JPH01200167A - Automatic ice making machine - Google Patents

Automatic ice making machine

Info

Publication number
JPH01200167A
JPH01200167A JP2350688A JP2350688A JPH01200167A JP H01200167 A JPH01200167 A JP H01200167A JP 2350688 A JP2350688 A JP 2350688A JP 2350688 A JP2350688 A JP 2350688A JP H01200167 A JPH01200167 A JP H01200167A
Authority
JP
Japan
Prior art keywords
ice
making
chamber
ice making
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2350688A
Other languages
Japanese (ja)
Other versions
JPH0544588B2 (en
Inventor
Yasuo Hara
安夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2350688A priority Critical patent/JPH01200167A/en
Publication of JPH01200167A publication Critical patent/JPH01200167A/en
Publication of JPH0544588B2 publication Critical patent/JPH0544588B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide a continuous manufacturing of some uniform and transparent sphere-like ices by a method wherein an ice making chamber is provided to be comprised of a first ice making chamber having several first ice making small chambers of a specified shape opened in a downward direction and a second ice making chamber to be moved toward or away from the first ice making small chamber and having several second ice making small chambers which can be closed from below correspondingly. CONSTITUTION:A cooling operation is carried out for a chamber 11 through circulation of coolant at an evaporator 14 installed in a first ice making chamber 11, an iced water 20 from an ice making tank 19 is forcedly fed to a distributer pipe 24 and then injected into each of second ice making small chambers 15 through each of water injection holes 25. The injected ice making water is contacted with an inner surface of the first ice making small chamber 13 and cooled by it. After the ice water wets the small chamber 15 in the lower second ice making chamber 12, it is returned back to a tank 19 through a plurality of returning holes 26 made at a bottom part of the small chamber 15. Some spherical ices are formed in a spherical space formed between the small chambers 13 and 15 while repeating this circulation. Finally, the second ice making chamber 12 and the ice making chamber tank 19 are inclined and opened while the spherical ices 1 are being adhered to the first ice making small 13 and then the iced water in the tank 19 is discharged out of the device.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は自動製氷機に関し、更に詳細には、従来一般
に知られている正六面体の角氷以外の氷塊、例えば球体
状の氷塊や多面体状(ダイヤカット状)の氷塊を、連続
して大量に製造し得る自動製氷機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an automatic ice maker, and more specifically, it relates to an automatic ice maker, and more specifically, it is an automatic ice maker that can produce ice cubes other than the conventionally known regular hexahedral ice cubes, such as spherical ice cubes and polyhedral (diamond) ice cubes. This invention relates to an automatic ice making machine that can continuously produce large quantities of cut-shaped ice cubes.

従来技術 各種の産業上の分野では、正六面体状をなす角氷や所要
厚みの板氷その他の氷塊を、連続的に大量に製造する自
動製氷機が、その用途に応じて好適に使い分けられてい
る。例えば、前記の角氷を製造する製氷機としては、 ■製氷室に下向きに多数画成した立方体状の製氷小室を
、その下方から水皿により開閉自在に閉成し、当該水皿
から製氷水を各製氷小室に噴射供給して、該製氷小室中
に角氷を徐々に形成するようにした所謂クローズドセル
方式や。
BACKGROUND ART In various industrial fields, automatic ice making machines that continuously produce large quantities of ice cubes in the shape of regular hexahedrons, ice cubes of a required thickness, and other ice cubes are suitably used depending on the application. There is. For example, the ice making machine for producing the ice cubes described above is as follows: (1) A large number of cube-shaped ice making compartments are defined downward in the ice making compartment, which can be opened and closed from below with a water tray, and ice making water is supplied from the water tray. This is a so-called closed cell system in which ice cubes are gradually formed in each ice-making chamber by being injected into each ice-making chamber.

■下方に開放する多数の製氷小室に、水皿を介すること
なく製氷水を直接供給し、角氷を該製氷小室中に形成す
るようにした所謂オープンセル方式%式% また、板氷を連続製造する製氷機としては、冷凍系に接
続する蒸発器を備えた製氷板を傾斜配置し、この製氷板
の表面または裏面に製氷水を流下供給して、当該製氷板
面上に板氷を形成する流下式が広く普及している。更に
冷却筒の内壁面に流下させた水を凍結させて氷層を形成
し、この氷層を回転オーガの切削刃により掻き削ってフ
レーク状の氷を得たり、前記の製氷機により得られた板
氷を破砕して、細粒状のクラッシュアイスを得る製氷方
式も実施されている。
■The so-called open-cell method, in which ice-making water is directly supplied to a large number of ice-making chambers that open downward, without going through a water tray, and ice cubes are formed in the ice-making chambers. The ice-making machine to be manufactured has an ice-making plate equipped with an evaporator connected to the refrigeration system arranged at an angle, and ice-making water is supplied to the front or back side of the ice-making plate to form ice sheets on the surface of the ice-making plate. The flow-down type is widely used. Furthermore, the water flowing down on the inner wall surface of the cooling cylinder is frozen to form an ice layer, and this ice layer is scraped with the cutting blade of a rotating auger to obtain flaky ice, or the ice made by the ice making machine described above is used. An ice-making method is also used in which ice cubes are crushed to obtain fine-grained crushed ice.

発明が解決しようとする課題 従来の各種方式に係る自動製氷機により製造される氷は
、前述した如く、立方体状の角氷や板氷。
Problems to be Solved by the Invention As mentioned above, ice produced by automatic ice making machines according to various conventional methods is cube-shaped ice cubes or ice sheets.

その他フレーク状の氷やクラッシュアイスがその全てで
ある。これらの氷の内で、所要の定形を備えていて、そ
のままコツプ中の飲料に浮かせたり、各種食材の冷却ベ
ツドとして使用したり出来るのは、僅かに前記の角氷に
過ぎない(板氷は、定形を備えて製造されるが、通常そ
のままの寸法では使用し得ない)。しかるに最近の喫茶
店やレストランその他の飲食施設では、他の同種営業に
対し種々の面で優位に立ち、顧客を自己の営業に向かわ
せるべく差別化を図るための懸命な努力が払われている
。その−環として、例えば従来より広く流通している角
氷の替わりに球体状の氷を使用し、これにより顧客に目
先の新しい変化を提供しようとする傾向が一部で出てい
る。
All other types of ice are flaky ice and crushed ice. Of these ice cubes, only the ice cubes mentioned above have the required shape and can be floated on top of drinks or used as a cooling bed for various foodstuffs. , manufactured with a fixed shape, but usually cannot be used in the original size). However, in recent years, coffee shops, restaurants, and other food and beverage establishments have been making strenuous efforts to differentiate themselves from other businesses of the same type in order to gain an advantage over other businesses of the same type and to attract customers to their businesses. As a link to this, for example, there is a trend in some circles to use spherical ice instead of the conventionally widely distributed ice cubes, thereby providing customers with immediate new changes.

この球状水を製造する手段としては、例えば、実開昭5
8−60177号公報に開示される如く。
As a means for producing this spherical water, for example,
As disclosed in Publication No. 8-60177.

任意形状の凹部を適当数形成した受皿と、前記受皿の凹
部と対応する四部を形成した蓋体とを嵌着可能に構成し
た製氷皿が知られている。これは、両凹部により画成さ
れる球状空間中に水を満たした状態で、該製氷皿を冷蔵
庫の冷凍室に所要時間収納し、前記空間中の水を氷結さ
せることにより。
2. Description of the Related Art An ice making tray is known in which a saucer having an appropriate number of arbitrarily shaped recesses and a lid having four parts corresponding to the recesses of the tray can be fitted into the tray. This is done by storing the ice cube tray in the freezer compartment of the refrigerator for a required period of time with the spherical space defined by the two recesses filled with water, thereby freezing the water in the space.

球状の氷塊を得るものである。また、ゴムシートの如き
弾性薄膜からなる袋体中に水を注入し、これを冷凍室に
収納したり不凍液に浸漬することにより球状水を製造し
たり、更にブロック状の氷塊を刃物で切削して、球状水
を製造する等の試みも一部でなされている。
This produces spherical ice blocks. In addition, spherical water can be produced by injecting water into a bag made of an elastic thin film such as a rubber sheet and storing the bag in a freezer or immersing it in antifreeze, or by cutting a block of ice with a knife. Some attempts have been made to produce spherical water.

しかし前述した手段による球状水の製造方法は、何れも
連続的に大量の球状水を製造し得るものではなく、人手
による煩雑な手間と時間とを要して非能率的であって、
業務用に供し得るものではない。また、冷凍室に収納し
たり、不凍液に浸漬させて、静的に氷結を進行させるも
のであるために。
However, none of the above-mentioned methods for producing spherical water can continuously produce a large amount of spherical water, and is inefficient as it requires complicated manual labor and time.
It cannot be used for commercial purposes. In addition, freezing progresses statically by storing it in a freezer or immersing it in antifreeze.

水中に含まれる微少空気の存在により白濁して、清澄な
透明氷塊が得られず、商品価値も低下する等の欠点が指
摘される。従って、均一で透明な球状水その他多面体状
の氷塊を、大量かつ連続的に製造し得る自動製氷機は、
その需要が顕在化しつつある現在においても、未だ実用
化されていないのが現状である6 発明の目的 この発明は、前述した従来技術に内在している前記問題
点に鑑み、これを好適に解決するべく提案されたもので
あって、簡単な構成でありながら、均一で透明な球状水
や多面体状の氷塊を、連続的に多数製造し得る新規な構
成に係る自動製氷機を提供することを目的とする。
It has been pointed out that the water becomes cloudy due to the presence of microscopic air contained in the water, making it impossible to obtain clear ice cubes and reducing its commercial value. Therefore, an automatic ice making machine that can continuously produce large quantities of uniform and transparent spherical water and other polyhedral ice cubes is
Even at present, when the demand for this technology is becoming more apparent, it has not yet been put to practical use.6 Purpose of the Invention The present invention solves the above-mentioned problems inherent in the prior art. It is an object of the present invention to provide an automatic ice making machine with a new configuration that can continuously produce a large number of uniform and transparent spherical water and polyhedral ice blocks while having a simple configuration. purpose.

