JPH01196478A - Automatic ice making machine - Google Patents

Automatic ice making machine

Info

Publication number
JPH01196478A
JPH01196478A JP1986088A JP1986088A JPH01196478A JP H01196478 A JPH01196478 A JP H01196478A JP 1986088 A JP1986088 A JP 1986088A JP 1986088 A JP1986088 A JP 1986088A JP H01196478 A JPH01196478 A JP H01196478A
Authority
JP
Japan
Prior art keywords
ice
making
ice making
making chamber
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1986088A
Other languages
Japanese (ja)
Other versions
JPH0544587B2 (en
Inventor
Yasuo Hara
安夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP1986088A priority Critical patent/JPH01196478A/en
Publication of JPH01196478A publication Critical patent/JPH01196478A/en
Publication of JPH0544587B2 publication Critical patent/JPH0544587B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

PURPOSE:To manufacture a multitude of spherical ice blocks having the same size continuously, by a method wherein an ice making chamber is constituted of a first ice making chamber, consisting of a multitude of first recessed ice making small chambers consisting of downwardly opened recesses, and a second ice making chamber, sprung up when it is separated maximally upon ice removing operation until second ice making small chambers are faced downward. CONSTITUTION:An ice making chamber 10 for manufacturing a multitude of spherical ice blocks having required diameter is constituted of a first ice making chamber 11, arranged so as to be slanted, and a second ice making chamber 12, operable freely from the lower part thereof. A multitude of first recessed ice making small chambers 13 are recessed on the lower surface of the first ice making chamber 11 so as to be faced downward with a required line-up pattern. When a refrigerating system is operated, heat exchange between evaporated refrigerant is promoted in an evaporator 14 and the first ice making chamber 11 is cooled to a temperature below a freezing point. Upon ice removing operation, hot gas is supplied to the evaporator 14 by the opening of a hot gas valve HV in a control circuit to heat the first ice making chamber 11. When the second ice making chamber 12 is pivoted clockwise about a turning axis 16, the first ice making small chambers 13 may be opened under a condition that the second ice making small chambers 15 are faced downward.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は自動製氷機に関し、更に詳細には、従来一般
に知られている正六面体の角氷以外の氷塊、例えば球体
状の氷塊や多面体状(ダイヤカット状)の氷塊を連続し
て大量に製造し得る自動製氷機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an automatic ice maker, and more specifically, it relates to an automatic ice maker, and more specifically, it is an automatic ice maker that can produce ice cubes other than the conventionally known regular hexahedral ice cubes, such as spherical ice cubes and polyhedral (diamond) ice cubes. This invention relates to an automatic ice-making machine that can continuously produce large quantities of cut-shaped ice cubes.

従来技術 各種の産業上の分野では、正六面体状をなす角氷や所要
厚みの板氷その他の氷塊を、連続的に大量に製造する自
動製氷機が、その用途に応じて好適に使い分けられてい
る0例えば、前記の角氷を製造する製氷機としては、 ■製氷室に下向きに多数画成した立方体状の製氷小室を
、その下方から水皿により開閉自在に閉成し、当該水皿
から製氷水を各製氷小室に噴射供給して、該製氷小室中
に角氷を徐々に形成するようにした所謂クローズドセル
方式や、 ■下方に開放する多数の製氷小室に、水皿を介すること
なく製氷水を直接供給し、角氷を該製氷小室中に形成す
るようにした所謂オープンセル方式%式% また、板氷を連続製造する一製氷機としては、冷凍系に
接続する蒸発器を備えた製氷板を傾斜配置し、この製氷
板の表面または裏面に製氷水を流下供給して、当該製氷
板面上に板氷を形成する流下式が広く普及している。更
に冷却筒の内壁面に流下させた水を凍結させて氷層を形
成し、この氷層を回転オーガの切削刃により掻き削って
フレーク状の氷を得たり、前記の製氷機により得られた
板氷を破砕して、細粒状のクラッシュアイスを得る製氷
方式も実施されている。
BACKGROUND ART In various industrial fields, automatic ice making machines that continuously produce large quantities of ice cubes in the shape of regular hexahedrons, ice cubes of a required thickness, and other ice cubes are suitably used depending on the application. For example, the ice making machine that produces the ice cubes described above is: (1) A large number of cube-shaped ice making compartments are defined downward in the ice making compartment, which can be opened and closed from below with a water tray, and from the water tray. The so-called closed cell method, in which ice-making water is injected into each ice-making chamber and ice cubes are gradually formed in each ice-making chamber, and ■ A large number of ice-making chambers that open downward without the need for a water tray. The so-called open cell type ice making machine that directly supplies ice making water and forms ice cubes in the ice making compartment is also used as an ice making machine that continuously produces ice cubes and is equipped with an evaporator connected to the refrigeration system. A flowing type ice making plate is widely used in which an ice making plate is arranged at an angle and ice making water is supplied flowing down onto the front or back side of the ice making plate to form ice sheets on the surface of the ice making plate. Furthermore, the water flowing down on the inner wall surface of the cooling cylinder is frozen to form an ice layer, and this ice layer is scraped with the cutting blade of a rotating auger to obtain flaky ice, or the ice made by the ice making machine described above is used. An ice-making method is also used in which ice cubes are crushed to obtain fine-grained crushed ice.

発明が解決しようとする課題 従来の各種方式に係る自動製氷機により製造される氷は
、前述した如く、立方体状の角氷や板氷、その他フレー
ク状の氷やクラッシュアイスがその全てである。これら
の氷の内で、所要の定形を備えていて、そのままコツプ
中の飲料に浮かせたり、各種食材の冷却ベツドとして使
用したり出来るのは、僅かに前記の角氷に過ぎない(板
氷は、定形を備えて製造されるが、通常そのままの寸法
では使用し得ない)、シかるに最近の喫茶店やレストラ
ンその他の飲食施設では、他の同種営業に対し種々の面
で優位に立ち、顧客を自己の営業に向かわせるべく差別
化を図るための懸命な努力が払われている。その−環と
して、例えば従来より広く流通している角氷の替わりに
球体状の氷を使用し、これにより顧客に目先の新しい変
化を提供しようとする傾向がみられる。
Problems to be Solved by the Invention As mentioned above, ice manufactured by automatic ice making machines according to various conventional methods includes cube-shaped ice cubes, sheet ice, other flaky ice, and crushed ice. Of these ice cubes, only the ice cubes mentioned above have the required shape and can be floated on top of drinks or used as a cooling bed for various foodstuffs. However, modern coffee shops, restaurants, and other eating and drinking establishments have advantages over other businesses of the same type in a variety of ways, and are able to attract customers. They are making strenuous efforts to differentiate themselves so that they can focus on their own sales. As a link to this, for example, there is a trend to use spherical ice instead of the conventionally widely distributed ice cubes, thereby providing customers with immediate new changes.

この球状水を製造する手段としては、例えば、実開昭5
8−60177号公報に開示される如く、任意形状の凹
部を適当数形成した受皿と、前記受皿の凹部と対応する
凹部を形成した蓋体とを嵌着可能に構成した製氷皿が知
られている。これは。
As a means for producing this spherical water, for example,
As disclosed in Japanese Patent Application No. 8-60177, an ice making tray is known which is configured such that a saucer having an appropriate number of arbitrarily shaped recesses and a lid having a recess corresponding to the recess of the tray can be fitted into the ice tray. There is. this is.

両凹部により画成される球状空間中に水を満たした状態
で、該製氷皿を冷蔵庫の冷凍室に所要時間収納し、前記
空間中の水を氷結させることにより、球状の氷塊を得る
ものである。また、ゴムシートの如き弾性薄膜からなる
袋体中に水を注入し、これを冷凍室に収納したり不凍液
に浸漬することにより球状水を製造したり、更にブロッ
ク状の氷塊を刃物で切削して、球状水を製造する等の試
みも一部でなされている。
A spherical ice block is obtained by storing the ice cube tray in a freezer compartment of a refrigerator for a required period of time with the spherical space defined by both concave portions filled with water, and freezing the water in the space. be. In addition, spherical water can be produced by injecting water into a bag made of an elastic thin film such as a rubber sheet and storing the bag in a freezer or immersing it in antifreeze, or by cutting a block of ice with a knife. Some attempts have been made to produce spherical water.

しかし前述した手段による球状水の製造方法は、何れも
連続的に大量の球状水を製造し得るものではなく、人手
による煩雑な手間と時間とを要して非能率的であって、
業務用に供し得るものではない、また、冷凍室に収納し
たり、不凍液に浸漬させて、静的に氷結を進行させるも
のであるために、水中に含まれる微少空気の存在により
白濁して、清澄な透明氷塊が得られず、商品価値も低下
する等の欠点が指摘される。従って、均一で透明な球状
水その地条面体状の氷塊を、大量かつ連続的に製造し得
る自動製氷機は、その需要が顕在化しつつある現在にお
いても、未だ実用化されていないのが現状である。
However, none of the above-mentioned methods for producing spherical water can continuously produce a large amount of spherical water, and is inefficient as it requires complicated manual labor and time.
It is not suitable for commercial use, and because it is stored in a freezer or immersed in antifreeze to statically freeze, it becomes cloudy due to the presence of microscopic air contained in the water. Disadvantages have been pointed out, such as not being able to obtain clear blocks of transparent ice and reducing commercial value. Therefore, even though the demand for automatic ice making machines that can continuously produce large quantities of uniform and transparent spherical water and ice cubes shaped like ridges has not yet been put into practical use. It is.

