valve Wv opens and the water supply pipe 27
Tap water at room temperature is supplied to the back side of the second ice-making compartment 12, and the electric heater H is also energized.
M-pole heating is performed. 2nd i! As mentioned above, a rectangular weir is formed on the back side of the ice chamber 12 by the side plate 49, so as shown in FIG. 3(b), the required amount of external tap water at room temperature is stored in this weir. Said second ice making room 1
After increasing the temperature of 2 and overflowing the excess water,
The water is guided and collected into the tank 19 via the water guide plate 48. As a result, the ice between the second ice chamber 15 and the spherical ice 1 is melted, and as shown in FIG. (not shown). Note that the water introduced into the tank 19 raises its water level, and when it reaches a predetermined water level, it is discharged to the outside from the overflow pipe 50.

球状氷Iが全て第2製氷小室15から離脱すると、その
第211!氷室12の温度は、給水管27がら依然とし
て供給される水道水の影響により次第に上昇する。そし
て、各第2製氷小室・15に置設した前記通孔12aを
閉塞している氷が解けると、この通孔12aから水道水
は落ドし、水案内板48を経て製氷水タンク19に案内
される(第3図(d)参照)、また、第2製氷室12の
温度上昇を温度検知サーモTh、が検知し、その接点a
−c側から接点a −b側に切換わる。これにより前記
給水弁W■の閉成とヒータHの通電停止を行なうと共に
、モータAMにおける復帰駆動用端子nへの通電がなさ
れる。従って、該モータAMは逆回転してカムレバー1
7を駆動し、該レバー17と第2製氷室12との間に係
着したコイルスプリング18により、第2製氷室12を
反時計方向に同動付勢して傾斜状態に復帰させ、再び第
1製氷室11をド方から閉成する。なお、前記モータA
Mの逆回転によりレバー片37も逆回転し、前記切換ス
イッチS2を押圧してその接点をa −a側からa −
b側に切換え、製氷運転を再開する。
When all the spherical ice I leaves the second ice making chamber 15, the 211th! The temperature of the icebox 12 gradually rises due to the influence of the tap water still supplied from the water supply pipe 27. When the ice blocking the through holes 12a installed in each of the second ice making compartments 15 melts, the tap water drops from the through holes 12a, passes through the water guide plate 48, and enters the ice making water tank 19. (see FIG. 3(d)), the temperature detection thermometer Th detects the temperature rise in the second ice making chamber 12, and its contact a
Contact a switches from the -c side to the contact a -b side. As a result, the water supply valve W2 is closed, the heater H is de-energized, and the return drive terminal n of the motor AM is energized. Therefore, the motor AM rotates in the reverse direction and the cam lever 1
7, the coil spring 18 engaged between the lever 17 and the second ice-making chamber 12 urges the second ice-making chamber 12 counterclockwise to return to the tilted state, and the second ice-making chamber 12 is returned to the tilted state. 1 Close the ice making compartment 11 from the door side. Note that the motor A
Due to the reverse rotation of M, the lever piece 37 also rotates in the opposite direction, and the changeover switch S2 is pressed to change its contact point from the a-a side to the a-a side.
Switch to side b and restart ice making operation.

ところで第1製氷小室13には、第3図(b)に示す如
く、先の除氷運転中に切換スイッチS2の接点がa −
a側に切換ねった時点から前述の如く接点a−b側に切
換わるまでの間氷塊が存在していない。しかも圧縮機C
Mは運転されているので、この無負荷状態にある第1製
氷室11は、蒸発器14による冷却が継続されており、
従って当該第1製氷室11の温度は製氷完了温度以下に
まで低下している。このため、製氷検知サーモTh、の
接点も、a−a側からc−b側に既に切換わっている。
By the way, in the first ice making chamber 13, as shown in FIG. 3(b), during the previous deicing operation, the contact point of the changeover switch S2 was set to
There is no ice block between the time when the switch is switched to the a side and the time when the contact is switched to the a-b side as described above. Moreover, compressor C
Since M is in operation, the first ice making chamber 11 in this no-load state continues to be cooled by the evaporator 14.
Therefore, the temperature of the first ice making chamber 11 has fallen below the ice making completion temperature. Therefore, the contact point of the ice-making detection thermometer Th has already been switched from the a-a side to the c-b side.