課題を解決するための手段 前述した問題点を克服し、所期の目的を好適に達成する
ため本発明は、製氷水タンクに貯留した製氷水をポンプ
を介して分配管に圧送し、冷凍系に接続する蒸発器によ
り冷却される製氷室に、前記分配管に穿設した噴水孔か
ら製氷水を噴射供給して該製氷室内に氷塊を形成し、該
製氷室で氷結するに到らなかった製氷水は前記製氷水タ
ンクに帰還させて再循環に供するよう構成した自動製氷
機において、 1涌記蒸発器を背面に備えると共に製氷機本体の内部に
略水平に固定配置され、下方に向けて開放する所要形状
の第1製氷小室を多数凹設してなる第1製氷室と。
Means for Solving the Problems In order to overcome the above-mentioned problems and suitably achieve the intended purpose, the present invention provides ice-making water stored in an ice-making water tank to be pumped to a distribution pipe via a pump, and a refrigeration system Ice-making water was injected from a fountain hole drilled in the distribution pipe into an ice-making compartment cooled by an evaporator connected to the ice-making compartment to form ice cubes in the ice-making compartment, but the ice-making compartment did not freeze. The automatic ice maker is configured so that the ice making water is returned to the ice making water tank for recirculation, and is equipped with a 1-liter evaporator on the back, fixedly arranged approximately horizontally inside the ice maker body, and facing downward. A first ice-making chamber is formed by recessing a number of first ice-making chambers each having a desired shape and opening.

この第1製氷室に対し近接および離間自在に配設され、
製氷運転に際し前記第1製氷小室の夫々を下方から対応
的に閉成して、内部に球状または多面体状をなす氷形成
用空間を画成可能な所要形状の第2製氷小室を多数凹設
してなる第2製氷室とから前記製氷室を橋成し。
It is arranged so that it can be freely approached and separated from this first ice making compartment,
During ice-making operation, each of the first ice-making chambers is closed correspondingly from below, and a number of second ice-making chambers of a desired shape are recessed so that a spherical or polyhedral ice-forming space can be defined inside. A bridge is formed between the ice-making compartment and a second ice-making compartment.

更に前記製氷水タンクを、少なくとも第1製氷室に対し
て傾動し得るよう設定したことを特徴とする。
Furthermore, the ice making water tank is configured to be tiltable with respect to at least the first ice making chamber.

実施例 次に、本発明に係る自動製氷機につき、好適な実施例を
挙げて、添付図面を参照しながら以下説明する。なお、
この発明に係る自動製氷機によれば、第6図(a)に示
す球状水1以外に、第6図(b)に示す如きダイヤカッ
ト状の多面体水2も製造可能であるが、実施例としては
、多数の同一寸法の球状水を連続製造する場合につき説
明を行なう。
Embodiments Next, the automatic ice making machine according to the present invention will be described below with reference to preferred embodiments and the accompanying drawings. In addition,
According to the automatic ice making machine of the present invention, in addition to the spherical water 1 shown in FIG. 6(a), it is also possible to produce diamond-cut polyhedral water 2 as shown in FIG. 6(b). We will explain the case where a large number of water spheres of the same size are continuously produced.

(第1実施例に係る製氷機端について)第1図は、本発
明の第1実施例に係る自動製氷機の主要製氷機橋を、製
氷状態で概略的に示すものである。図において、所要直
径をなす多数の球状水を製造する製氷室10は、水平に
配設した第1製氷室11と、この第1製氷室11を下方
から開閉自在に開成可能な第2製氷室12とから基本的
に構成される。すなわち、製氷機における筐体(図示せ
ず)内部上方に、良好な熱伝導率を有する金属を材質と
する矩形状の第1H氷室11が水平に配設固定され、こ
の第1製氷室11の下面部に。
(Regarding the ice maker end according to the first embodiment) FIG. 1 schematically shows the main ice maker bridge of the automatic ice maker according to the first embodiment of the present invention in an ice making state. In the figure, an ice-making compartment 10 that produces a large number of spherical water having a required diameter includes a first ice-making compartment 11 arranged horizontally, and a second ice-making compartment that can be opened and closed from below. It basically consists of 12. That is, a rectangular first H ice chamber 11 made of a metal having good thermal conductivity is horizontally disposed and fixed in the upper part of the inside of the casing (not shown) of the ice maker. on the bottom part.

下向きに開放する第1H氷室13が、所要の整列パター
ンで多数凹設されている。夫々の第1製氷小室13は半
球状凹部として形成され、その直径は一例として3■で
あり、従って凹部の深さは1.5■に設定されている。
A large number of first H ice chambers 13 that open downward are provided in a desired alignment pattern. Each of the first ice-making chambers 13 is formed as a hemispherical recess, the diameter of which is, for example, 3 cm, and the depth of the recess is set to 1.5 cm.

前記第11!5氷室11の上面、つまり各第1製氷小室
13の頂部となる部位には、第3図に示す冷凍系(後述
)の一部を構成する管体からなる蒸発器14が密着固定
され、当該冷凍系を運転することにより、この蒸発器1
4で気化冷媒との熱交換が促進されて、第1製氷室11
が氷点下にまで冷却される。
An evaporator 14 made of a tube that constitutes a part of the refrigeration system (described later) shown in FIG. This evaporator 1 is fixed by operating the refrigeration system.
4, heat exchange with the vaporized refrigerant is promoted, and the first ice making compartment 11
is cooled to below freezing.

前記第1製氷室11の直下には、熱良導体を材質とする
第2製氷室12が配設されている。この第2製氷室12
は、その製氷運転に際して、該第1製氷室11を下方か
ら閉成すると共に、除氷運転に際して、該第1製氷室1
1を開放可能に構成されている。すなわち、第29氷室
12には、前記第1製氷室11に凹設した第1製氷小室
13と対応して、同じく半球状凹部からなる第2111
!氷小室15が、上向きに所要の整列パターンで多数凹
設されている。この第2製氷小室15の直径も、−例と
して3anであり、凹部の深さは1.5国に設定されて
いる。従って、第1製氷室11に対して第2製氷室12
を閉成すると、夫々の第1製氷小室13および第2製氷
小室15が相互に対応して、両製氷小室13.15の内
部に直径3Gの球状空間が画成される。
Directly below the first ice making compartment 11, a second ice making compartment 12 made of a good thermal conductor is disposed. This second ice making room 12
During the ice making operation, the first ice making chamber 11 is closed from below, and during the deicing operation, the first ice making chamber 1 is closed.
1 can be opened. That is, in the 29th ice compartment 12, there is a 2111th ice compartment, which also has a hemispherical recess, corresponding to the first ice making compartment 13 recessed in the first ice compartment 11.
! A large number of ice chambers 15 are provided upward in a desired alignment pattern. The diameter of this second ice making chamber 15 is also 3 an, for example, and the depth of the recess is set to 1.5 mm. Therefore, the second ice making compartment 12 is different from the first ice making compartment 11.
When closed, the first ice-making chamber 13 and the second ice-making chamber 15 correspond to each other, and a spherical space with a diameter of 3G is defined inside both ice-making chambers 13.15.

この第2製氷室12は、その一端部において、製氷機の
筐体(図示せず)の固定部位に、枢軸16を介して傾動
自在に枢支され、この枢軸16を中心に時計方向に回動
すれば、前記第1製氷小室13を開放可能であり、また
反時計方向に回動すれば、該第1製氷小室13を閉成可
能になっている。なお、第2製氷室12の開閉駆動手段
としては、第1図に示す減速機付きのモータ(アクチュ
エータモータ)AMが好適に使用され、このモータAM
の回転軸にカムレバー17およびレバー片37が同軸的
に固定されている。そして、前記カムレバー17の先端
17aと第2製氷室12の前方端部との間に、コイルス
プリング18が弾力的に係着されている。前記カムレバ
ー17の基部に形成したカム而17bは、第1製氷室1
1を閉成している第2製氷室12の側部上面にカム係合
可能に寸法設定されている。また第1製氷室11には、
第4図の回路図に示す切換スイッチS2が配設され、除
氷運転に伴うモータAMの回転によりn7f記レバ一片
37が回動すると、前記切換スイッチS2を接点a −
b側から接点a −a側に切換付勢し得るようになって
いる。
The second ice making chamber 12 is pivotably supported at one end of a fixed portion of the ice maker casing (not shown) via a pivot 16, and is rotated clockwise around the pivot 16. By moving it, the first ice making chamber 13 can be opened, and by rotating it counterclockwise, the first ice making chamber 13 can be closed. As the opening/closing driving means for the second ice making chamber 12, a motor (actuator motor) AM with a reducer shown in FIG. 1 is preferably used.
A cam lever 17 and a lever piece 37 are coaxially fixed to the rotating shaft. A coil spring 18 is elastically engaged between the tip 17a of the cam lever 17 and the front end of the second ice making chamber 12. The cam lever 17b formed at the base of the cam lever 17 is connected to the first ice making chamber 1.
The dimensions are set so that the cam can be engaged with the side upper surface of the second ice making chamber 12 that closes the second ice making chamber 12. In addition, in the first ice making room 11,
A changeover switch S2 shown in the circuit diagram of FIG. 4 is provided, and when the lever piece 37 shown in n7f rotates due to the rotation of the motor AM accompanying the deicing operation, the changeover switch S2 is connected to the contacts a -
It is possible to switch and energize the contacts from the b side to the contact a-a side.