発明の目的 この発明は、前述した従来技術に内在している前記課題
に鑑み、これを好適に解決するべく提案されたものであ
って、簡単な構成でありながら、均一で透明な球状水や
多面体状の氷塊を、連続的に多数製造し得る新規な構成
に係る自動製氷機を提供することを目的とする。
Purpose of the Invention The present invention has been proposed in order to suitably solve the problems inherent in the prior art described above, and has a simple structure, yet can produce uniform and transparent spherical water. It is an object of the present invention to provide an automatic ice making machine with a novel configuration capable of continuously producing a large number of polyhedral ice cubes.

課題を解決するための手段 前述した課題を克服し、所期の目的を好適に達成するた
め本発明は、製氷水タンクに貯留した製氷水をポンプを
介して分配管に圧送し、冷凍系に接続する蒸発器により
冷却される製氷室に、前記分配管に穿設した噴水孔から
製氷水を噴射供給して該製氷室内に氷塊を形成し、該製
氷室で氷結するに到らなかった製氷水は前記製氷水タン
クに帰還させて再循環に供するよう構成した自動製氷機
において、 製氷機本体の内部に傾斜状態で固定配置され、前記蒸発
器を背面に備えると共に、下方に向けて開放する凹部か
らなる第1製氷小室を多数凹設してなる第1製氷室と、 この第1製氷室に対して傾動および離間自在に枢支され
、製氷運転に際し前記第1製氷小室の夫々を斜め下方か
ら対応的に閉成して、内部に氷形成用空間を画成可能な
凹部からなる第2製氷小室を多数凹設すると共に、除氷
運転に際し最大離間時に該第2製氷小室が下方を指向す
るまで溌ね上げられる第2製氷室とから前記製氷室を構
成したことを特徴とする。
Means for Solving the Problems In order to overcome the above-mentioned problems and suitably achieve the intended purpose, the present invention provides a system in which the ice-making water stored in the ice-making water tank is force-fed to the distribution pipe via a pump, and the ice-making water is transferred to the refrigeration system. Ice making water that is injected into an ice making compartment that is cooled by a connected evaporator from a fountain hole drilled in the distribution pipe to form ice blocks within the ice making compartment, but which does not freeze in the ice making compartment. In an automatic ice making machine configured to return water to the ice making water tank for recirculation, the ice making machine is fixedly arranged in an inclined state inside the ice making machine body, the evaporator is provided on the back side, and the water is opened downward. A first ice-making compartment is provided with a plurality of first ice-making compartments each having a concave portion; A plurality of second ice-making chambers each having a concave portion that can be closed correspondingly to define an ice-forming space therein are provided, and the second ice-making chambers are oriented downward at maximum separation during deicing operation. It is characterized in that the ice-making compartment is constituted by a second ice-making compartment that can be raised until the ice-making compartment is raised.

実施例 次に、本発明に係る自動製氷機につき、好適な実施例を
挙げて、添付図面を参照しながら以下説明する。なお、
この発明に係る自動製氷機によれば、第5図(a)に示
す球状氷1以外に、第5図(b)に示す如きダイヤカッ
ト状の多面体水2も製造可能であるが、実施例としては
、多数の同一寸法の球状氷を連続製造する場合につき説
明するものとする。
Embodiments Next, the automatic ice making machine according to the present invention will be described below with reference to preferred embodiments and the accompanying drawings. In addition,
According to the automatic ice making machine according to the present invention, in addition to the spherical ice 1 shown in FIG. 5(a), it is also possible to produce diamond-cut polyhedral water 2 as shown in FIG. 5(b). In this example, a case will be explained in which a large number of spherical ice cubes of the same size are continuously manufactured.

(製氷機構について) 第1図は、本発明に係る自動製氷機の主要製氷機構を、
製氷状態で概略的に示すものであって。
(Regarding the ice-making mechanism) Figure 1 shows the main ice-making mechanism of the automatic ice-making machine according to the present invention.
It is schematically shown in the state of ice making.

所要直径をなす多数の球状氷を製造するための製氷室1
0は、傾斜配置した第1製氷室11と、この第1製氷室
11を下方から開閉自在に開成可能な第2製氷室12と
から基本的に構成されている。
Ice making chamber 1 for producing a large number of spherical ice cubes having a required diameter
0 basically consists of a first ice-making compartment 11 arranged at an angle, and a second ice-making compartment 12 that can be freely opened and closed from below.

第1製氷室11は、良好な熱伝導率を有する金属を材質
とする矩形状の構造体として構成され、製氷機の筐体(
図示せず)内部上方に、所要角度傾斜した姿勢で固定さ
れている。この第1製氷室11の下面部には、下向きに
開放する第1製氷小室13が、所要の整列パターンで多
数凹設されている。夫々の第1製氷小室13は半球状凹
部として形成され、その直径は一例として33であり、
従って凹部の深さは1.51に設定されている。
The first ice-making compartment 11 is configured as a rectangular structure made of metal having good thermal conductivity, and the first ice-making compartment 11 is a rectangular structure made of metal having good thermal conductivity.
(not shown) is fixed at the upper part of the interior in an inclined position at a required angle. In the lower surface of the first ice-making chamber 11, a large number of first ice-making chambers 13 which are opened downward are recessed in a desired alignment pattern. Each of the first ice-making compartments 13 is formed as a hemispherical recess, the diameter of which is, for example, 33,
Therefore, the depth of the recess is set to 1.51.

前記第1製氷室11の上面、つまり各第1製氷小室13
の頂部となる部位には、第2図に示す冷凍系(後述)の
一部を構成する管体からなる蒸発器14が密着固定され
、当該冷凍系を運転することにより、この蒸発器14で
気化冷媒との熱交換が促進されて、第1製氷室11が氷
点下にまで冷却される。また除氷運転時には、第4図に
示す制御回路中のホットガス弁HVの開放により、該蒸
発器14にホットガスを供給して、第1製氷室11を加
温させる。
The upper surface of the first ice making compartment 11, that is, each first ice making compartment 13
An evaporator 14 made of a tube that constitutes a part of a refrigeration system (described later) shown in FIG. 2 is closely fixed to the top of the evaporator 14. Heat exchange with the vaporized refrigerant is promoted, and the first ice making chamber 11 is cooled to below freezing point. Further, during the deicing operation, hot gas is supplied to the evaporator 14 by opening the hot gas valve HV in the control circuit shown in FIG. 4 to heat the first ice making chamber 11.

該第1製氷室11における所要の第1製氷小室13の頂
部には、製氷完了検知手段としての製氷検知サーモTh
□が配設されている。この製氷検知サーモThiは、第
4図に示す制御回路に介装されて、製氷運転中はその接
点Q−aを閉成すると共に接点c −bを開放し、その
製氷運転が終了すると、前記接点c −aを開放すると
共に接点c−bを閉成し得るよう設定されている。また
、別の第1製氷小室13の頂部には、除氷完了検知手段
としての除氷検知サーモTh、が配設され、この除氷検
知サーモTh、は、第1製氷小室13が冷却状態にある
場合にのみ接点を開放し、該製氷小室13から氷が離間
して温度上昇を伴うと、該接点を閉成するよう設定され
ている。
At the top of each of the required first ice-making compartments 13 in the first ice-making compartment 11, there is an ice-making detection thermometer Th as ice-making completion detection means.
□ is provided. This ice-making detection thermometer Thi is installed in the control circuit shown in FIG. 4, and during ice-making operation, it closes its contact Q-a and opens its contacts c-b, and when the ice-making operation ends, the It is set so that contact c-a can be opened and contact c-b can be closed. Further, a deicing detection thermo Th as a deicing completion detecting means is disposed at the top of another first ice making compartment 13, and this deicing detection thermo Th indicates that the first ice making compartment 13 is in a cooling state. The contact is set to be opened only in certain cases, and closed when the ice is separated from the ice making compartment 13 and the temperature rises.