この状態で切換スイッチS2が、前述の如く接点a −
b側に切換わると、製氷検知サーモT b 、は製氷完
了を検知しているので、本来は製氷運転を継続すべきと
ころを再び除水運転に入り、以後第1製氷室11での冷
却・加熱が反復されるハンチング状態となる。
In this state, the changeover switch S2 switches the contact a -
When switching to side b, the ice-making detection thermo T b detects the completion of ice-making, so instead of originally being supposed to continue ice-making operation, it enters water removal operation again, and from then on, cooling and cooling in the first ice-making compartment 11 is started. A hunting state occurs in which heating is repeated.

そこで、本実施例では、タイマTが製氷運転の開始と共
に所要設定時限の積算を開始し、その設定時限がタイム
アツプしない限り、製氷検知サーモTh、からの信号を
受入れないようになっている(第6図のタイムチャート
図参照)、すなわち、切換スイッチS2が接点a−b側
に切換わった時点で。
Therefore, in this embodiment, the timer T starts accumulating the required set time at the start of the ice-making operation, and does not accept a signal from the ice-making detection thermometer Th unless the set time expires. 6), that is, at the time when the selector switch S2 is switched to the contact a-b side.

製氷検知サーモTh、は接点c−b側に切換わってはい
るが、タイマTの常開接点Taは開放しているので、リ
レーXへの通電はなされない。従って、リレーXの常閉
接点X−1bは閉成状態を継続してファンモータト゛M
が回転し、蒸発器14による第1製氷室11の冷却が続
行される。
Although the ice-making detection thermometer Th has been switched to the contact c-b side, the normally open contact Ta of the timer T is open, so the relay X is not energized. Therefore, normally closed contact X-1b of relay
rotates, and cooling of the first ice making chamber 11 by the evaporator 14 continues.

また、タイマTの常閉接点′1′bは閉成しているから
ポンプモータPMへの通電がなされ、タンク19中の温
度上昇した製氷水を、分配管24における各噴水孔25
および前記通孔12aを介して。
Further, since the normally closed contact '1'b of the timer T is closed, the pump motor PM is energized, and the ice-making water whose temperature has increased in the tank 19 is transferred to each water fountain 25 in the distribution pipe 24.
and through the through hole 12a.

対応する各第2製氷小室15中に噴射供給する。The ice is injected into each corresponding second ice making compartment 15.

このとき第1製氷室11は、製氷完了温度以下にまで過
冷却されているから、温度上昇している製氷水は当該第
1製氷室11と接触して急速冷却されると共に、この熱
交換により第1製氷室11の温度上昇を来す。そして第
1製氷室11の温度が、製氷完了温度以上に達すると、
製氷検知サーモTh、の接点がc −b側からQ−a側
に切換わって、この系統からもポンプモータPMへの通
電がなされる。
At this time, the first ice making chamber 11 is supercooled to below the ice making completion temperature, so the ice making water whose temperature has risen comes into contact with the first ice making chamber 11 and is rapidly cooled, and through this heat exchange. This causes the temperature of the first ice making compartment 11 to rise. When the temperature of the first ice making chamber 11 reaches the ice making completion temperature or higher,
The contact point of the ice-making detection thermometer Th is switched from the c-b side to the Qa side, and the pump motor PM is energized from this system as well.

その後背くすると、タイマ′rの設定時限がタイムアツ
プし、その常開接点′raが閉成すると共に。
When the user then turns away, the set time limit of the timer 'r times up, and the normally open contact 'ra closes.