第2製氷室12の下方には、図示形状をなす製氷水タン
ク19が一体的に設けられ、該タンク中に所要量の製氷
水20を貯留し得るようになっている。この製氷水タン
ク19の底部側面から導出した給水管21は、給水ポン
プ22を介してタンク側方に設けた圧力室23に連通さ
れている。該圧力室23からは分配管24が蛇行的に導
出され。
An ice-making water tank 19 having the shape shown in the figure is integrally provided below the second ice-making chamber 12, and a required amount of ice-making water 20 can be stored in the tank. A water supply pipe 21 led out from the bottom side of the ice-making water tank 19 is communicated via a water supply pump 22 with a pressure chamber 23 provided on the side of the tank. A distribution pipe 24 is led out from the pressure chamber 23 in a meandering manner.

この分配管24は前記第2製氷室12における各第2製
氷小室15の底部に固定されている6夫々の第2製氷小
室15の底部には、所要径の噴水孔25が穿設され、こ
の噴水孔25を介して第2製氷小室15と前記分配管2
4とは連通している。
This distribution pipe 24 is fixed to the bottom of each of the second ice-making compartments 15 in the second ice-making compartment 12. A fountain hole 25 of a required diameter is bored at the bottom of each of the six second ice-making compartments 15. The second ice making chamber 15 and the distribution pipe 2 are connected through the water fountain 25.
It is connected to 4.

従って、前記製氷水タンク19からポンプ22を介して
圧送される製氷水は、各噴水孔25を介して対応の各第
1製氷小室15中に噴射可能になっている。
Therefore, the ice-making water pumped from the ice-making water tank 19 via the pump 22 can be injected into the corresponding first ice-making compartments 15 through the respective water fountain holes 25 .

なお、第2製氷小室15の底部には、前記噴水孔25に
近接して複数の戻り孔26が穿設され、後述する製氷運
転に際して、両製氷小室13.15で氷結するに到らな
かった製氷水(以下「未氷結水」という)を、この戻り
孔26から製氷水タンク19に戻し得るようになってい
る6更に、第2製氷小室15の底部周辺に、除氷促進用
のヒータ)■が密着配置され、第4図の制御回路に示す
如く、製氷運転が完了すると、タイマTにより設定した
所要時間だけ該ヒータHへの通電がなされる6また、製
氷水タンク19への給水は、第4図に示す制御回路中の
給水弁WVの開放により、外部水道系に接続している給
水管27を介してなされる。
In addition, a plurality of return holes 26 are bored in the bottom of the second ice making chamber 15 in the vicinity of the water fountain hole 25, so that during the ice making operation described later, freezing does not occur in both ice making chambers 13 and 15. The ice-making water (hereinafter referred to as "unfrozen water") can be returned to the ice-making water tank 19 through the return hole 26.Furthermore, around the bottom of the second ice-making chamber 15, there is a heater for promoting de-icing. As shown in the control circuit of FIG. 4, when the ice-making operation is completed, the heater H is energized for the required time set by the timer T. , by opening the water supply valve WV in the control circuit shown in FIG. 4, via the water supply pipe 27 connected to the external water supply system.

第1製氷室11における所要の第1製氷小室13の頂部
には、製氷完了検知手段としての製氷検知サーモTh、
が配設されている。この製氷検知サーモT h 1は、
第4図に示す制御回路に介装されて、製氷運転中はその
接点a −aを閉成すると共に接点c−bを開放し、そ
の製氷運転が終了すると、前記接点a −Qを開放する
と共に接点c−bを閉成し得るよう設定されている。ま
た、別の第1製氷小室13の頂部には、除氷完了検知手
段としての除氷検知サーモTh2が配設され、この除氷
検知サーモTh、は、第1製氷小室13が冷却状態にあ
る場合は、その接点c −bを閉成すると共に接点a−
aを開放し、該製氷小室13から氷が放出されて温度上
昇を伴うと、前記接点c −bを開放すると共に接点c
 −aを閉成し得るよう設定されている。
At the top of the required first ice-making compartment 13 in the first ice-making compartment 11, there is an ice-making detection thermometer Th as ice-making completion detection means;
is installed. This ice making detection thermo T h 1 is
It is installed in the control circuit shown in FIG. 4, and during the ice making operation, the contacts a and a are closed and the contacts c and b are opened, and when the ice making operation is completed, the contacts a and Q are opened. It is set so that the contact point c-b can be closed together with the contact point c-b. Further, a deicing detection thermo Th2 as a deicing completion detection means is disposed at the top of another first ice making compartment 13, and this deicing detection thermo Th2 indicates that the first ice making compartment 13 is in a cooling state. If so, close the contact c-b and close the contact a-
When a is opened and ice is released from the ice making compartment 13 and the temperature rises, the contacts c-b are opened and the contacts c
-a is set so that it can be closed.

前記第2製氷室12および製氷水タンク19は。The second ice making chamber 12 and the ice making water tank 19 are.

その除氷運転に際し、後述しかつ第2図に示す如く、枢
軸16を中心に所要角度だけ斜め右下方に傾動し、水平
配置した第1製氷室11から開放する。このときに、第
1製氷小室13から除氷された球状水の落下を受は止め
、当該球状水を製氷水タンク19の斜め下方に設けた貯
水庫(図示せず)に案内するための水案内板35が、傾
動姿勢にある第2製氷室12の第2製氷小室15に沿っ
て進出および後退自在に配設されている。
During the deicing operation, as will be described later and shown in FIG. 2, the ice making chamber 11 is tilted diagonally downward and to the right by a predetermined angle about the pivot 16 to open the first ice making chamber 11 which is arranged horizontally. At this time, water is used to stop the spherical water that has been de-frosted from falling from the first ice-making compartment 13 and to guide the spherical water to a water storage (not shown) provided diagonally below the ice-making water tank 19. A guide plate 35 is disposed so as to be freely advanced and retractable along the second ice making compartment 15 of the second ice making compartment 12 in a tilted position.

この水案内板35の進退機端としては、種々のものが提
案されるが、例えば第2図に示す構成が好適に採用され
る。すなわち、前記水案内板35は、多数の板状片35
aを可撓的に連接した鎧戸式に構成され、製氷水タンク
19の斜め右下方で、かつ前記貯水庫(図示せず)の上
方に配設したロール36に、巻取用モータRMにより巻
取り可能になっている。この水案内板35は、該ロール
36に完全に巻取られた状態において、その開放端を第
2製氷室12の傾動停止位置に近接的に臨ませている。
Although various types of advancing/retracting end of the water guide plate 35 have been proposed, for example, the configuration shown in FIG. 2 is suitably adopted. That is, the water guide plate 35 includes a large number of plate-shaped pieces 35.
A winding motor RM winds the ice onto a roll 36, which is configured in a shutter-type manner in which the ice-making water tank 19 is diagonally lower right and above the water storage (not shown). It is possible to take it. The water guide plate 35 has its open end facing close to the tilt stop position of the second ice making chamber 12 when it is completely wound up on the roll 36 .

そして除氷運転に入り、第2製氷室12が斜め右下方に
傾動した後に、第4図の制御回路に介装される前記モー
タRMを付勢して、該ロール36を繰出し側に回転させ
れば、水案内板35は図示の如く、傾動姿勢にある第2
製氷小室15の上面に摺動的に延出する。これにより水
案内板35は、第1fM氷小室13から落下した球状氷
を、貯水庫に向けて円滑に案内することができる。また
、除氷が完了すると、前記モータRMが逆転して、水案
内板35をロール36に巻取って、第2製氷小室15か
ら速やかに後退させ得るものである。
Then, after the deicing operation starts and the second ice making chamber 12 tilts diagonally downward and to the right, the motor RM installed in the control circuit shown in FIG. 4 is energized to rotate the roll 36 toward the feeding side. If the water guide plate 35
It extends slidably onto the upper surface of the ice-making compartment 15. Thereby, the water guide plate 35 can smoothly guide the spherical ice that has fallen from the first fM ice chamber 13 toward the water storage. Further, when the deicing is completed, the motor RM is reversely rotated to wind up the water guide plate 35 onto the roll 36, so that it can be quickly retreated from the second ice-making compartment 15.

(冷凍系について) 第3図は、製氷機における冷凍系の概略構成を示すもの
であって、圧縮機CMで圧縮された気化冷媒は、吐出管
34を経て凝縮器28で凝縮液化し、ドライヤ29で脱
湿された後キャピラリーチューブ30で減圧され、蒸発
器14に流入してここで一挙に膨張して蒸発し、第1¥
!1氷室11と熱交換を行なって、各第1製氷小室13
を氷点下にまで冷却させる。この蒸発器14で蒸発した
気化冷媒と未蒸発の液化冷媒とは、気液混和状態でアキ
ュムレータ31に流入し、ここで気液分離がなされる。
(Regarding the refrigeration system) Fig. 3 shows a schematic configuration of the refrigeration system in the ice maker, in which the vaporized refrigerant compressed by the compressor CM is condensed and liquefied in the condenser 28 via the discharge pipe 34, and then After being dehumidified in step 29, the pressure is reduced in capillary tube 30, and it flows into evaporator 14 where it expands and evaporates all at once.
! 1 ice compartment 11, and each first ice making compartment 13
cool down to below freezing. The vaporized refrigerant evaporated in the evaporator 14 and the unevaporated liquefied refrigerant flow into the accumulator 31 in a gas-liquid mixed state, where they are separated into gas and liquid.