前記第1製氷室11の直下には、その製氷運転に際して
、該第1製氷室11を斜め下方から閉成すると共に、除
氷運転に際して、該第1製氷室11から大きく開放可能
な第2製氷室12が配設されている。この第2製氷室1
2は、熱良導体を材質とする矩形状の構造体として構成
され、前記第1製氷小室13と対応する半球状凹部をな
す第2製氷小室15が、上向きに所要の整列パターンで
多数凹設されている。第211氷小室15の直径も、−
例として31であり、凹部の深さは1.5cmに設定さ
れている。従って、第1製氷室11に対して第2製氷室
12を閉成すると、両製氷小室13.15が相互に対応
して、その内部に直径31の球状空間が画成される。
Immediately below the first ice-making compartment 11, there is a second ice-making compartment which closes the first ice-making compartment 11 from diagonally below during ice-making operation and which can be widely opened from the first ice-making compartment 11 during de-icing operation. A chamber 12 is provided. This second ice making room 1
2 is constructed as a rectangular structure made of a good thermal conductor, and a number of second ice-making chambers 15 forming hemispherical recesses corresponding to the first ice-making chambers 13 are recessed upward in a required alignment pattern. ing. The diameter of the 211th ice chamber 15 is also -
31 as an example, and the depth of the recess is set to 1.5 cm. Therefore, when the second ice-making compartment 12 is closed with respect to the first ice-making compartment 11, the two ice-making compartments 13.15 correspond to each other, and a spherical space with a diameter of 31 is defined therein.

前述の如く、第1製氷室11に対し第2製氷室12を大
きく開放可能とするために、この第2製氷室12の上方
端部は、製氷機の筐体内部上方の固定部位に枢軸16を
介して傾動自在に枢支したブラケット45に取付けられ
ている。従って、第2製氷室12を、この枢軸16を中
心に時計方向に大きく回動させると、第3図(a)に示
す如く、第2製氷小室15を下方に指向させて翻転した
状態で、前記第1製氷小室13を開放可能となる。
As mentioned above, in order to allow the second ice making compartment 12 to be opened widely relative to the first ice making compartment 11, the upper end of the second ice making compartment 12 is attached to the pivot 16 at a fixed location above the inside of the ice maker housing. It is attached to a bracket 45 which is pivotably supported via a . Therefore, when the second ice-making chamber 12 is rotated largely clockwise about this pivot 16, the second ice-making chamber 15 is turned downward and turned over, as shown in FIG. 3(a). , the first ice-making compartment 13 can be opened.

また、′第2製氷室12を枢軸16を中心に反時計方向
に回動させることにより、第1製氷小室13を開成可能
になっている。
Furthermore, by rotating the second ice making chamber 12 counterclockwise around the pivot 16, the first small ice making chamber 13 can be opened.

なお、第2製氷室12の開閉駆動手段としては、第1図
に示す減速機付きのモータ(アクチュエータモータ)A
Mが好適に使用され、このモータAMの回転軸にカムレ
バー17およびレバー片37が同軸的に固定されている
。そして、前記カムレバー17の先端17゛aと第2製
氷室12の前方端部との間に、コイルスプリング18が
弾力的に係着されている。前記カムレバー17の基部に
形成したカム面17bは、第1製氷室11を閉成してい
る第2製氷室12の側部上面にカム係合可能に寸法設定
されている。またカムレバー17の先端17aは、第3
図(a)に示す如く、第1製氷室11を開放する第2製
氷室12の側部上面に係合して、第2製氷小室15を下
方に向指して翻転させ得る寸法に設定されている。
In addition, as the opening/closing driving means for the second ice making chamber 12, a motor (actuator motor) A with a reducer shown in FIG. 1 is used.
A motor AM is preferably used, and a cam lever 17 and a lever piece 37 are coaxially fixed to the rotating shaft of this motor AM. A coil spring 18 is elastically engaged between the tip 17a of the cam lever 17 and the front end of the second ice making chamber 12. The cam surface 17b formed at the base of the cam lever 17 is dimensioned so as to be able to engage with the side upper surface of the second ice making chamber 12 that closes the first ice making chamber 11. Further, the tip 17a of the cam lever 17 is connected to the third
As shown in Figure (a), the size is set so that the second ice making compartment 15 can be turned downward by engaging with the upper surface of the side of the second ice making compartment 12 that opens the first ice making compartment 11. ing.

更に、第1製氷室11には、第4図の回路図に示す切換
スイッチS2が配設され、除氷運転に伴うモータAMの
回転により前記レバー片37が回動すると、切換スイッ
チS2を接点a−b側から接点a−c側に切換付勢し得
るようになっている。
Furthermore, the first ice making chamber 11 is provided with a changeover switch S2 shown in the circuit diagram of FIG. The switching force can be applied from the a-b side to the contact a-c side.

なお、第2製氷小室15の底部周辺に、除氷促進用のヒ
ータHが密着して埋設され、第4図の制御回路に示す如
く、製氷運転が完了して後述するモータAMにより第2
製氷室12が第1製氷室11に対して最大限離間される
と、該ヒータHへの通電がなされる。また第2製氷室1
2の所要部位に、温度検知サーモTh、が配設され、該
第2製氷室12の温度を監視し得るようになっている。
A heater H for promoting ice removal is closely buried around the bottom of the second ice making chamber 15, and as shown in the control circuit of FIG.
When the ice making chamber 12 is spaced apart from the first ice making chamber 11 to the maximum extent possible, the heater H is energized. Also, the second ice making room 1
A temperature detection thermometer Th is disposed at a required location of the second ice making chamber 12, so that the temperature of the second ice making chamber 12 can be monitored.

更に、第2製氷室12における各第2製氷小室15の底
部には、所要径の通孔12aが穿設されて、後述する分
配管24から製氷水の供給および未氷結水の排出を行な
い得るようになっている。
Furthermore, a through hole 12a of a required diameter is bored at the bottom of each second ice making compartment 15 in the second ice making compartment 12, so that ice making water can be supplied and unfrozen water can be discharged from a distribution pipe 24, which will be described later. It looks like this.

第2製氷室12の裏面には、圧力室23を備える分配管
24が僅かな間隙を保持して近接配置され、該分配管2
4には前記第211氷小室15の夫々に対応可能な噴水
孔25が穿設されている6、そして、第1図に示す如く
、第2製氷室12を第1製氷室11に対し閉成した際に
、この噴水孔25の夫々が、第2製氷小室15に穿設し
た前記通孔12aに対応的に臨むように構成しである。
On the back side of the second ice-making chamber 12, a distribution pipe 24 having a pressure chamber 23 is arranged close to it with a slight gap.
4 is provided with a fountain hole 25 that can correspond to each of the 211th ice compartments 15, and as shown in FIG. When this happens, each of the water fountain holes 25 is configured to face the through hole 12a formed in the second ice making chamber 15 in a corresponding manner.

第2製氷室12における裏面の各周囲下端縁には、下方
に延出する側板49が固定されて、・矩形状の堰を形成
している。この側板49からなる矩形状の堰は、第3図
に示すように、第2製氷室12を大きく翻転させて、該
第2製氷室12の裏面を斜め上方に指向させた際に、給
水管27から供給される水を所要量溜めて、余剰の水を
オーバーフローさせることにより、球状氷1の第2製氷
小室15からの剥離を促進する機能を果す。
A side plate 49 extending downward is fixed to each peripheral lower edge of the back surface of the second ice making chamber 12 to form a rectangular dam. As shown in FIG. 3, this rectangular weir consisting of the side plate 49 is used to supply water when the second ice-making chamber 12 is turned over significantly and the back surface of the second ice-making chamber 12 is directed diagonally upward. By storing a required amount of water supplied from the pipe 27 and overflowing the excess water, it functions to promote the separation of the spherical ice 1 from the second ice making chamber 15.

図に示す如く、第1製氷室11および第2製氷室12の
直下には、製氷水タンク19が設置されている。すなわ
ち製氷水タンク19は、製氷機の筐体下方に設けられ、
タンク本体から斜め上方に延在する水案内板48が配設
されている。前記水案内板48は、その最下端縁が下方
に屈曲されて、前記タンク19上端部の上方に臨み、未
氷結水はこの屈曲端縁を介して該タンク19に案内され
ると共に、除氷時の氷塊はこの水案内板48上を滑落し
て貯水庫に回収可能になっている(第3図(C)参照)
、なお、製氷水タンク19から導出した給水管21は、
給水ポンプ22を介して前記圧力室23に連通され、ま
た該タンク19への給水は、給水弁Wvの開放により、
外部水道系に接続している給水管27を介してなされる
As shown in the figure, an ice-making water tank 19 is installed directly below the first ice-making compartment 11 and the second ice-making compartment 12. That is, the ice making water tank 19 is provided below the housing of the ice making machine,
A water guide plate 48 is provided that extends obliquely upward from the tank body. The lowermost edge of the water guide plate 48 is bent downward and faces above the upper end of the tank 19, and unfrozen water is guided to the tank 19 via this bent edge, and the water is de-icing. The ice cubes slide down on this water guide plate 48 and can be collected in the water storage (see Figure 3 (C)).
, Incidentally, the water supply pipe 21 led out from the ice-making water tank 19 is
It is communicated with the pressure chamber 23 via the water supply pump 22, and water is supplied to the tank 19 by opening the water supply valve Wv.
This is done via a water supply pipe 27 connected to an external water system.