常閉接点Tbが開放される。このため、ポンプモータP
Mへの通電は製氷検知サーモTh、の接点Q −8側か
らのみとなる。前述した製氷運転と除氷運転とが反復さ
れて、貯水庫に所定量の球状氷が貯留されると、貯水検
知スイッチS、が開放して製氷機の運転が停止される。
Normally closed contact Tb is opened. For this reason, the pump motor P
Electricity is supplied to M only from the contact Q-8 side of the ice-making detection thermometer Th. When the ice making operation and deicing operation described above are repeated and a predetermined amount of spherical ice is stored in the water storage, the water storage detection switch S is opened and the operation of the ice maker is stopped.

発明の効果 以上に説明した如く、本発明に係る自動製氷機の製氷促
進方法によれば、製氷運転の再開時に第1fR氷室は充
分に過冷却されており、しかもポンプモータは強制運転
されて、製氷水を第1製氷室に循環させるので、過冷却
されている第111氷小室と接触した製氷水は急速に冷
却される。従って、製氷水は結氷に要する温度にまで短
時間で到達し。
Effects of the Invention As explained above, according to the method for promoting ice making in an automatic ice maker according to the present invention, the 1st fR ice chamber is sufficiently supercooled when ice making operation is restarted, and the pump motor is forcedly operated. Since the ice-making water is circulated to the first ice-making compartment, the ice-making water that comes into contact with the supercooled 111th ice compartment is rapidly cooled. Therefore, the ice-making water reaches the temperature required for freezing in a short time.

第1製氷小室での氷結の開始が早期化され、単位時間当
りの製氷能力が向上する。また、ll氷運転の再開後の
所定時間内は、製氷完了検知手段からの製氷完了信号を
遮断する制御が行なわれるため、製氷運転の再開後直ち
に除氷運転に切換わるハンチングの発生を有効に防止す
ることができる。
The start of freezing in the first ice-making compartment is accelerated, and the ice-making capacity per unit time is improved. Furthermore, within a predetermined time period after the ice-making operation is resumed, the ice-making completion signal from the ice-making completion detection means is controlled to be cut off, which effectively prevents the occurrence of hunting in which the ice-making operation is immediately switched to the de-icing operation after the ice-making operation is resumed. It can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る自動製氷機の製氷促進方法を好適
に実施する製氷機構の縦断面図、第2図は自動製氷機に
おける一般的な冷凍系の回路図、第3図(a)〜(d)
は実施例に係る装置において。 第2製氷室が大きく翻転して第1!Ill氷室から分離
し、次いで当該第2製氷室から球状氷を貯水庫に向けて
放出する状態を経時的に示す説明図、第4図は実施例に
係る装置を運転制御する製氷制御回路の一例を示す回路
図、第5図(a)は球状氷を示す説明図、第5図(b)
は多面状氷を示す説明図、第6図は実施例に係る製氷装
置を、第4図に示す製氷制御回路により運転制御した際
のタイミングチャート図である。 11・・・第1製氷室  12・・・第2製氷室13・
・・第1製氷小室 14・・・蒸発器15・・・第21
1氷小室
FIG. 1 is a longitudinal sectional view of an ice making mechanism that preferably implements the ice making promotion method of an automatic ice maker according to the present invention, FIG. 2 is a circuit diagram of a general refrigeration system in an automatic ice maker, and FIG. 3 (a) ~(d)
In the device according to the example. The second ice-making room has been transformed into the first! An explanatory diagram showing over time the state in which spherical ice is separated from the second ice compartment and then released from the second ice compartment toward the water storage. FIG. 4 is an example of an ice making control circuit that controls the operation of the device according to the embodiment. Figure 5(a) is an explanatory diagram showing spherical ice, Figure 5(b) is a circuit diagram showing spherical ice.
6 is an explanatory diagram showing multifaceted ice, and FIG. 6 is a timing chart when the operation of the ice making apparatus according to the embodiment is controlled by the ice making control circuit shown in FIG. 4. 11...First ice making room 12...Second ice making room 13.
...First ice making compartment 14...Evaporator 15...21st
1 ice chamber

Claims (1)