そして気相冷媒は、吸入管32を経て圧縮機CMに帰還
し、液相冷媒は当該アキュムレータ31内に貯留される
The gas phase refrigerant then returns to the compressor CM via the suction pipe 32, and the liquid phase refrigerant is stored in the accumulator 31.

更に、圧縮機CMの吐出管34からホットガス管33が
分岐され、このホットガス管33はホットガス弁HVを
経て、蒸発器14の入口側に連通されている。このホッ
トガス弁HVは、除氷運転の際にのみ開放し、製氷運転
時は閉成する制御がなされる。すなわち、除氷運転時に
ホットガス弁HVが開放して、圧縮機CMから吐出され
る高温冷媒を、前記ホットガス管33を介して蒸発器1
4にバイパスさせ、各第1製氷小室13を加温すること
により、小室内部に生成される球状氷の周面を融解させ
て、各氷塊を自重により落下させる。また蒸発器14か
ら流出した高温冷媒は、アキュムレータ31に流入し、
このアキュムレータ31中に滞留している液相冷媒を加
熱して蒸発させ、気相冷媒として吸入管32から圧縮機
CMに再び帰還させる。なお、図中の符号FMは、凝縮
器28用のファンモータを示す。
Further, a hot gas pipe 33 is branched from the discharge pipe 34 of the compressor CM, and this hot gas pipe 33 is communicated with the inlet side of the evaporator 14 via a hot gas valve HV. This hot gas valve HV is controlled to be opened only during deicing operation and closed during ice making operation. That is, during deicing operation, the hot gas valve HV is opened and the high temperature refrigerant discharged from the compressor CM is sent to the evaporator 1 via the hot gas pipe 33.
4 and heats each first ice-making chamber 13, the circumferential surface of the spherical ice produced inside the chamber is melted, and each ice block is caused to fall by its own weight. Further, the high temperature refrigerant flowing out from the evaporator 14 flows into the accumulator 31,
The liquid phase refrigerant staying in the accumulator 31 is heated to evaporate and is returned to the compressor CM through the suction pipe 32 as a gas phase refrigerant. Note that the symbol FM in the figure indicates a fan motor for the condenser 28.

(電気制御回路について) 第4図に、実施例に係る自動製氷機の電気制御回路図の
一例を示す。図において、電源供給ラインRと接続点り
との間に、ヒユーズFと貯水検知スイッチS1とが直列
に設けられ、この接続点りと電源供給ラインTとの間に
、圧縮機CMがリレーX1の常閉接点X□−bを介して
接続されている。
(About the electrical control circuit) FIG. 4 shows an example of an electrical control circuit diagram of the automatic ice maker according to the embodiment. In the figure, a fuse F and a water storage detection switch S1 are provided in series between the power supply line R and the connection point, and a compressor CM is connected to the relay X1 between the connection point and the power supply line T. are connected via the normally closed contact X□-b.

貯水検知スイッチS、は、貯水[(図示せず)中の氷が
所定レベル以下に減少したとき閉成し、貯水庫の氷が所
定レベルに達すると開放する構成になっている。また除
氷運転に際して、前記第2製氷室12の傾動により付勢
される切換スイッチS2の端子aが接続点りに接続され
、この切換スイッチS2の切換接点すは、製氷検知サー
モTh、の接点Cに接続されている。
The water storage detection switch S is configured to close when the ice in the water storage (not shown) decreases below a predetermined level, and to open when the ice in the water storage reaches a predetermined level. Further, during the deicing operation, the terminal a of the changeover switch S2, which is energized by the tilting of the second ice making chamber 12, is connected to the connection point, and the changeover contact of the changeover switch S2 is connected to the contact point of the ice making detection thermometer Th. Connected to C.

■製氷検知サーモTh、の接点aとラインTとの間には
、前記ポンプ22の駆動用モータPMおよびファンモー
タFMが並列接続され、 ■該す−モTh1の接点すとラインTとの間には。
■ The driving motor PM of the pump 22 and the fan motor FM are connected in parallel between the contact a of the ice-making detection thermo Th and the line T. ■ Between the contact of the ice-making detection thermo Th1 and the line T for.

リレーx1.タイマT、該タイマTの常閉接点T−bと
直列接続したヒータHが、夫々並列接続されている。ま
た、前記アクチュエータモータAMの端子にはラインT
に接続され、該モータAMの傾動駆動用端子mは、タイ
マTの常開接点T −aを介してサーモTh、の接点す
に接続されている。更に、切換スイッチS2の切換接点
Cは、前記アクチュエータモータAMの復帰駆動用端子
nに除氷検知サーモTh、の接点c −aを介して接続
され、また該切換接点CとラインTとの間には、前記ホ
ットガス弁HVおよび給水弁Wvが並列接続されている
Relay x1. A timer T and a heater H connected in series with the normally closed contact T-b of the timer T are connected in parallel. In addition, a line T is connected to the terminal of the actuator motor AM.
The tilt drive terminal m of the motor AM is connected to the contact point of the thermostat Th via the normally open contact T-a of the timer T. Further, the changeover contact C of the changeover switch S2 is connected to the return drive terminal n of the actuator motor AM through the contact c-a of the de-icing detection thermometer Th, and between the changeover contact C and the line T. The hot gas valve HV and the water supply valve Wv are connected in parallel.

なお、前記タイマTは、通電開始(除氷動作開始)から
所要の設定時間が経過した後に、前記常閉接点T−bを
開放すると共に、常開接点T −aを閉成する構成とな
っている。
The timer T is configured to open the normally closed contact T-b and close the normally open contact T-a after a required set time has elapsed from the start of energization (start of deicing operation). ing.

除氷検知サーモTh2の接点すとラインTとの間に、リ
レーx2がリミットスイッチLSWを介して接続される
と共に、前記水案内板35を進退駆動するモータRMの
端子kがラインTに接続されている。なお、前記リミッ
トスイッチLSWは、後述する水案内板35の位置検出
を行なうもので。
A relay x2 is connected between a contact point of the de-icing detection thermometer Th2 and a line T via a limit switch LSW, and a terminal k of a motor RM that drives the water guide plate 35 forward and backward is connected to the line T. ing. Note that the limit switch LSW is for detecting the position of the water guide plate 35, which will be described later.

水案内板35の当接により該接点が開放される。The contact is opened by contact with the water guide plate 35.

また該モータRMの水案内板延出用端子mは、リレーX
2の常開接点X、−aを介して、切換スイッチS2の切
換接点Cに接続され、モータRMの水案内板後退用端子
nは、アクチュエータモータAMの復帰駆動用端子nに
接続されている。
In addition, the water guide plate extending terminal m of the motor RM is connected to the relay X.
The water guide plate retreat terminal n of the motor RM is connected to the return drive terminal n of the actuator motor AM. .

(第1実施例の作用について) 次に、この第1実施例に係る製氷機の作用につき説明す
る。先ず、自動製氷機に電源(電源スィッチは図示せず
)を投入する。このとき貯水庫には氷塊は貯留されてい
ないので、貯水検知スイッチS。
(About the operation of the first embodiment) Next, the operation of the ice maker according to the first embodiment will be explained. First, the automatic ice maker is powered on (the power switch is not shown). At this time, since no ice blocks are stored in the water storage, the water storage detection switch S is activated.

は閉成されており、切換スイッチS2は接点a −b側
に接続されている。また、第1製氷室11の温度は室温
程度に保持されているため、製氷検知サーモTh1は接
点Q −a側に接続されている。従って、電源投入と同
時に圧縮機CM、ファンモータFM、ポンプモータPM
に通電が開始され製氷運転に入る。これにより、第1製
氷室11に設けた蒸発器14での冷媒循環がなされて、
当該第1製氷室11の冷却がなされると共に、製氷水タ
ンク19からの製氷水20は分配管24に圧送され。
is closed, and the changeover switch S2 is connected to the contacts a and b. Further, since the temperature of the first ice making chamber 11 is maintained at about room temperature, the ice making detection thermometer Th1 is connected to the contact Q-a side. Therefore, as soon as the power is turned on, the compressor CM, fan motor FM, and pump motor PM
Power is turned on and ice making operation begins. As a result, the refrigerant is circulated in the evaporator 14 provided in the first ice-making compartment 11, and
While the first ice-making chamber 11 is being cooled, ice-making water 20 from the ice-making water tank 19 is force-fed to the distribution pipe 24.

各噴水孔25を介して対応の各第2製氷小室15中に噴
射される。
The water is injected into the corresponding second ice-making compartments 15 through each water fountain 25 .

噴射された製氷水は、第1製氷室11における第1製氷
小室13の内面に接触して冷却され、下方の第2製氷室
12における第2製氷小室15を潤した後、この第2製
氷小室15の底部に穿設した複数の戻り孔26を介して
製氷水タンク19に戻され、再度の循環に供される。こ
の製氷水の循環を反復する内に、タンク19中に貯留さ
れる製氷水全体の温度が次第に低下すると共に、第2製
氷小室15の温度も同様に次第に低下する。そして、先
ず第1製氷小室13の内壁面で製氷水の一部が凍結して
氷層が形成され(第5図Ca>参照)、未氷結水は戻り
孔26から製氷水タンク19に帰還するサイクルを重ね
る間に、前記氷層の成長が更に進行して、第5図(b)
および第5図(c)に示す如く、最終的に第1製氷小室
13および第2製氷小室15により形成される球状空間
中に5球状氷1が生成される。
The injected ice-making water comes into contact with the inner surface of the first ice-making compartment 13 in the first ice-making compartment 11 and is cooled, moistens the second ice-making compartment 15 in the second ice-making compartment 12 located below, and then cools down the second ice-making compartment 15 in the second ice-making compartment 12 located below. The ice-making water is returned to the ice-making water tank 19 through a plurality of return holes 26 drilled in the bottom of the ice-making water tank 15, and is again circulated. As this ice-making water circulation is repeated, the temperature of the entire ice-making water stored in the tank 19 gradually decreases, and the temperature of the second ice-making chamber 15 also gradually decreases. First, a portion of the ice-making water freezes on the inner wall surface of the first ice-making chamber 13 to form an ice layer (see Figure 5 Ca>), and the unfrozen water returns to the ice-making water tank 19 through the return hole 26. As the cycle continues, the growth of the ice layer further progresses, resulting in the growth of the ice layer as shown in Figure 5(b).
As shown in FIG. 5(c), five spherical ice cubes 1 are finally generated in the spherical space formed by the first ice-making compartment 13 and the second ice-making compartment 15.