(冷凍系について) 第2図は、製氷機における冷凍系の概略構成を示すもの
であって、圧縮機CMで圧縮された気化冷媒は、吐出管
34を経て凝縮器28で凝縮液化し、ドライヤ29で脱
湿された後キャピラリーチューブ30で減圧され、蒸発
器14に流入してここで一挙に膨張して蒸発し、第1製
氷室11と熱交換を行なって、各第1製氷小室13を氷
点下にまで冷却させる。この蒸発器14で蒸発した気化
冷媒と未蒸発の液化冷媒とは、気液混相状態でアキュム
レータ31に流入し、ここで気液分離がなされる。そし
て気相冷媒は、吸入管32を経て圧縮機CMに帰還し、
液相冷媒は当該アキュムレータ31内に貯留される。
(About the refrigeration system) FIG. 2 shows a schematic configuration of the refrigeration system in the ice maker. The vaporized refrigerant compressed by the compressor CM passes through the discharge pipe 34, is condensed and liquefied in the condenser 28, and is then transferred to the dryer. After being dehumidified in step 29, the pressure is reduced in capillary tube 30, and it flows into evaporator 14 where it expands and evaporates all at once, exchanging heat with first ice making chamber 11, and forming each first ice making small chamber 13. Cool to below freezing. The vaporized refrigerant evaporated in the evaporator 14 and the unevaporated liquefied refrigerant flow into the accumulator 31 in a gas-liquid mixed phase state, where they are separated into gas and liquid. The gas phase refrigerant then returns to the compressor CM via the suction pipe 32,
The liquid phase refrigerant is stored in the accumulator 31 .

更に、圧縮機CMの吐出管34からホットガス管33が
分岐され、このホットガス管33はホットガス弁HVを
経て、蒸発器14の入口側に連通されている。このホッ
トガス弁HVは、除氷運転の際にのみ開放し、製氷運転
時は閉成する制御がなされる。すなわち、除氷運転時に
ホットガス弁HVが開放して、圧縮機CMから吐出され
る高温冷媒を、前記ホットガス管33を介して蒸発器1
4にバイパスさせ、各第1製氷小室13を加温すること
により、小室内部に生成される球状水の周面を融解させ
て、各氷塊を自重により落下させる。また蒸発器14か
ら流出した高温冷媒は、アキュムレータ31に流入し、
このアキュムレータ31中に滞留している液相冷媒を加
熱して蒸発させ、気相冷媒として吸入管32から圧縮機
CMに再び帰還させる。なお、図中の符号FMは、凝縮
器28用のファンモータを示す。
Further, a hot gas pipe 33 is branched from the discharge pipe 34 of the compressor CM, and this hot gas pipe 33 is communicated with the inlet side of the evaporator 14 via a hot gas valve HV. This hot gas valve HV is controlled to be opened only during deicing operation and closed during ice making operation. That is, during deicing operation, the hot gas valve HV is opened and the high temperature refrigerant discharged from the compressor CM is sent to the evaporator 1 via the hot gas pipe 33.
4 and heat each first ice-making chamber 13, the circumferential surface of the spherical water generated inside the chamber is melted, and each ice block is caused to fall by its own weight. Further, the high temperature refrigerant flowing out from the evaporator 14 flows into the accumulator 31,
The liquid phase refrigerant staying in the accumulator 31 is heated to evaporate and is returned to the compressor CM through the suction pipe 32 as a gas phase refrigerant. Note that the symbol FM in the figure indicates a fan motor for the condenser 28.

(電気制御回路について) この実施例に示す装置を作動させる制御回路の一例を、
第4図に示す0図において、電源供給ラインRと接続点
りとの間に、ヒユーズFと貯水検知スイッチS工とが直
列に設けられ、この接続点りと電源供給ラインTとの間
に、圧縮機CM単体並びにリレーXの常閉接点X−1b
を介するファンモータFMが夫々並列接続されている。
(About the electrical control circuit) An example of the control circuit that operates the device shown in this example is as follows:
In Figure 4, a fuse F and a water storage detection switch S are provided in series between the power supply line R and the connection point, and between this connection point and the power supply line T. , normally closed contact X-1b of compressor CM alone and relay X
The fan motors FM are connected in parallel.

また除氷運転に際して、前記第2製氷室12の傾動によ
り付勢される切換スイッチS2の端子aが接続点りに接
続され、この切換スイッチS2の切換接点すは、電源供
給ラインTとの間に以下の素子を並列接続している。
Further, during the deicing operation, the terminal a of the changeover switch S2, which is energized by the tilting of the second ice making chamber 12, is connected to the connection point, and the changeover contact of the changeover switch S2 is connected to the power supply line T. The following elements are connected in parallel.

■タイマT ■製氷検知サーモTh□の接点C9接点a、リレーXの
常閉接点X−2b、ポンプモータPMの直列系。
■Timer T ■Series system of ice-making detection thermometer Th□ contact C9 contact a, relay X normally closed contact X-2b, and pump motor PM.

なお、切換スイッチS2の切換接点すとポンプモータP
Mとの間には、タイマTの常閉接点Tbが介装されてい
る。
In addition, when the changeover contact of the changeover switch S2 is connected to the pump motor P
A normally closed contact Tb of a timer T is interposed between the timer T and M.

■リレーXの常開接点X−1a、製氷検知サーモThユ
の接点す、タイマTの常開接点Ta、リレーXの直列系
■Normally open contact X-1a of relay X, contact of ice-making detection thermometer Th, normally open contact Ta of timer T, and relay X in series.

■リレーXの常開接点X −2aとホットガス弁HVと
の直列系。また、リレーXの常開接点X−2aとアクチ
ュエータモータAMの傾動駆動用端子mとの間に、除氷
検知サーモTh、が介装され、該モータAMの端子には
ラインTに接続されている。
■Series system between normally open contact X-2a of relay X and hot gas valve HV. Furthermore, a deicing detection thermometer Th is interposed between the normally open contact X-2a of the relay X and the tilting drive terminal m of the actuator motor AM, and the terminal of the motor AM is connected to the line T. There is.

更に、切換スイッチS2の切換接点Cは、前記温度検知
サーモTh、の接点a−b側を介してモータAMの復帰
駆動用端子nに接続されている。また前記温度検知サー
モTh3の接点CとラインTとの間には、給水弁Wvお
よびヒータHが並列接続されている。なお前記タイマT
は、製氷運転の開始と共に所要設定時限の積算を開始し
、その所要設定時限がタイムアツプすると、その常閉接
点Tbを開放すると共に、常開接点Taを閉成する動作
をなし得るようになっている。
Further, the changeover contact C of the changeover switch S2 is connected to the return drive terminal n of the motor AM via the contact a-b side of the temperature detection thermometer Th. Further, between the contact point C of the temperature detection thermometer Th3 and the line T, a water supply valve Wv and a heater H are connected in parallel. Note that the timer T
starts accumulating the required set time at the start of the ice-making operation, and when the required set time expires, opens the normally closed contact Tb and closes the normally open contact Ta. There is.

(実施例の作用について) 次に、実施例に係る製氷機の作用につき説明する。先ず
、自動製氷機に電源(電源スィッチは図示せず)を投入
する。このとき貯水庫内には氷塊が貯留されていないの
で、貯水検知スイッチS1は閉成され、また切換スイッ
チS2は接点a−b側に接続されている。第1製氷室1
1.の温度は室温程度に保持されているため、製氷検知
サーモTh工は接点C−a側に接続されている。除氷検
知サーモTh2は、第1製氷室11の温度が所定値以上
で接点が閉成し、所定値以下で接点が開放するものであ
って、製氷運転の進行中は、その接点を閉成している。
(About the operation of the embodiment) Next, the operation of the ice maker according to the embodiment will be explained. First, the automatic ice maker is powered on (the power switch is not shown). At this time, since no ice blocks are stored in the water storage, the water storage detection switch S1 is closed, and the changeover switch S2 is connected to the contacts a and b. 1st ice making room 1
1. Since the temperature is maintained at about room temperature, the ice making detection thermometer is connected to the contact C-a side. The deicing detection thermometer Th2 has a contact that closes when the temperature of the first ice making chamber 11 is above a predetermined value and opens when the temperature is below a predetermined value, and the contact is closed while ice making operation is in progress. are doing.

更に温度検知サーモTh3は、第2製氷室12の温度が
所定値以下で接点a −c間が閉成し、所定値以上で接
点a−b間が閉成するものであって、製氷運転の進行中
は、接点a−b間を閉成すると共に接点a−Q間は開放
させている。
Furthermore, the temperature detection thermometer Th3 closes the contacts a and c when the temperature of the second ice making chamber 12 is below a predetermined value, and closes between the contacts a and b when the temperature is above a predetermined value, and the temperature detecting thermometer Th3 is such that when the temperature of the second ice making chamber 12 is below a predetermined value, the contacts a and b are closed. During the process, contacts a and b are closed, and contacts a and Q are opened.