【特許請求の範囲】 製氷機本体の内部に配置され、上面に冷凍系に接続する
蒸発器(14)を備えると共に、下面に第1製氷小室(
13)を多数凹設してなる第1製氷室(11)と、 製氷機本体の内部に回動自在に枢支され、製氷運転に際
し前記第1製氷小室(13)を下方から対応的に閉成す
る第2製氷小室(15)を多数凹設すると共に、除氷運
転に際し前記第1製氷室(11)から離脱して該第1製
氷小室(13)を開放する第2製氷室(12)とを備え
、 除氷運転に際しては、第1製氷室(11)と氷塊との結
合を先に解除させた後、第2製氷室(12)を回動させ
ることにより、その第2製氷小室(15)に氷塊を付着
させた状態で前記第1製氷室(11)を開放するよう構
成した自動製氷機において、 前記第2製氷室(12)が第1製氷室(11)を開放し
た後、その第2製氷小室(15)から氷塊を融解離脱さ
せて閉成状態に復帰するまでの間、前記蒸発器(14)
による第1製氷室(11)の冷却を継続して該第1製氷
室(11)を過冷却状態に保持し、 製氷運転の再開時に第1製氷室(11)の蓄冷効果によ
り該第1製氷室(11)での氷塊形成を促進させること
を特徴とする自動製氷機の製氷促進方法。
[Claims] It is disposed inside the ice maker main body, and includes an evaporator (14) connected to the refrigeration system on the top surface, and a first ice making chamber (14) on the bottom surface.
A first ice-making chamber (11) having a plurality of recessed ice-making chambers (13) is rotatably supported inside the ice-making machine body, and correspondingly closes the first ice-making chamber (13) from below during ice-making operation. A second ice-making compartment (12) is provided with a large number of second ice-making compartments (15), and separates from the first ice-making compartment (11) to open the first ice-making compartment (13) during deicing operation. In the deicing operation, the first ice making chamber (11) and the ice blocks are first uncoupled, and then the second ice making chamber (12) is rotated to open the second ice making chamber (12). 15) in an automatic ice making machine configured to open the first ice making compartment (11) with ice blocks attached to the ice cube, after the second ice making compartment (12) opens the first ice making compartment (11), The evaporator (14) melts and leaves the second ice making chamber (15) until it returns to the closed state.
The cooling of the first ice making compartment (11) is continued to maintain the first ice making compartment (11) in a supercooled state, and when the ice making operation is restarted, the first ice making compartment (11) is cooled by the cold storage effect of the first ice making compartment (11). A method for promoting ice making in an automatic ice making machine, characterized by promoting the formation of ice blocks in a chamber (11).
JP15592388A 1988-06-22 1988-06-22 Promotion of ice making in automatic ice making machine Granted JPH024185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15592388A JPH024185A (en) 1988-06-22 1988-06-22 Promotion of ice making in automatic ice making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15592388A JPH024185A (en) 1988-06-22 1988-06-22 Promotion of ice making in automatic ice making machine

Publications (2)

Publication Number Publication Date
JPH024185A true JPH024185A (en) 1990-01-09
JPH0532668B2 JPH0532668B2 (en) 1993-05-17

Family

ID=15616464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15592388A Granted JPH024185A (en) 1988-06-22 1988-06-22 Promotion of ice making in automatic ice making machine

Country Status (1)