このように製氷が完了して、第1製氷室11の温度が所
要の温度域まで低下すると、これを検知した製氷検知サ
ーモ′rh□が接点a −a側から接点c −b側に切
換わる。これにより、ファンモータFMおよびポンプモ
ータPMへの通電が停止され、製氷水の循環供給は停止
される。またリレーX、が通電励磁されて、これと協働
する常閉接点x、−bが開放し、圧縮機CMの運転も停
止)、される。更にタイマTへの通電がなされて、所要
設定時限のカウントが開始される。そして、該タイマT
がカウントアツプするまで、その常閉接点T−bに直列
接続した前記ヒータHへの通電がなされて第2製氷室1
2を加熱し、これにより第2製氷小室15に対する球状
氷の氷結を融解させる。
When ice making is completed in this way and the temperature of the first ice making chamber 11 drops to the required temperature range, the ice making detection thermometer 'rh□ that detects this switches from the contact a - a side to the contact c - b side. . As a result, the power supply to the fan motor FM and the pump motor PM is stopped, and the circulating supply of ice-making water is stopped. Also, the relay X is energized and the normally closed contacts x and -b that cooperate with it are opened, and the operation of the compressor CM is also stopped. Further, the timer T is energized and starts counting the required set time period. Then, the timer T
The heater H connected in series to the normally closed contact T-b is energized until the second ice-making compartment 1 counts up.
2 is heated, thereby melting the spherical ice in the second ice making compartment 15.

所要の設定時限が経過して、タイマ1゛がカウントアツ
プすると、該タイマTの常閉接点T−bを開放してヒー
タHへの通電を停止させると共に、前記アクチュエータ
モータAMの傾動駆動用端子mに接続する常開接点T 
−aを閉成し、当該モータAMを第1図において反時計
方向に回動させる。
When the required set time period elapses and the timer 1' counts up, the normally closed contact T-b of the timer T is opened to stop the power supply to the heater H, and the tilting drive terminal of the actuator motor AM is opened. Normally open contact T connected to m
-a is closed, and the motor AM is rotated counterclockwise in FIG.

これによりカムレバー17が回転して、その基部に形成
したカム而17bが、第2@氷室12の側部上面を強制
的に下方に押圧する。既に述べた如く、第2製氷室12
はヒータHにより加熱されて、第2製氷小室15に対す
る球状水の氷結は解除されているので、当該第2製氷室
12(および製氷水タンク19)は第1製氷室11から
強制剥離されて、斜め下方に傾動し始める。
As a result, the cam lever 17 rotates, and the cam lever 17b formed at the base of the cam lever 17 forcibly presses the upper side surface of the second ice chamber 12 downward. As already mentioned, the second ice making compartment 12
is heated by the heater H and the spherical water in the second ice-making compartment 15 has been defrozen, so the second ice-making compartment 12 (and the ice-making water tank 19) is forcibly separated from the first ice-making compartment 11. It begins to tilt diagonally downward.

そして、最終的に第2製氷室12および製氷水タンク1
9は、第2図に示す如く、第1m氷室11における第1
製氷小室13に球状水1を付着させた状態で傾動開放し
て、該タンク19中の不純物濃度の高まった製氷水を外
部に廃棄する。最大限に傾動したタイミングにおいて、
前記レバー片37が切換スイッチS2を押圧付勢し、そ
の接点a −bを接点a −a側に切換えることにより
、アクチュエータモータAMはその回転を停止して、第
2製氷室12の傾動を停止させる。なお除氷検知サーモ
Th2は、接点Q −8が開放状態を保持しているので
、アクチュエータモータAMの復帰指令は未だ出されな
い。
Finally, the second ice making compartment 12 and the ice making water tank 1
9 is the first in the 1m ice chamber 11 as shown in FIG.
The ice-making chamber 13 is tilted open with the spherical water 1 attached to it, and the ice-making water with increased impurity concentration in the tank 19 is disposed of outside. At the timing of maximum tilt,
The lever piece 37 presses and energizes the changeover switch S2 and switches the contacts a and b to the contacts a and a, so that the actuator motor AM stops its rotation and the tilting of the second ice making chamber 12 is stopped. let Note that the contact Q-8 of the deicing detection thermometer Th2 maintains the open state, so a return command for the actuator motor AM is not issued yet.

前述した切換スイッチS3の切換えにより、タイマ装[
Tへの通電が遮断され、その常閉接点1゛−bが再び閉
成すると共に、常閉接点T −aが開放復帰する。また
給水弁Wvが開放して、水位の低下したタンク19に新
たな製氷水を供給すると共に、ホットガス弁HVが開放
し、圧縮機CMから吐出される高温冷媒を、ホットガス
管33を介して蒸発器14にバイパスさせる。これによ
り第1製氷室11の加温がなされ、その第1製氷小室1
3の内面と球状水との氷結面の融解を開始する。
By switching the changeover switch S3 mentioned above, the timer device [
The energization to T is cut off, its normally closed contact 1'-b closes again, and its normally closed contact T-a returns to open. In addition, the water supply valve Wv is opened to supply new ice-making water to the tank 19 whose water level has decreased, and the hot gas valve HV is opened to supply high-temperature refrigerant discharged from the compressor CM via the hot gas pipe 33. and bypass the evaporator 14. As a result, the first ice making compartment 11 is heated, and the first ice making compartment 1 is heated.
3 and the frozen surface of the spherical water begins to melt.

更に、切換スイッチS2の切換えにより、前記リレーX
2が励磁されて、これと協働する常閉接点X、−aが閉
成し、前記モータRMの水案内板延出用端子mへの通電
がなされる。これにより、モータRMが所要方向に駆動
され、第2図に示すように、水案内板35がロール36
から繰出されて、傾動姿勢にある第2製氷室12の上部
全面に亘り延出して、第1製氷小室13に氷結している
球状水の落下を待機する。なお、第4図の回路に示すリ
ミットスイッチLSWに水案内板35の一部が当接し、
前記゛スイッチLSWの接点が開放されると、リレーX
2への通電が遮断されて無励磁となり。
Furthermore, by switching the changeover switch S2, the relay
2 is excited, the normally closed contacts X and -a which cooperate with this are closed, and the water guide plate extending terminal m of the motor RM is energized. As a result, the motor RM is driven in the required direction, and as shown in FIG.
It is extended over the entire upper part of the second ice-making chamber 12 in a tilted position, and waits for the frozen spherical water to fall into the first ice-making chamber 13. Note that a part of the water guide plate 35 comes into contact with the limit switch LSW shown in the circuit of FIG.
When the contact of the switch LSW is opened, the relay
The power supply to 2 is cut off and it becomes de-energized.

これと協働する常閉接点X2−aが開放し、前記モータ
RMの回転は停止する。そして、前述した蒸発器14で
のホットガスの循環が経過して、第1製氷小室13が成
る程度加温されると、小室壁面と球状水との氷結が解除
され、当該球状水は自重により前記延出姿勢にある水案
内板35に落下し、この水案内板35に沿って滑落して
貯水庫(図示せず)に案内回収される。
The normally closed contact X2-a that cooperates with this opens, and the rotation of the motor RM stops. When the hot gas circulates in the evaporator 14 described above and is heated to the extent that the first ice-making chamber 13 is formed, the ice between the chamber wall and the spherical water is released, and the spherical water is caused by its own weight. The water falls onto the water guide plate 35 in the extended position, slides down along the water guide plate 35, and is guided and collected in a water storage (not shown).

このように、球状水が全て第1製氷小室13から離脱す
ると、第1製氷室11は蒸発器14に循環しているホッ
トガスにより一挙に温度上昇する。
In this way, when all the spherical water leaves the first ice-making compartment 13, the temperature of the first ice-making compartment 11 rises all at once due to the hot gas circulating in the evaporator 14.