従って電源投入と同時に、圧縮機CM、ファンモータF
M、ポンプモータPMへの通電が開始され製氷運転に入
り、これにより、第1製氷室11に設けた蒸発器14で
の冷媒循環がなされて、当該第1製氷室11の冷却がな
される。また製氷水タンク19からの製氷水20は、分
配管24にポンプ圧送され、該分配管24における各噴
水孔25および第2製氷室12に穿設した前記通孔12
aを介して、これに対応する各第2製氷小室15中に噴
射される。なお、前記タイマTは、製氷運転の開始と共
に所要設定時限の積算を開始する。
Therefore, at the same time as the power is turned on, compressor CM and fan motor F
M, energization to the pump motor PM is started and ice making operation begins, whereby the refrigerant is circulated in the evaporator 14 provided in the first ice making compartment 11 and the first ice making compartment 11 is cooled. The ice-making water 20 from the ice-making water tank 19 is pumped to the distribution pipe 24, and the water fountains 25 in the distribution pipe 24 and the through holes 12 formed in the second ice-making chamber 12
a into each corresponding second ice-making compartment 15. Note that the timer T starts accumulating the required set time at the start of the ice-making operation.

噴射された製氷水は、第1製氷小室13の内面に接触し
て冷却され、下方の第2製氷室12における第2製氷小
室15を潤した後、この第2製氷小室15の底部に穿設
した前記通孔12aを介して落下し、前記水案内板48
を経て製氷水タンク19に戻され、再度の循環に供され
る。この製氷水の循環を反復する内に、タンク19中に
貯留される製氷水全体の温度が次第に低下する。また第
2製氷室12は、その一部において第111!氷室11
に接触していると共に、当該第2製氷小室15に冷却さ
れた未氷結水が接触して循環するので、第2製氷室12
自体の温度も同様に次第に低下して氷結点以下となる。
The injected ice-making water comes into contact with the inner surface of the first ice-making chamber 13 and is cooled, moistening the second ice-making chamber 15 in the second ice-making chamber 12 located below. The water falls through the through hole 12a, and the water guide plate 48
The ice is then returned to the ice making water tank 19 and subjected to circulation again. As this ice-making water circulation is repeated, the overall temperature of the ice-making water stored in the tank 19 gradually decreases. In addition, the second ice making room 12 has a part in the 111th! Himuro 11
At the same time, the unfrozen water cooled in the second ice-making compartment 15 is in contact with and circulated, so that the second ice-making compartment 12
Similarly, the temperature itself gradually decreases to below the freezing point.

そして、先ず第1製氷小室13の内壁面で製氷水の一部
が凍結して氷層が形成され、未氷結水は戻り孔を兼ねる
通孔12aを経て製氷水タンク19に帰還するサイクル
を重ねる間に、前記氷層の成長が更に進行して、最終的
に第1製氷小室13および第2製氷小室15に画成され
る球状空間中に球状氷1が徐々に生成される。
First, a portion of the ice-making water freezes on the inner wall surface of the first ice-making chamber 13 to form an ice layer, and the unfrozen water returns to the ice-making water tank 19 through the through hole 12a, which also serves as a return hole, repeating the cycle. In the meantime, the growth of the ice layer further progresses, and finally spherical ice 1 is gradually generated in the spherical space defined by the first ice making compartment 13 and the second ice making compartment 15.

また、この間に前記タイマTがタイムアツプして、その
常閉接点Tbを開放すると共に、常開接点Taを閉成す
る。そして、前述した如く、第1製氷小室13および第
2製氷小室15での製氷が進行して、第1製氷室11の
温度が所要の温度域まで低下すると、これを検知した製
氷検知サーモTh工が接点c −a側から接点c−b側
に切換わり、ポンプモータPMへの通電が停止される。
Also, during this time, the timer T times up, opens the normally closed contact Tb, and closes the normally open contact Ta. As described above, when the ice making in the first ice making compartment 13 and the second ice making compartment 15 progresses and the temperature of the first ice making compartment 11 falls to a required temperature range, the ice making detection thermometer Th is switched from the contact c-a side to the contact c-b side, and energization to the pump motor PM is stopped.

また、閉成中の常開接点Taを介して、リレーXが励磁
され、その常閉接点X−1bが開放して、ファンモータ
FMへの通電が停止される。更に常開接点X−1aの開
成により、リレー又は自己保持されると共に、常開接点
X−2aの閉成によりホットガス弁HVが開放して、圧
縮機CMから吐出される高温冷媒を蒸発器14に循環供
給させる(第6図のタイミングチャート図参照)。これ
により第1製氷室11の加温がなされ、その第1製氷小
室13の内面と球状氷との氷結面の融解を開始し、この
球状氷1と第1製氷小室13との結合力を低下させる。
In addition, the relay X is energized via the normally open contact Ta, which is currently closed, and its normally closed contact X-1b is opened to stop energizing the fan motor FM. Further, by opening the normally open contact X-1a, the relay or self-holding is performed, and by closing the normally open contact X-2a, the hot gas valve HV is opened, and the high temperature refrigerant discharged from the compressor CM is transferred to the evaporator. 14 (see timing chart in FIG. 6). As a result, the first ice-making chamber 11 is heated, and the frozen surface between the inner surface of the first ice-making chamber 13 and the spherical ice starts to melt, and the bonding force between the spherical ice 1 and the first ice-making chamber 13 is reduced. let

すると、除氷検知サーモTh、が第1製氷室11の温度
上昇を検知し、その接点を閉成するので、アクチュエー
タモータAMの傾動駆動用端子mへの通電がなされ、カ
ムレバー17が回転して、基部に形成したカム面17b
が第2製氷室12の側部上面を強制的に下方に押圧する
。既に述べた如く、第1製氷小室13に対する球状氷の
氷結は解除されているので、当該第2製氷室12は第1
製氷室11から強制剥離されて、時計方向に傾動し始め
る。そして、第2製氷室12は、その第2製氷小室15
に球状氷1を氷結させたままの状態で、最終的に第3図
(a)に示す如く、略逆転状態にまで翻転して、その裏
面を斜め上方に指向させた姿勢に至る。このとき、第2
製氷小室15から露出した球状氷1の下半部は、製氷水
タンク19の水案内板48の上方に位置している。
Then, the de-icing detection thermometer Th detects the temperature rise in the first ice-making chamber 11 and closes its contact, so that the tilting drive terminal m of the actuator motor AM is energized, and the cam lever 17 is rotated. , a cam surface 17b formed at the base.
forces the upper side surface of the second ice making chamber 12 downward. As already mentioned, since the spherical ice in the first ice making compartment 13 has been thawed, the second ice making compartment 12 is
It is forcibly separated from the ice making compartment 11 and begins to tilt clockwise. The second ice-making compartment 12 includes a second ice-making compartment 15.
As shown in FIG. 3(a), the spherical ice 1 is kept frozen until it is turned almost upside down to a position with its back surface facing diagonally upward. At this time, the second
The lower half of the spherical ice 1 exposed from the ice making chamber 15 is located above the water guide plate 48 of the ice making water tank 19.

第2製氷室12の翻転姿勢が最大に達したタイミングに
おいて、第3図(a)に示す如く、前記レバー片37が
切換スイッチS2を押圧付勢し、その接点a −bを接
点a −Q側に切換える。これによりアクチュエータモ
ータAMの駆動が停止されると共に、リレーXが減勢さ
れ常開接点X −1aが開放して該リレーXの自己保持
を解除する。また常閉接点X−1bが閉成してファンモ
ータFMへの通電を開始すると共に、常開接点X −2
aが開放してホットガス弁HVが閉成し、蒸発器14へ
の冷媒供給を再開して第1製氷室11の冷却を開始する
At the timing when the second ice-making chamber 12 reaches its maximum rotational position, the lever piece 37 presses and biases the changeover switch S2, as shown in FIG. Switch to Q side. As a result, the drive of the actuator motor AM is stopped, the relay X is deenergized, the normally open contact X-1a is opened, and the self-holding of the relay X is released. In addition, the normally closed contact X-1b closes and starts energizing the fan motor FM, and the normally open contact X-2
a opens, hot gas valve HV closes, refrigerant supply to evaporator 14 is resumed, and cooling of first ice making chamber 11 is started.