Country Link
JP (1) JPH024185A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058358U (en) * 1991-07-16 1993-02-05 ホシザキ電機株式会社 Water tray mounting structure of cell type ice machine
US5512465A (en) * 1990-10-15 1996-04-30 Daicel Chemical Industries, Ltd. Process for producing optically active 1,3-butanediol
US9470448B2 (en) 2012-12-13 2016-10-18 Whirlpool Corporation Apparatus to warm plastic side of mold
US9759472B2 (en) 2012-12-13 2017-09-12 Whirlpool Corporation Clear ice maker with warm air flow
US9816744B2 (en) 2012-12-13 2017-11-14 Whirlpool Corporation Twist harvest ice geometry
US9890986B2 (en) 2012-12-13 2018-02-13 Whirlpool Corporation Clear ice maker and method for forming clear ice
US10030901B2 (en) 2012-05-03 2018-07-24 Whirlpool Corporation Heater-less ice maker assembly with a twistable tray
US10047996B2 (en) 2012-12-13 2018-08-14 Whirlpool Corporation Multi-sheet spherical ice making
US10066861B2 (en) 2012-11-16 2018-09-04 Whirlpool Corporation Ice cube release and rapid freeze using fluid exchange apparatus
US10161663B2 (en) 2012-12-13 2018-12-25 Whirlpool Corporation Ice maker with rocking cold plate
US10174982B2 (en) 2012-12-13 2019-01-08 Whirlpool Corporation Clear ice maker
US10378806B2 (en) 2012-12-13 2019-08-13 Whirlpool Corporation Clear ice maker
EP3653969A1 (en) * 2018-11-16 2020-05-20 LG Electronics Inc. Ice maker for a home appliance
US10690388B2 (en) 2014-10-23 2020-06-23 Whirlpool Corporation Method and apparatus for increasing rate of ice production in an automatic ice maker
US10739053B2 (en) 2017-11-13 2020-08-11 Whirlpool Corporation Ice-making appliance
US10845111B2 (en) 2012-12-13 2020-11-24 Whirlpool Corporation Layering of low thermal conductive material on metal tray
US10907874B2 (en) 2018-10-22 2021-02-02 Whirlpool Corporation Ice maker downspout
EP3862697A4 (en) * 2018-10-02 2022-08-10 LG Electronics Inc. Refrigerator and controlling method therefor
EP3862681A4 (en) * 2018-10-02 2022-08-10 LG Electronics Inc. Refrigerator
EP3862675A4 (en) * 2018-10-02 2022-08-10 LG Electronics Inc. Ice maker and refrigerator comprising same
EP3862700A4 (en) * 2018-10-02 2022-08-10 LG Electronics Inc. Refrigerator and control method therefor
EP3862680A4 (en) * 2018-10-02 2022-08-17 LG Electronics Inc. Refrigerator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101649896B1 (en) * 2014-08-18 2016-08-23 강민정 Contents providing apparatus