この温度上昇を除氷検知サーモTh2が検知すると、該
サーモTh2は接点c −bが開放し、接点Q −aが
閉成して除氷運転を完了させる。前記サーモTh、の接
点Q−aが閉成すると、アクチュエータモータAMにお
ける復帰駆動用端子nへの通電がなされ、該モータAM
は逆回転してカムレバー17を駆動し、該レバー17と
第2製氷室12との間に弾力的に係着したコイルスプリ
ング18により、第2製氷室12および製氷水タンク1
9を反時計方向に回動付勢して、水平状態に復帰させる
ことにより、再び第1製氷室11の第1製氷小室13を
下方から閉成する。また、モータRMの水案内板後退用
端子nへの通電がなされて、該モータRMが先とは逆方
向に駆動され、水案内板35がロール36に巻取られる
。なお、ロール36への水案内板35の巻取り速度を、
第2製氷室12の復帰速度より充分に大きくしておくこ
とにより、復帰中の第2製氷室12による水案内板35
の噛込みは生じない。
When the deicing detection thermometer Th2 detects this temperature rise, the thermometer Th2 opens its contact point c-b and closes its contact point Q-a to complete the deicing operation. When the contact Q-a of the thermostat Th is closed, the return drive terminal n of the actuator motor AM is energized, and the motor AM
rotates in the opposite direction to drive the cam lever 17, and the coil spring 18 elastically engaged between the lever 17 and the second ice making chamber 12 causes the second ice making chamber 12 and the ice making water tank 1 to be
9 is rotated counterclockwise and returned to the horizontal state, thereby closing the first ice making compartment 13 of the first ice making compartment 11 from below again. Also, the water guide plate retreating terminal n of the motor RM is energized, the motor RM is driven in the opposite direction, and the water guide plate 35 is wound around the roll 36. Note that the winding speed of the water guide plate 35 onto the roll 36 is
By making the return speed sufficiently higher than the return speed of the second ice-making compartment 12, the water guide plate 35 caused by the second ice-making compartment 12 during the return
No biting occurs.

更に、前記モータAMの逆回転によりカムレバー17も
逆回転し、前記切換スイッチS、を押圧付勢して、接点
a −c側から接点a −b側に切換える。これにより
、前記給水弁Wvおよびホットガス弁HVが閉成して、
製氷水およびホットガスの供給を停止する。そして、第
4図の回路図に示す初期状態に復帰して製氷運転が再開
され、前述した動作を繰り返す。製氷運転と除氷運転と
が反復されて、貯水庫に所定量の球状水が貯留されると
、貯水検知スイッチS、が開放して製氷機の運転が停止
される。
Further, due to the reverse rotation of the motor AM, the cam lever 17 also rotates in the reverse direction, pressing and energizing the changeover switch S, thereby switching from the contact a-c side to the contact a-b side. As a result, the water supply valve Wv and the hot gas valve HV are closed,
Stop the supply of ice making water and hot gas. Then, the ice making operation is resumed by returning to the initial state shown in the circuit diagram of FIG. 4, and the above-described operations are repeated. When the ice making operation and the deicing operation are repeated and a predetermined amount of spherical water is stored in the water storage, the water storage detection switch S is opened and the operation of the ice maker is stopped.

(第2実施例に係る製氷機構について)第7図は、本発
明の第2実施例に係る自動製氷機を製氷状態で概略的に
示すものであって、その基本構成は第1実施例の構成と
共通している。但し、この実施例では、第2製氷室12
と分配管24とが独立分離した構成になっている。すな
わち、この製氷機では、分配管24を裏面に配設した水
皿38を傾動自在に備え、この水皿38に前記の製氷水
タンク19が設けられている。そして、前述したアクチ
ュエータモータAMを付勢することに・より、当該水皿
38は除氷運転に際し傾動して、第2製氷室12を開放
可能である。
(Regarding the ice-making mechanism according to the second embodiment) FIG. 7 schematically shows the automatic ice-making machine according to the second embodiment of the present invention in an ice-making state, and its basic configuration is similar to that of the first embodiment. It has the same structure. However, in this embodiment, the second ice making compartment 12
The distribution pipe 24 and the distribution pipe 24 are configured to be independent and separated. That is, this ice maker is provided with a tiltable water tray 38 having the distribution pipe 24 disposed on its back surface, and the ice making water tank 19 is provided in the water tray 38 . By energizing the actuator motor AM described above, the water tray 38 can be tilted during the deicing operation to open the second ice making chamber 12.

また第2製氷室12は、製氷運転時において第1製氷室
11の直下の所定位置に移動可能に配設され、その下面
部に前記水皿38が密着し得るようになっている。水皿
38の裏面に設けた前記分配管24に穿設される各噴水
孔25は、第2製氷室12における各第2製氷小室15
の底部に穿設した通孔12aに対応一致させ得るように
設定しである。なお、水皿38の各噴水孔25に隣接し
て戻り孔26が穿設されており、この戻り孔26を介し
て未氷結水は製氷水タンク19に帰還されるようになっ
ている。
The second ice-making compartment 12 is movably disposed at a predetermined position directly below the first ice-making compartment 11 during ice-making operation, and the water tray 38 can be brought into close contact with the lower surface of the second ice-making compartment 12. Each water fountain hole 25 bored in the distribution pipe 24 provided on the back surface of the water tray 38 is connected to each second ice making compartment 15 in the second ice making compartment 12.
It is set so that it can correspond to the through hole 12a bored in the bottom of the. A return hole 26 is provided adjacent to each fountain hole 25 of the water tray 38, and unfrozen water is returned to the ice-making water tank 19 through the return hole 26.

この実施例に使用される第2製氷室12は、所要のタイ
ミングで後述の移動機構により移動されて、前記第1製
氷室11の直下から完全に退避可能に構成されている。
The second ice-making compartment 12 used in this embodiment is configured to be able to be moved at a required timing by a moving mechanism to be described later and completely evacuated from directly below the first ice-making compartment 11.

すなわち第2製氷室12は、その除氷運転に際して、第
1製氷室11から垂直に所要距離だけ下降した後、水平
に移動して第1製氷室11の直下から退避するいわゆる
L字形運動と、製氷運転の再開に先駆けて、前述と逆方
向の復帰運動とを行ない得るものであって、このL字形
および逆り字形運動を与える移動機構の一例を、第8図
(a)、(b)に概略的に示す。
That is, during the deicing operation, the second ice-making compartment 12 moves vertically down from the first ice-making compartment 11 by a required distance, and then moves horizontally to retreat from directly below the first ice-making compartment 11, which is a so-called L-shaped movement. An example of a moving mechanism that can perform a return movement in the opposite direction to that described above before restarting the ice-making operation, and provides this L-shaped and reverse-shaped movement is shown in FIGS. 8(a) and 8(b). Schematically shown in

図において、定位置に水平固定した第1製氷室11の両
側縁に隣接して、一対のL字形をなすガイドレール39
.39が平行に配設されると共に。
In the figure, a pair of L-shaped guide rails 39 are adjacent to both side edges of the first ice making chamber 11 which is horizontally fixed in a fixed position.
.. 39 are arranged in parallel.

このガイドレール39.39の右方(第8図(a)で)
に所定距離離間して、同じ形状を有する一対のL字形ガ
イドレール40,40が整列的に配設されている。夫々
のガイドレール39および40には。
The right side of this guide rail 39.39 (in Figure 8 (a))
A pair of L-shaped guide rails 40, 40 having the same shape are arranged in alignment at a predetermined distance apart. In each guide rail 39 and 40.

図示の如く、その軌条面にラック歯39a、40aが形
成され、前記第2製氷室12の両側縁に軸53.53を
介して回転自在に枢支した4個のピニオンギヤ41が、
前記ラック歯39a、40aと脱落不能に噛み合って、
当該第2製氷室12をL字形ガイドレール39,39横
びに40.40に移動自在に水平支持している。なお、
第2製氷室12には、ガイドレール39.40の裏面に
形成したラック歯と噛合する別のピニオンギヤ51が、
前記各ピニオンギヤ41に隣接して回転自在に枢支され
ている。すなわち、ガイドレール39.40は、両ピニ
オンギヤ41.51で挟持され、これにより第2製氷室
12をガイドレール39.40から脱落することがない
よう構成している。
As shown in the figure, four pinion gears 41 are provided with rack teeth 39a and 40a on their rail surfaces, and are rotatably supported on both side edges of the second ice making chamber 12 via shafts 53 and 53.
meshing with the rack teeth 39a, 40a so as not to fall off;
The second ice making chamber 12 is movably supported horizontally by L-shaped guide rails 39, 39 at 40.40 mm. In addition,
In the second ice making chamber 12, another pinion gear 51 that meshes with rack teeth formed on the back side of the guide rail 39, 40 is provided.
It is rotatably supported adjacent to each pinion gear 41. That is, the guide rail 39.40 is held between both pinion gears 41.51, thereby preventing the second ice making chamber 12 from falling off the guide rail 39.40.

また第2製氷室12には、前記軸53と直交する駆動軸
52が回転自在に枢支され、この駆動軸52の軸方向両
端部に配設したウオームギヤ54゜54は、前記軸53
.53に配設したウオームホイール55.55と噛合し
ている。該駆動軸52の略中央部には、第2製氷室12
に配設した減速モータ42の出力軸に配設したギヤ56
と噛合するギヤ57が配設され、モータ42を駆動する
ことにより、軸53,53は同一方向に回転させられる
Further, in the second ice making chamber 12, a drive shaft 52 which is perpendicular to the shaft 53 is rotatably supported.
.. It meshes with a worm wheel 55.55 disposed at 53. A second ice making chamber 12 is located approximately in the center of the drive shaft 52.
A gear 56 disposed on the output shaft of the deceleration motor 42 disposed in the
A gear 57 that meshes with the motor 42 is provided, and by driving the motor 42, the shafts 53, 53 are rotated in the same direction.

これにより、該軸53,53に配設した各ピニオンギヤ
41と前記ラック歯39a、40aとの噛合作用下に、
第8図(b)に示す如く、第2製氷室12を各対をなす
L字形ガイドレール39,39および40.40に沿っ
て自走させ、第1製氷室11の直下から完全に退避させ
得るものである。
As a result, under the meshing action of each pinion gear 41 disposed on the shafts 53, 53 and the rack teeth 39a, 40a,
As shown in FIG. 8(b), the second ice-making compartment 12 is made to run on its own along each pair of L-shaped guide rails 39, 39, and 40, 40, and is completely evacuated from directly below the first ice-making compartment 11. It's something you get.