第2製氷室12には、未だ球状水1が付着しているので
、温度検知サーモTh3は接点a −Q側に切換ねった
ままである。従って切換スイッチS2の接点a−bから
接点a−c側への切換えにより、給水弁Wvが開放して
、給水管27から常温の外部水道水を第2製氷室12の
裏面に供給する。この第2製氷室12の裏面には、前述
した如く、側板49により矩形状の堰が形成されている
から、第3図(b)に示す如く、前記常温の外部水道水
はこの堰に所要量溜められて該第2製氷室12を温度上
昇させ、余剰の水はオーバーフローした後、水案内板4
8を介して製氷水タンク19に案内回収される。タンク
19に導びかれた水は、その水位を上昇させ、所定水位
に達するとオーバーフロー管50から外部に排出される
。また、前記給水弁Wvの開放と共に、ヒータHへの通
電もなされて、第2製氷室12に対する積極的な加熱も
なされ、第2製氷小室15と球状水1との氷結を融解さ
せて、第3図(c)に示すように、小室壁面と球状水1
との氷結が解除され、当該球状水1は自重により落下し
、その直下に設けた水案内板48に沿って滑落して貯水
庫(図示せず)に案内回収される。
Since the spherical water 1 is still attached to the second ice-making compartment 12, the temperature detection thermometer Th3 remains not switched to the contact point a-Q side. Therefore, by switching the changeover switch S2 from contacts a-b to contacts a-c, the water supply valve Wv is opened, and external tap water at room temperature is supplied from the water supply pipe 27 to the back surface of the second ice-making compartment 12. As mentioned above, a rectangular weir is formed on the back side of the second ice making chamber 12 by the side plate 49, so as shown in FIG. After the excess water is stored and the temperature of the second ice making chamber 12 is increased, and the excess water overflows, the water guide plate 4
8 and is guided and collected into the ice-making water tank 19. The water introduced into the tank 19 raises its water level, and when it reaches a predetermined water level, it is discharged to the outside from the overflow pipe 50. In addition, when the water supply valve Wv is opened, the heater H is also energized to actively heat the second ice-making chamber 12, melting the ice in the second ice-making chamber 15 and the spherical water 1, and As shown in Figure 3 (c), the chamber wall and the spherical water 1
When the ice is removed, the spherical water 1 falls due to its own weight, slides down along a water guide plate 48 provided directly below it, and is guided and collected in a water storage (not shown).

このように、球状水1が全て第2製氷小室15から離脱
すると、第2製氷室12の温度は依然として給水管27
から供給される外部水道水の影響により次第に上昇する
。そして、該第2製氷室12における各第2製氷小室1
5に穿設した前記通孔12aを閉塞している氷が融解さ
れると、この通孔12aを介して水道水は落下し、水案
内板48を介して製氷水タンク19に案内される(第3
図(d)参照)。また、第2製氷室12の温度上昇を前
記温度検知サーモTh、が検知し、その接点a−c側か
ら接点a −b側に切換える。これにより前記給水弁W
vの閉成とヒータHの通電停止を行なうと共に、アクチ
ュエータモータAMにおける復帰駆動用端子nへの通電
がなされる。従って、該モータAMは逆回転してカムレ
バー17を駆動し、該レバー17と第2製氷室12との
間に弾力的に係着したコイルスプリング18により、第
2製氷室12を反時計方向に回動付勢して、傾斜状態に
復帰させることにより、再び第1製氷室11の第1製氷
小室13を下方から閉成する。
In this way, when all the spherical water 1 leaves the second ice making chamber 15, the temperature of the second ice making chamber 12 remains at the water supply pipe 27.
It gradually rises due to the influence of external tap water supplied from outside. Each second ice making compartment 1 in the second ice making compartment 12
When the ice blocking the through hole 12a drilled in 5 is melted, tap water falls through the through hole 12a and is guided to the ice making water tank 19 via the water guide plate 48 ( Third
(See figure (d)). Further, the temperature detection thermometer Th detects a temperature rise in the second ice making compartment 12, and switches from the contact a-c side to the contact a-b side. As a result, the water supply valve W
At the same time, the return drive terminal n of the actuator motor AM is energized. Therefore, the motor AM reversely rotates to drive the cam lever 17, and the coil spring 18 elastically engaged between the lever 17 and the second ice making chamber 12 causes the second ice making chamber 12 to move counterclockwise. By rotationally biasing and returning to the tilted state, the first ice making compartment 13 of the first ice making compartment 11 is again closed from below.

なお、前記モータAMの逆回転によりカムレバー17も
逆回転し、前記切換スイッチS2を押圧付勢して、その
接点a−c側から接点a−b側に切換えて製氷運転を再
開する。ところで第2製氷室12は、先の除氷運転中に
、切換スイッチS2が接点a−b側から接点a −c側
に切換ねった時点から再び該スイッチS2が接点a−C
側から接点a−b側に切換ねるまでの間、無負荷状態で
の冷却がなされて、製氷完了温度以下にまで温度低下し
ている。従って、製氷検知サーモTh1も、その接点c
−a側から接点c−b側に既に切換わっている。この状
態で、切換スイッチS2が接点a −c側から接点a−
b側に切換ねると、製氷検知サーモTh□は製氷完了を
検知しているため、再び除氷運転に入って、以後第1製
氷室11での冷却・加熱が反復されるハンチング状態と
なる。
Incidentally, due to the reverse rotation of the motor AM, the cam lever 17 also rotates in the reverse direction, and the changeover switch S2 is pressed and energized to switch from the contact ac side to the contact ab side to restart the ice making operation. By the way, in the second ice making chamber 12, from the time when the changeover switch S2 changed from the contact a-b side to the contact a-c side during the previous deicing operation, the switch S2 changes again to the contact a-c side.
Until switching from the side to the contact a-b side, cooling is performed in a no-load state, and the temperature drops to below the ice-making completion temperature. Therefore, the ice-making detection thermometer Th1 also has its contact point c.
The contact has already been switched from the -a side to the contact c-b side. In this state, the changeover switch S2 changes from the contact a-c side to the contact a-
When switched to the b side, since the ice making detection thermometer Th□ has detected the completion of ice making, the deicing operation is started again, and thereafter a hunting state occurs in which cooling and heating in the first ice making chamber 11 are repeated.

そこで、本実施例では、タイマTが製氷運転の開始と共
に所要設定時限の積算を開始し、その設定時限がタイム
アツプしない限り、製氷検知サーモTh1からの信号を
受入れないようになっている(第6図のタイムチャート
図参照)、すなわち、切換スイッチS2が接点a−b側
に切換わると、製氷検知サーモTh工は接点c−b側に
切換わってはいるが、タイマTの常開接点Taは開放し
ているので、リレーXへの通電はなされない。このため
リレーXの常開接点X−2aは開放状態を継続し、かつ
常閉接点X−1b、常閉接点X−2bは閉成状態を継続
して、第1製氷室11での冷却が引続きなされる。
Therefore, in this embodiment, the timer T starts accumulating the required set time at the start of the ice-making operation, and does not accept the signal from the ice-making detection thermo Th1 unless the set time expires (sixth In other words, when the changeover switch S2 is switched to the contact a-b side, the ice-making detection thermometer Th is switched to the contact c-b side, but the normally open contact Ta of the timer T is switched to the contact c-b side. Since is open, relay X is not energized. Therefore, the normally open contact X-2a of the relay X continues to be in the open state, and the normally closed contacts X-1b and normally closed contacts This will continue to be done.

また、タイマTの常閉接点Tbは閉成しているので、ポ
ンプモータPMへの通電がなされ、製氷水タンク19中
の温度上昇した製氷水を、分配管24における各噴水孔
25および第2製氷室12に穿設した前記通孔12aを
介して、これに対応する各第2製氷小室15中に噴射す
る。この温度上昇している製氷水は、製氷完了温度以下
にまで過冷却された第1製氷室11に接触して急速冷却
されると共に、熱交換により第1製・氷室11に温度上
昇を来す。そして、当該第1製氷室11の温度が、製氷
完了温度以上に達すると、製氷検知サーモTh1が接点
c−b側から接点a−a側に切換わって、この系統から
もポンプモータPMへの通電がなされる。
In addition, since the normally closed contact Tb of the timer T is closed, the pump motor PM is energized, and the ice making water whose temperature has increased in the ice making water tank 19 is transferred to each water fountain 25 in the distribution pipe 24 and the second The ice is injected through the through holes 12a formed in the ice making chamber 12 into the corresponding second ice making chambers 15. This ice-making water whose temperature has increased comes into contact with the first ice-making compartment 11, which has been supercooled to below the ice-making completion temperature, and is rapidly cooled, and the temperature rises in the first ice-making compartment 11 through heat exchange. . When the temperature of the first ice-making chamber 11 reaches the ice-making completion temperature or higher, the ice-making detection thermometer Th1 switches from the contact c-b side to the contact a-a side, and this system also connects the pump motor PM. Electricity is applied.

その機雷くすると、タイマTの設定時限がタイムアツプ
し、その常閉接点Taが閉成すると共に、常閉接点Tb
が開放される。このため、ポンプモータPMへの通電は
製氷検知サーモTh、の接点a−a側からのみとなる。
When the mine hits, the set time limit of timer T times up, the normally closed contact Ta closes, and the normally closed contact Tb
will be released. Therefore, the pump motor PM is energized only from the contact a-a side of the ice-making detection thermometer Th.