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512465A (en) * 1990-10-15 1996-04-30 Daicel Chemical Industries, Ltd. Process for producing optically active 1,3-butanediol
JPH058358U (en) * 1991-07-16 1993-02-05 ホシザキ電機株式会社 Water tray mounting structure of cell type ice machine
US10030901B2 (en) 2012-05-03 2018-07-24 Whirlpool Corporation Heater-less ice maker assembly with a twistable tray
US10030902B2 (en) 2012-05-03 2018-07-24 Whirlpool Corporation Twistable tray for heater-less ice maker
US10066861B2 (en) 2012-11-16 2018-09-04 Whirlpool Corporation Ice cube release and rapid freeze using fluid exchange apparatus
US10816253B2 (en) 2012-12-13 2020-10-27 Whirlpool Corporation Clear ice maker with warm air flow
US9470448B2 (en) 2012-12-13 2016-10-18 Whirlpool Corporation Apparatus to warm plastic side of mold
US9816744B2 (en) 2012-12-13 2017-11-14 Whirlpool Corporation Twist harvest ice geometry
US10047996B2 (en) 2012-12-13 2018-08-14 Whirlpool Corporation Multi-sheet spherical ice making
US9759472B2 (en) 2012-12-13 2017-09-12 Whirlpool Corporation Clear ice maker with warm air flow
US10161663B2 (en) 2012-12-13 2018-12-25 Whirlpool Corporation Ice maker with rocking cold plate
US10174982B2 (en) 2012-12-13 2019-01-08 Whirlpool Corporation Clear ice maker
US10378806B2 (en) 2012-12-13 2019-08-13 Whirlpool Corporation Clear ice maker
US10605512B2 (en) 2012-12-13 2020-03-31 Whirlpool Corporation Method of warming a mold apparatus
US11486622B2 (en) 2012-12-13 2022-11-01 Whirlpool Corporation Layering of low thermal conductive material on metal tray
US11598567B2 (en) 2012-12-13 2023-03-07 Whirlpool Corporation Twist harvest ice geometry
US11131493B2 (en) 2012-12-13 2021-09-28 Whirlpool Corporation Clear ice maker with warm air flow
US10788251B2 (en) 2012-12-13 2020-09-29 Whirlpool Corporation Twist harvest ice geometry
US9890986B2 (en) 2012-12-13 2018-02-13 Whirlpool Corporation Clear ice maker and method for forming clear ice
US10845111B2 (en) 2012-12-13 2020-11-24 Whirlpool Corporation Layering of low thermal conductive material on metal tray
US11725862B2 (en) 2012-12-13 2023-08-15 Whirlpool Corporation Clear ice maker with warm air flow
US10690388B2 (en) 2014-10-23 2020-06-23 Whirlpool Corporation Method and apparatus for increasing rate of ice production in an automatic ice maker
US11808507B2 (en) 2014-10-23 2023-11-07 Whirlpool Corporation Method and apparatus for increasing rate of ice production in an automatic ice maker
US11441829B2 (en) 2014-10-23 2022-09-13 Whirlpool Corporation Method and apparatus for increasing rate of ice production in an automatic ice maker
US10739053B2 (en) 2017-11-13 2020-08-11 Whirlpool Corporation Ice-making appliance
EP3862680A4 (en) * 2018-10-02 2022-08-17 LG Electronics Inc. Refrigerator
EP3862700A4 (en) * 2018-10-02 2022-08-10 LG Electronics Inc. Refrigerator and control method therefor
EP3862675A4 (en) * 2018-10-02 2022-08-10 LG Electronics Inc. Ice maker and refrigerator comprising same
EP3862681A4 (en) * 2018-10-02 2022-08-10 LG Electronics Inc. Refrigerator
EP3862697A4 (en) * 2018-10-02 2022-08-10 LG Electronics Inc. Refrigerator and controlling method therefor
US11703263B2 (en) 2018-10-02 2023-07-18 Lg Electronics Inc. Refrigerator and control method therefor
US11835281B2 (en) 2018-10-02 2023-12-05 Lg Electronics Inc. Ice maker and refrigerator including same
EP4257896A3 (en) * 2018-10-02 2024-01-03 LG Electronics Inc. Ice maker and refrigerator comprising same
US10907874B2 (en) 2018-10-22 2021-02-02 Whirlpool Corporation Ice maker downspout
EP3907447A1 (en) * 2018-11-16 2021-11-10 LG Electronics Inc. Ice maker and refrigerator
EP3653969A1 (en) * 2018-11-16 2020-05-20 LG Electronics Inc. Ice maker for a home appliance
US11874048B2 (en) 2018-11-16 2024-01-16 Lg Electronics Inc. Ice maker and refrigerator

Also Published As

Publication number Publication date
JPH0532668B2 (en) 1993-05-17

Similar Documents

Publication Publication Date Title
JPH024185A (en) Promotion of ice making in automatic ice making machine
US4910974A (en) Automatic ice making machine
JPH01196478A (en) Automatic ice making machine
JPH01210778A (en) Ice removing structure for automatic ice-making machine
JPH0544586B2 (en)
JPH0541913B2 (en)
JPH01230969A (en) Mechanical construction of automatic ice making machine
JPH0565780B2 (en)
JP5055170B2 (en) Reverse cell ice machine
JPH0543949B2 (en)
JPH0551831B2 (en)
JPH0543951B2 (en)
JP3412677B2 (en) How to operate an automatic ice maker
JPH01260271A (en) Automatic ice-making machinery and control of ice-making operation
JPH01225875A (en) Ice guide structure for automatic ice-making machine
JPH02143068A (en) Ice guiding device in automatic ice making machine
JPH061141B2 (en) Automatic ice machine
JPH0554027B2 (en)
JPH0551834B2 (en)
JPH0551835B2 (en)
JPH02140575A (en) Ice making structure in automatic ice making machine
JPH0615279Y2 (en) Evaporator structure of automatic ice machine
JPH01234768A (en) Ice making structure of automatic ice making machine
JPH02143069A (en) Water guiding structure of automatic ice making machine
JPH02161271A (en) Ice making structure of automatic ice machine