なお、製氷運転の完了時には、第1製氷室11と第2製
氷室12とは強固に氷結しており、当該第2製氷室12
に内股したヒータHによる融解熱と前記減速モータ42
による駆動力とだけでは、両層氷室11.12を剥離さ
せることは困難と思われる。そこで、第8図(a)に示
すように、カム43を備えるモータ44を第1製氷室1
1に取付け、このカム43の回転により第2製氷室12
の縁部を下方に押圧することによって、両説氷室11.
12を強制的に剥離させる機構の設置が推奨される。
Note that when the ice-making operation is completed, the first ice-making compartment 11 and the second ice-making compartment 12 are firmly frozen, and the second ice-making compartment 12 is solidly frozen.
The heat of fusion caused by the heater H and the deceleration motor 42
It seems difficult to separate the two ice chambers 11 and 12 with only the driving force of . Therefore, as shown in FIG. 8(a), the motor 44 equipped with the cam 43 is
1, and the rotation of this cam 43 opens the second ice making chamber 12.
By pressing the edges of the ice chamber 11.
It is recommended to install a mechanism that forcibly peels off 12.

(第2実施例の作用について) 製氷運転に際しては、第7図に示す如く、第2製氷室1
2は第1製氷室11を下方から閉成しており、また水皿
38は第2製氷室12を下方から閉成している。そして
タンク19中の製氷水を、前記分配管24に穿設した噴
水孔25および第2製氷小室15の底部に穿設した通孔
12aを介して、第1製氷小室13および第2製氷小室
15により画成される球状空間中に噴射し、ここで球状
氷を°生成させる。また、未氷結水は第2製氷小室15
の通孔12aを介して水皿38に戻り、該水皿38に穿
設した前記戻り孔26から、製氷水タンク19に帰還さ
れる。
(Regarding the operation of the second embodiment) During ice-making operation, as shown in FIG.
2 closes the first ice making chamber 11 from below, and the water tray 38 closes the second ice making chamber 12 from below. The ice-making water in the tank 19 is then supplied to the first ice-making chamber 13 and the second ice-making chamber 15 through the fountain hole 25 formed in the distribution pipe 24 and the through hole 12a formed in the bottom of the second ice-making chamber 15. The ice is injected into the spherical space defined by the ice, and spherical ice is generated here. In addition, unfrozen water is stored in the second ice making compartment 15.
The water returns to the water tray 38 through the through hole 12a, and is returned to the ice making water tank 19 through the return hole 26 formed in the water tray 38.

第9図(a)〜第9図(e)に、除氷運転の際における
水皿38および第2製氷室12の動きを経時的に示す。
FIGS. 9(a) to 9(e) show the movements of the water tray 38 and the second ice making chamber 12 over time during the deicing operation.

すなわち、製氷運転が完了すると、前記製氷検知サーモ
Th1がこれを検知して、ヒータHへの通電を行ない、
第2製氷室12の裏面と水皿38との氷結を解除し、第
9図(a)に示す如く。
That is, when the ice-making operation is completed, the ice-making detection thermo Th1 detects this and energizes the heater H.
The back surface of the second ice making compartment 12 and the water tray 38 are thawed, as shown in FIG. 9(a).

アクチュエータモータAMにより当該水皿38を強制的
に剥離させる。なお、ヒータHの発熱作用下に、第2製
氷小室15と球状氷1との氷結は解除されつつある。
The water tray 38 is forcibly peeled off by the actuator motor AM. Note that under the action of heat generation from the heater H, the second ice-making chamber 15 and the spherical ice 1 are being unfrozen.

そこで、前記モータ44を駆動してカム43を回転させ
、第2製氷室12の縁部を下方に押圧して第1製氷室1
1から強制的に剥離させる。また同期的に、減速モータ
42を駆動して前記ピニオンギヤ41とラック歯39a
、40aとの噛合作用下に、第2製氷室12を各対をな
すL字形ガイドレール39,39および40.40に沿
って自走させる。これにより、第9図(b)および第9
図(c)に示す如く、第2製氷室12は第1製氷室11
から離間して垂直に下降した後、右方に自走して第1製
氷室11の直下から完全に退避する。但し、第1製氷室
11における第1製氷小室13には、球状氷1が氷結し
ており、この状態でホットガス弁HVの開放がなされて
、第1製氷室11に設けた蒸発器14にホットガスが通
される。
Therefore, the motor 44 is driven to rotate the cam 43, and the edge of the second ice making chamber 12 is pushed downward, so that the first ice making chamber 1
Forcibly peel off from 1. Also, synchronously, the deceleration motor 42 is driven to connect the pinion gear 41 and the rack teeth 39a.
, 40a, the second ice making chamber 12 is allowed to move along each pair of L-shaped guide rails 39, 39 and 40, 40. As a result, FIGS. 9(b) and 9
As shown in Figure (c), the second ice making compartment 12
After moving away from the ice maker and vertically descending, it moves to the right and completely evacuates from directly below the first ice making chamber 11. However, the spherical ice 1 is frozen in the first ice-making compartment 13 in the first ice-making compartment 11, and in this state, the hot gas valve HV is opened and the evaporator 14 provided in the first ice-making compartment 11 is heated. Hot gas is passed through.

第1製氷室11が前記蒸発器14へのホットガスの循環
により加温されると、第1製氷小室13に対する球状氷
1の氷結が解除され、第9図(d)に示すように、当該
球状氷1は自重で第1製氷小室13から落下して、傾動
待機している前記水皿38の表面に落着し、貯水庫に滑
落回収される。
When the first ice-making compartment 11 is heated by circulating hot gas to the evaporator 14, the spherical ice 1 in the first ice-making compartment 13 is unfrozen, and as shown in FIG. 9(d), The spherical ice 1 falls from the first ice-making compartment 13 under its own weight, lands on the surface of the water tray 38 that is tilted and is on standby, and is slid down and collected in the water storage.

次いで、前記減速モータ42を逆転させれ番f。Next, the deceleration motor 42 is reversely rotated.

第2製氷室12はピニオンギヤ41とラック歯39a、
40aとの噛合作用下に、各対をなすL字形ガイドレー
ル39,39および40,40に沿って自走復帰し、第
9図(e)に示す如く、第1製氷室11の下方に帰還し
て、次の製氷運転を待機する。
The second ice making chamber 12 includes a pinion gear 41 and rack teeth 39a,
40a, it returns to its self-propelled position along the pairs of L-shaped guide rails 39, 39 and 40, 40, and returns to the lower part of the first ice-making compartment 11, as shown in FIG. 9(e). and waits for the next ice-making operation.

発明の効果 以上詳細に説明した如く5本発明に係る自動製氷機によ
れば、所定直径の球状氷が連続的に多数生産されるもの
であって、産業上の諸々の用途に有効に使用されるもの
である。また図示例では、球状氷を製造する場合につき
説明したが、第1製氷小室および第2製氷小室の内面形
状を変更することにより、第6図(b)に示す如き多面
状氷を大量生産するのにも好適に使用される。なお球状
氷の用途としては、レストランや喫茶店等での用途以外
に、当該氷が稠密で極めて硬いために、例えばゴルフボ
ールとしての代用も可能である。この場合は、打放しの
練習場等で使用すれば、打撃された球状氷は溶けて水に
なるので、ボール回収の手間が省ける優れた利点がある
Effects of the Invention As explained in detail above, the automatic ice making machine according to the present invention can continuously produce a large number of spherical ice cubes of a predetermined diameter, and can be effectively used for various industrial purposes. It is something that Furthermore, in the illustrated example, explanation has been given on the case of manufacturing spherical ice, but by changing the inner surface shapes of the first ice-making chamber and the second ice-making chamber, multifaceted ice as shown in FIG. 6(b) can be mass-produced. It is also suitable for use. In addition to uses in restaurants and coffee shops, spherical ice can also be used as a golf ball, for example, since the ice is dense and extremely hard. In this case, when used at a hitting practice range, the spherical ice that is hit melts into water, which has the advantage of saving time and effort in recovering the ball.

【図面の簡単な説明】[Brief explanation of the drawing]