前述した製氷運転と除氷運転とが反復されて、貯水庫に
所定量の球状氷が貯留されると、貯水検知スイッチS工
が開放して製氷機の運転が停止される。
When the ice making operation and deicing operation described above are repeated and a predetermined amount of spherical ice is stored in the water storage, the water storage detection switch S is opened and the operation of the ice maker is stopped.

なお、図示の実施例では、除氷運転により第1製氷室1
1から第2製氷室12が離脱しても、その第2製氷小室
15中に球状氷1が氷結していて、除氷運転の進行によ
り当該第2製氷小室15から球状氷1が落下するよう除
氷制御がなされるものであった。しかしその逆に、除氷
運転により第1製氷室11から第2製氷室12が離脱し
た際に、第1製氷小室13中に球状氷1が氷結しており
、除氷運転の進行によって、該第1製氷小室13から球
状氷1が落下する制御を行なうようにしてもよい。
In addition, in the illustrated embodiment, the first ice making chamber 1 is
Even if the second ice-making compartment 12 is separated from the second ice-making compartment 12, the spherical ice 1 remains frozen in the second ice-making compartment 15, and as the deicing operation progresses, the spherical ice 1 will fall from the second ice-making compartment 15. De-icing control was performed. However, on the contrary, when the second ice making compartment 12 is detached from the first ice making compartment 11 during the deicing operation, the spherical ice 1 is frozen in the first ice making compartment 13, and as the deicing operation progresses, the spherical ice 1 is frozen. The spherical ice 1 may be controlled to fall from the first ice making chamber 13.

発明の効果 以上詳細に説明した如く、本発明に係る自動製氷機によ
れば、所定直径の透明で清澄な球状氷が連続的に多数生
産されるものであって、産業上の諸々の用途に有効に使
用されるものである。また図示例では、球状氷を製造す
る場合につき説明したが、第1製氷小室および第2製氷
小室の内面形状を変更することにより、第5図(b)に
示す如き多面状氷を大量生産するのにも好適に使用され
る。
Effects of the Invention As explained in detail above, the automatic ice making machine according to the present invention continuously produces a large number of transparent and clear spherical ice of a predetermined diameter, and is suitable for various industrial uses. It should be used effectively. Furthermore, in the illustrated example, explanation has been given on the case of manufacturing spherical ice, but by changing the inner surface shapes of the first ice-making chamber and the second ice-making chamber, multifaceted ice as shown in FIG. 5(b) can be mass-produced. It is also suitable for use.

なお球状氷の用途としては、レストランや喫茶店等での
用途以外に、当該氷が稠密で極めて硬いために1例えば
ゴルフボールとしての代用も可能である。この場合は、
打放しの練習場等で使用すれば、打撃された球状氷は溶
けて水になるので、ボール回収の手間が省ける優れた利
点がある。
In addition to uses in restaurants and coffee shops, spherical ice can also be used as a golf ball, for example, since the ice is dense and extremely hard. in this case,
When used at a hitting practice range, the spherical ice that is hit melts into water, which has the advantage of saving time and effort in collecting the balls.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る自動製氷機の製氷機構の概略構成
を示す縦断面図、第2図は自動製氷機における一般的な
冷凍系の回路図、第3図(a)〜(d)は実施例に係る
装置において、第2製氷室が大きく翻転して第1製氷室
から分離し、次いで当該第2製氷室から球状氷を貯水庫
に向けて放出する状態を経時的に示す説明図、第4図は
実施例に係る装置を運転制御する製氷制御回路の一例を
示す回路図、第5図(a)は球状氷を示す説明図、第5
図(b)は多面状氷を示す説明図、第6図は実施例に係
る製氷装置を、第4図に示す製氷制御回路により運転制
御した際のタイミングチャート図である。 11・・・第1製氷室  12・・・第2製氷室13・
・・第1製氷小室 14・・・蒸発器15・・・第2製
氷小室 19・・・製氷水タンク22・・・ポンプ  
  24・・・分配管25・・・噴水孔 特許出願人   星崎電機株式会社 出願人代理人   弁理士 山 本 喜 幾11・・・
第1製氷室 12・・・第2製氷室 13・・・第1製氷小室 14・・・蒸発器 15・・・第2製氷小室 19・・・製氷水タンク 22・・・ポンプ 24・・・分配管 2S・・・噴水孔 1ソ A’)2− Fl(3,4 FI05 (at           (bl
Fig. 1 is a longitudinal sectional view showing a schematic configuration of the ice making mechanism of an automatic ice maker according to the present invention, Fig. 2 is a circuit diagram of a general refrigeration system in an automatic ice maker, and Figs. 3 (a) to (d). is an explanation showing over time a state in which the second ice-making compartment is largely turned and separated from the first ice-making compartment, and then spherical ice is discharged from the second ice-making compartment toward the water storage in the apparatus according to the embodiment. 4 is a circuit diagram showing an example of an ice making control circuit for controlling the operation of the device according to the embodiment, FIG. 5(a) is an explanatory diagram showing spherical ice, and FIG.
FIG. 6 is an explanatory diagram showing multifaceted ice, and FIG. 6 is a timing chart when the ice making apparatus according to the embodiment is operated and controlled by the ice making control circuit shown in FIG. 4. 11...First ice making room 12...Second ice making room 13.
...First ice making chamber 14...Evaporator 15...Second ice making chamber 19...Ice making water tank 22...Pump
24... Distribution pipe 25... Fountain hole patent applicant Hoshizaki Electric Co., Ltd. Applicant's agent Patent attorney Yoshiki Yamamoto 11...
First ice making compartment 12...Second ice making compartment 13...First ice making compartment 14...Evaporator 15...Second ice making compartment 19...Ice making water tank 22...Pump 24... Distribution pipe 2S... Fountain hole 1S A') 2-Fl(3,4 FI05 (at (bl

Claims (1)

【特許請求の範囲】 〔1〕製氷水タンク(19)に貯留した製氷水をポンプ
(22)を介して分配管(24)に圧送し、冷凍系に接
続する蒸発器(14)により冷却される製氷室に、前記
分配管(24)に穿設した噴水孔(25)から製氷水を
噴射供給して該製氷室内に氷塊を形成し、該製氷室で氷
結するに到らなかった製氷水は前記製氷水タンク(19
)に帰還させて再循環に供するよう構成した自動製氷機
において、 製氷機本体の内部に傾斜状態で固定配置され、前記蒸発
器(14)を背面に備えると共に、下方に向けて開放す
る凹部からなる第1製氷小室(13)を多数凹設してな
る第1製氷室(11)と、 この第1製氷室(11)に対して傾動および離間自在に
枢支され、製氷運転に際し前記第1製氷小室(13)の
夫々を斜め下方から対応的に閉成して、内部に氷形成用
空間を画成可能な凹部からなる第2製氷小室(15)を
多数凹設すると共に、除氷運転に際し最大離間時に該第
2製氷小室(15)が下方を指向するまで溌ね上げられ
る第2製氷室(12)とから前記製氷室を構成した ことを特徴とする自動製氷機。 〔2〕前記第1製氷小室(13)およびこれに対応する
第2製氷小室(15)は、両者が対向し合うことにより
、その内部に球体状の氷形成用空間が画成される請求項
1記載の自動製氷機。 〔3〕前記第1製氷小室(13)およびこれに対応する
第2製氷小室(15)は、両者が対向し合うことにより
、その内部に多面体状の氷形成用空間が画成される請求
項1記載の自動製氷機。
[Claims] [1] Ice-making water stored in an ice-making water tank (19) is sent under pressure to a distribution pipe (24) via a pump (22), and is cooled by an evaporator (14) connected to a refrigeration system. Ice-making water is injected into the ice-making compartment from the fountain hole (25) drilled in the distribution pipe (24) to form ice cubes in the ice-making compartment, and the ice-making water that has not frozen in the ice-making compartment is is the ice making water tank (19
) is fixedly arranged in an inclined state inside the ice maker body, the evaporator (14) is provided on the back side, and the evaporator (14) is provided on the back side, and the evaporator (14) is provided from a recess opening downward. a first ice-making compartment (11) having a plurality of first ice-making compartments (13) recessed therein; Each of the ice-making chambers (13) is correspondingly closed from diagonally downward to provide a number of second ice-making chambers (15) each consisting of a concave portion that can define an ice-forming space inside, and the ice-making operation is performed. An automatic ice-making machine characterized in that the ice-making compartment is constituted by a second ice-making compartment (12) that is raised until the second ice-making compartment (15) is oriented downward when the second ice-making compartment (15) is maximally separated. [2] A spherical ice forming space is defined inside the first ice making chamber (13) and the corresponding second ice making chamber (15) by facing each other. The automatic ice making machine described in 1. [3] The first ice-making chamber (13) and the corresponding second ice-making chamber (15) face each other, thereby defining a polyhedral ice-forming space therein. The automatic ice making machine described in 1.
JP1986088A 1988-01-29 1988-01-29 Automatic ice making machine Granted JPH01196478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986088A JPH01196478A (en) 1988-01-29 1988-01-29 Automatic ice making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986088A JPH01196478A (en) 1988-01-29 1988-01-29 Automatic ice making machine

Publications (2)

Publication Number Publication Date
JPH01196478A true JPH01196478A (en) 1989-08-08
JPH0544587B2 JPH0544587B2 (en) 1993-07-06

Family

ID=12010979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986088A Granted JPH01196478A (en) 1988-01-29 1988-01-29 Automatic ice making machine

Country Status (1)

Country Link
JP (1) JPH01196478A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9759472B2 (en) 2012-12-13 2017-09-12 Whirlpool Corporation Clear ice maker with warm air flow
US9816744B2 (en) 2012-12-13 2017-11-14 Whirlpool Corporation Twist harvest ice geometry
US9890986B2 (en) 2012-12-13 2018-02-13 Whirlpool Corporation Clear ice maker and method for forming clear ice
US10030901B2 (en) 2012-05-03 2018-07-24 Whirlpool Corporation Heater-less ice maker assembly with a twistable tray
US10047996B2 (en) 2012-12-13 2018-08-14 Whirlpool Corporation Multi-sheet spherical ice making
US10066861B2 (en) 2012-11-16 2018-09-04 Whirlpool Corporation Ice cube release and rapid freeze using fluid exchange apparatus
US10161663B2 (en) 2012-12-13 2018-12-25 Whirlpool Corporation Ice maker with rocking cold plate
US10174982B2 (en) 2012-12-13 2019-01-08 Whirlpool Corporation Clear ice maker
US10378806B2 (en) 2012-12-13 2019-08-13 Whirlpool Corporation Clear ice maker
US10605512B2 (en) 2012-12-13 2020-03-31 Whirlpool Corporation Method of warming a mold apparatus
EP3653969A1 (en) * 2018-11-16 2020-05-20 LG Electronics Inc. Ice maker for a home appliance
EP3653960A1 (en) * 2018-11-16 2020-05-20 LG Electronics Inc. Ice maker
EP3653967A1 (en) * 2018-11-16 2020-05-20 LG Electronics Inc. Ice maker and refrigerator
US10690388B2 (en) 2014-10-23 2020-06-23 Whirlpool Corporation Method and apparatus for increasing rate of ice production in an automatic ice maker
US10739053B2 (en) 2017-11-13 2020-08-11 Whirlpool Corporation Ice-making appliance
US10845111B2 (en) 2012-12-13 2020-11-24 Whirlpool Corporation Layering of low thermal conductive material on metal tray
US10907874B2 (en) 2018-10-22 2021-02-02 Whirlpool Corporation Ice maker downspout
EP4098956A1 (en) * 2018-11-16 2022-12-07 LG Electronics Inc. Ice maker and refrigerator
US11578904B2 (en) 2018-11-16 2023-02-14 Lg Electronics Inc. Ice maker and refrigerator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142149A (en) * 1975-05-31 1976-12-07 Kenichi Hamada Ice making apparatus forming certain figure by cover and body and also over used for it
JPS5822864A (en) * 1981-07-30 1983-02-10 松下電器産業株式会社 Automatic ice machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142149A (en) * 1975-05-31 1976-12-07 Kenichi Hamada Ice making apparatus forming certain figure by cover and body and also over used for it
JPS5822864A (en) * 1981-07-30 1983-02-10 松下電器産業株式会社 Automatic ice machine

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10030901B2 (en) 2012-05-03 2018-07-24 Whirlpool Corporation Heater-less ice maker assembly with a twistable tray
US10030902B2 (en) 2012-05-03 2018-07-24 Whirlpool Corporation Twistable tray for heater-less ice maker
US10066861B2 (en) 2012-11-16 2018-09-04 Whirlpool Corporation Ice cube release and rapid freeze using fluid exchange apparatus
US10788251B2 (en) 2012-12-13 2020-09-29 Whirlpool Corporation Twist harvest ice geometry
US9759472B2 (en) 2012-12-13 2017-09-12 Whirlpool Corporation Clear ice maker with warm air flow
US10816253B2 (en) 2012-12-13 2020-10-27 Whirlpool Corporation Clear ice maker with warm air flow
US9816744B2 (en) 2012-12-13 2017-11-14 Whirlpool Corporation Twist harvest ice geometry
US10161663B2 (en) 2012-12-13 2018-12-25 Whirlpool Corporation Ice maker with rocking cold plate
US10174982B2 (en) 2012-12-13 2019-01-08 Whirlpool Corporation Clear ice maker
US10378806B2 (en) 2012-12-13 2019-08-13 Whirlpool Corporation Clear ice maker
US10605512B2 (en) 2012-12-13 2020-03-31 Whirlpool Corporation Method of warming a mold apparatus
US10845111B2 (en) 2012-12-13 2020-11-24 Whirlpool Corporation Layering of low thermal conductive material on metal tray
US11486622B2 (en) 2012-12-13 2022-11-01 Whirlpool Corporation Layering of low thermal conductive material on metal tray
US11725862B2 (en) 2012-12-13 2023-08-15 Whirlpool Corporation Clear ice maker with warm air flow
US11598567B2 (en) 2012-12-13 2023-03-07 Whirlpool Corporation Twist harvest ice geometry
US11131493B2 (en) 2012-12-13 2021-09-28 Whirlpool Corporation Clear ice maker with warm air flow
US9890986B2 (en) 2012-12-13 2018-02-13 Whirlpool Corporation Clear ice maker and method for forming clear ice
US10047996B2 (en) 2012-12-13 2018-08-14 Whirlpool Corporation Multi-sheet spherical ice making
US11441829B2 (en) 2014-10-23 2022-09-13 Whirlpool Corporation Method and apparatus for increasing rate of ice production in an automatic ice maker
US10690388B2 (en) 2014-10-23 2020-06-23 Whirlpool Corporation Method and apparatus for increasing rate of ice production in an automatic ice maker
US11808507B2 (en) 2014-10-23 2023-11-07 Whirlpool Corporation Method and apparatus for increasing rate of ice production in an automatic ice maker
US10739053B2 (en) 2017-11-13 2020-08-11 Whirlpool Corporation Ice-making appliance
US10907874B2 (en) 2018-10-22 2021-02-02 Whirlpool Corporation Ice maker downspout
US12055331B2 (en) 2018-11-16 2024-08-06 Lg Electronics Inc. Ice maker and refrigerator
EP4001800A1 (en) * 2018-11-16 2022-05-25 LG Electronics Inc. Ice maker
EP4098956A1 (en) * 2018-11-16 2022-12-07 LG Electronics Inc. Ice maker and refrigerator
US11555641B2 (en) 2018-11-16 2023-01-17 Lg Electronics Inc. Ice maker and refrigerator
US11578904B2 (en) 2018-11-16 2023-02-14 Lg Electronics Inc. Ice maker and refrigerator
EP3907447A1 (en) * 2018-11-16 2021-11-10 LG Electronics Inc. Ice maker and refrigerator
EP3653967A1 (en) * 2018-11-16 2020-05-20 LG Electronics Inc. Ice maker and refrigerator
EP3653960A1 (en) * 2018-11-16 2020-05-20 LG Electronics Inc. Ice maker
US11874048B2 (en) 2018-11-16 2024-01-16 Lg Electronics Inc. Ice maker and refrigerator
US11959686B2 (en) 2018-11-16 2024-04-16 Lg Electronics Inc. Ice maker and refrigerator
EP3653969A1 (en) * 2018-11-16 2020-05-20 LG Electronics Inc. Ice maker for a home appliance

Also Published As

Publication number Publication date
JPH0544587B2 (en) 1993-07-06

Similar Documents

Publication Publication Date Title
US4910974A (en) Automatic ice making machine
JPH01196478A (en) Automatic ice making machine
JPH0532668B2 (en)
JPH01210778A (en) Ice removing structure for automatic ice-making machine
JPH0544586B2 (en)
JPH0541913B2 (en)
JPH01196477A (en) Automatic ice making machine
JPH01230969A (en) Mechanical construction of automatic ice making machine
JPH02143068A (en) Ice guiding device in automatic ice making machine
JPH0565780B2 (en)
JPH0543949B2 (en)
JPH0543951B2 (en)
JPH0551831B2 (en)
JPH01225875A (en) Ice guide structure for automatic ice-making machine
JPH0554027B2 (en)
JPH02154962A (en) Deicing control method for automatic ice making machine
JP3412677B2 (en) How to operate an automatic ice maker
JPH01260271A (en) Automatic ice-making machinery and control of ice-making operation
JPH01234768A (en) Ice making structure of automatic ice making machine
JPH0615279Y2 (en) Evaporator structure of automatic ice machine
JPH02140575A (en) Ice making structure in automatic ice making machine
JPH01200167A (en) Automatic ice making machine
JPH01230970A (en) Control method for ice discharging operation of automatic ice making machine
JPH02161271A (en) Ice making structure of automatic ice machine
JP2010071479A (en) Inverted-cell type ice making machine