第11i21〜第5図は、本発明の第1実施例を示すも
のであって、第1図は第1実施例に係る製氷機構の概略
構成を示す縦断面図、第2図は第1図に示す製氷機構に
おいて、第2製氷室を開放した状態で示す概略斜視図、
第3図は自動製氷機における一般的な冷凍系の回路図、
第4図は第1実施例に係る装置を運転制御する製氷制御
回路の一例を示す回路図、第5図(a)〜(c)は、第
1製氷小室および第2製氷小室内で球状氷が形成される
状態を経時的に示す説明図、第6図(a)は球状氷を示
す説明図、第6図(b)は多面状水を示す説明図、第7
図〜第9図は本発明の第2実施例を示すものであって、
第7図は第2実施例に係る製氷機構の概略構成を示す縦
断面図、第8図は第1製氷室に対して第2製氷室を開放
するための機構を示すものであって、第8図(a)は第
1製氷室を第2製氷室で下方から閉成した状態を示す概
略斜視図、第8図(b)は第2製氷室を第1製氷室の直
下から完全に退避させた状態を示す概略斜視図、第9図
(a)〜(e)は、第2実施例に係る装置において、水
皿が傾動し、次いで第2製氷室が第1製氷室から分離し
て球状水を貯水庫に向けて放出する状態を経時的に示す
説明図である。 11・・・第1製氷室  12・・・第2製氷室13・
・・第1製氷小室 14・・・蒸発器15・・・第2製
氷小室 19・・・製氷水タンク22・・・ポンプ  
  24・・・分配管FIG、7
11i21 to 5 show a first embodiment of the present invention, in which FIG. 1 is a vertical sectional view showing a schematic configuration of an ice making mechanism according to the first embodiment, and FIG. A schematic perspective view showing the ice making mechanism shown in FIG. 1 with the second ice making chamber opened;
Figure 3 is a circuit diagram of a typical refrigeration system in an automatic ice maker.
FIG. 4 is a circuit diagram showing an example of an ice-making control circuit for controlling the operation of the device according to the first embodiment, and FIGS. 5(a) to (c) show spherical ice cubes in the first ice-making chamber and the second ice-making chamber. FIG. 6(a) is an explanatory diagram showing the state in which ice is formed over time; FIG. 6(a) is an explanatory diagram showing spherical ice; FIG. 6(b) is an explanatory diagram showing polyhedral water;
9 to 9 show a second embodiment of the present invention,
FIG. 7 is a vertical sectional view showing a schematic configuration of an ice making mechanism according to the second embodiment, and FIG. 8 is a diagram showing a mechanism for opening the second ice making compartment to the first ice making compartment. Figure 8 (a) is a schematic perspective view showing the state in which the first ice-making compartment is closed from below with the second ice-making compartment, and Figure 8 (b) is a schematic perspective view showing the state in which the second ice-making compartment is completely evacuated from directly below the first ice-making compartment. 9(a) to 9(e) are schematic perspective views showing a state in which the water tray is tilted and the second ice making compartment is separated from the first ice making compartment in the apparatus according to the second embodiment. It is an explanatory view showing a state where spherical water is discharged toward a water storage over time. 11...First ice making room 12...Second ice making room 13.
...First ice making chamber 14...Evaporator 15...Second ice making chamber 19...Ice making water tank 22...Pump
24...Distribution pipe FIG, 7

Claims (1)

【特許請求の範囲】 〔1〕製氷水タンク(19)に貯留した製氷水をポンプ
(22)を介して分配管(24)に圧送し、冷凍系に接
続する蒸発器(14)により冷却される製氷室に、前記
分配管(24)に穿設した噴水孔から製氷水を噴射供給
して該製氷室内に氷塊を形成し、該製氷室で氷結するに
到らなかった製氷水は前記製氷水タンク(19)に帰還
させて再循環に供するよう構成した自動製氷機において
、 前記蒸発器(14)を背面に備えると共に製氷機本体の
内部に略水平に固定配置され、下方に向けて開放する所
要形状の第1製氷小室(13)を多数凹設してなる第1
製氷室(11)と、 この第1製氷室(11)に対し近接および離間自在に配
設され、製氷運転に際し前記第1製氷小室(13)の夫
々を下方から対応的に閉成して、内部に球状または多面
体状をなす氷形成用空間を画成可能な所要形状の第2製
氷小室(15)を多数凹設してなる第2製氷室(12)
とから前記製氷室を構成し、更に前記製氷水タンク(1
9)を、少なくとも第1製氷室(11)に対して傾動し
得るよう設定したことを特徴とする自動製氷機。 〔2〕前記第1製氷小室(13)およびこれに対応する
第2製氷小室(15)は、両者が対向し合うことにより
、その内部に球体状の氷形成用空間が画成される請求項
1記載の自動製氷機。 〔3〕前記第1製氷小室(13)およびこれに対応する
第2製氷小室(15)は、両者が対向し合うことにより
、その内部に多面体状の氷形成用空間が画成される請求
項1記載の自動製氷機。 〔4〕前記第2製氷室(12)は、その下部に製氷水タ
ンク(19)を一体的に備え、製氷運転に際し前記第1
製氷室(11)を下方から水平に閉成すると共に、除氷
運転に際し製氷水タンク(19)と共に傾動して、該第
1製氷室(11)を開放するよう構成されている請求項
1記載の自動製氷機。 〔5〕前記第2製氷室(12)は、製氷水タンク(19
)とは別体として構成され、該第2製氷室(12)は前
記第1製氷室(11)の下方において、移動機構により
第1製氷小室(13)を閉成する位置と、該製氷小室(
13)の直下から退避する位置との間を往復移動される
よう構成される請求項1記載の自動製氷機。 〔6〕前記分配管(24)は、第2製氷小室(15)の
底面に一体的に形成されている請求項1、2、3または
4記載の自動製氷機。 〔7〕前記分配管(24)は第2製氷小室(15)と分
離され、この分配管(24)は第1製氷室(11)に対
して傾動可能に構成した前記製氷水タンク(19)に配
設されている請求項1、2、3または5記載の自動製氷
機。
[Claims] [1] Ice-making water stored in an ice-making water tank (19) is sent under pressure to a distribution pipe (24) via a pump (22), and is cooled by an evaporator (14) connected to a refrigeration system. Ice-making water is injected into the ice-making compartment from the fountain hole drilled in the distribution pipe (24) to form ice cubes in the ice-making compartment, and the ice-making water that has not frozen in the ice-making compartment is In an automatic ice maker configured to return water to a water tank (19) for recirculation, the evaporator (14) is provided on the back and is fixedly arranged substantially horizontally inside the ice maker body, opening downward. A first ice-making chamber (13) having a predetermined shape is recessed into the first ice-making chamber (13).
an ice-making compartment (11), which is arranged so as to be close to and separated from the first ice-making compartment (11), and correspondingly closes each of the first ice-making compartments (13) from below during ice-making operation; A second ice-making chamber (12) comprising a number of second ice-making chambers (15) each having a desired shape capable of defining a spherical or polyhedral ice-forming space inside.
constitutes the ice making chamber, and further includes the ice making water tank (1).
9) is set to be tiltable with respect to at least the first ice making compartment (11). [2] A spherical ice forming space is defined inside the first ice making chamber (13) and the corresponding second ice making chamber (15) by facing each other. The automatic ice making machine described in 1. [3] The first ice-making chamber (13) and the corresponding second ice-making chamber (15) face each other, thereby defining a polyhedral ice-forming space therein. The automatic ice making machine described in 1. [4] The second ice-making compartment (12) is integrally equipped with an ice-making water tank (19) at its lower part, and during ice-making operation, the second ice-making compartment (12)
2. The ice making chamber (11) is closed horizontally from below and is tilted together with the ice making water tank (19) during deicing operation to open the first ice making chamber (11). automatic ice maker. [5] The second ice-making compartment (12) has an ice-making water tank (19
), and the second ice-making compartment (12) has a position below the first ice-making compartment (11) where the first ice-making compartment (13) is closed by a moving mechanism, and a position where the first ice-making compartment (13) is closed by a moving mechanism. (
13) The automatic ice maker according to claim 1, wherein the automatic ice maker is configured to be moved back and forth between a position immediately below the ice maker and a retracted position. [6] The automatic ice making machine according to claim 1, 2, 3, or 4, wherein the distribution pipe (24) is integrally formed on the bottom surface of the second ice making chamber (15). [7] The distribution pipe (24) is separated from the second ice-making compartment (15), and the distribution pipe (24) is connected to the ice-making water tank (19) configured to be tiltable with respect to the first ice-making compartment (11). The automatic ice making machine according to claim 1, 2, 3 or 5, wherein the automatic ice making machine is arranged in a.
JP2350688A 1988-02-02 1988-02-02 Automatic ice making machine Granted JPH01200167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2350688A JPH01200167A (en) 1988-02-02 1988-02-02 Automatic ice making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2350688A JPH01200167A (en) 1988-02-02 1988-02-02 Automatic ice making machine

Publications (2)

Publication Number Publication Date
JPH01200167A true JPH01200167A (en) 1989-08-11
JPH0544588B2 JPH0544588B2 (en) 1993-07-06

Family

ID=12112352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2350688A Granted JPH01200167A (en) 1988-02-02 1988-02-02 Automatic ice making machine

Country Status (1)

Country Link
JP (1) JPH01200167A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142149A (en) * 1975-05-31 1976-12-07 Kenichi Hamada Ice making apparatus forming certain figure by cover and body and also over used for it

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142149A (en) * 1975-05-31 1976-12-07 Kenichi Hamada Ice making apparatus forming certain figure by cover and body and also over used for it

Also Published As

Publication number Publication date
JPH0544588B2 (en) 1993-07-06

Similar Documents

Publication Publication Date Title
US4910974A (en) Automatic ice making machine
JPH0544587B2 (en)
JPH0532668B2 (en)
US4990169A (en) Ice making method and/or apparatus
US4688386A (en) Linear release ice machine and method
JPH01210778A (en) Ice removing structure for automatic ice-making machine
JPH0544586B2 (en)
JPH02143070A (en) Ice removing structure of automatic ice making machine
US4694656A (en) Rotary release ice machine and method
JPH01230969A (en) Mechanical construction of automatic ice making machine
JPH01200167A (en) Automatic ice making machine
JPH01230968A (en) Mechanical construction of automatic ice making machine
JPH01225875A (en) Ice guide structure for automatic ice-making machine
JPH01196477A (en) Automatic ice making machine
USRE34210E (en) Linear release ice machine and method
JPH01230970A (en) Control method for ice discharging operation of automatic ice making machine
JPH01234768A (en) Ice making structure of automatic ice making machine
JPH02143068A (en) Ice guiding device in automatic ice making machine
JPH0565780B2 (en)
JPH02161273A (en) Abnormal cooling prevention device of automatic ice machine
JP3919906B2 (en) Ice machine
JPH02154963A (en) Deicing control method for automatic ice making machine
JPH02161271A (en) Ice making structure of automatic ice machine
JPH01260271A (en) Automatic ice-making machinery and control of ice-making operation
JPH10197115A (en) Operation control method for automatic ice making machine