JPH02143072A - Ice removing structure for automatic ice making machine - Google Patents

Ice removing structure for automatic ice making machine

Info

Publication number
JPH02143072A
JPH02143072A JP29571188A JP29571188A JPH02143072A JP H02143072 A JPH02143072 A JP H02143072A JP 29571188 A JP29571188 A JP 29571188A JP 29571188 A JP29571188 A JP 29571188A JP H02143072 A JPH02143072 A JP H02143072A
Authority
JP
Japan
Prior art keywords
ice
water
making
ice making
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29571188A
Other languages
Japanese (ja)
Inventor
Yasuo Hara
安夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP29571188A priority Critical patent/JPH02143072A/en
Publication of JPH02143072A publication Critical patent/JPH02143072A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To separate ice blocks from second ice making chambers smoothly by a method wherein water from as external source is reserved in a water reservoir to dip respective ice making small chambers of a second ice making chamber and excessive water is overflowed from a dam, upon ice removing operation. CONSTITUTION:A water pan 38, arranged so as to form groove passages 72 below a second ice making chamber 12 and supplying ice making water into respective ice making small chambers 13, 15 of first and second ice making chambers 11, 12, defines a water reservoir 65 surrounding the second ice making chamber 12 by a rear part 64, left and right sides 61 and a dam 62. Upon ice removing operation, a water supplying valve WV is opened to pour city water into the water reservoir 65 and fill up the water reservoir 65 as well as the groove passages 72 so as to be overflowed from the dam 62 whereby the rear surfaces of the second ice making chamber 12 and the second ice making small chambers 15 are dipped and heated to melt the frozen surfaces of the first ice making chamber 11 and sperical ice blocks 1. Next, the second ice making chamber 12 is separated from the first ice making chamber 11 and is inclined by pivoting a cam lever 17. The ice blocks may be reparated easily from the second ice making small chambers.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、例えば球体状や多面体状をなす氷塊群を全
自動で大量に製造し得る自動製氷機において、製氷室中
で製造した氷塊群を、当該製氷室から円滑に除氷し得る
よう構成した除氷構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention is directed to an automatic ice making machine that can fully automatically produce large quantities of ice cubes in the form of, for example, spheres or polyhedrons. The present invention relates to a deicing structure configured to smoothly remove ice from the ice making room.

従来技術 各種の産業分野で、サイコロ状の角氷や所要厚みの板氷
その他フレーク状の氷片等を大量に連続製造する自動製
氷機が、その用途に応じて好適に使い分けられている。
BACKGROUND OF THE INVENTION In various industrial fields, automatic ice making machines that continuously produce large quantities of dice-shaped ice cubes, ice sheets of a required thickness, and ice flakes are suitably used depending on the application.

例えば、前記の角氷を製造する製氷機として、 ■製氷室に下向きに多数画成した立方体状の製氷小室を
、その下方から水皿により開閉自在に閉成し、当該水皿
から製氷水を各製氷小室に噴射供給して、該製氷/h室
中に角氷を徐々に形成するようにした所謂クローズドセ
ル方式や。
For example, as an ice maker for producing ice cubes as described above, (1) A large number of cubic ice making compartments are defined downward in the ice making compartment, which can be opened and closed from below with a water tray, and ice making water is poured from the water tray. A so-called closed cell system in which ice cubes are gradually formed in each ice making compartment by injection and supplying ice to each ice making compartment.

■下方に開放する多数の立方体状の製氷小室に製氷水を
直接供給し、角氷を該製氷/h室中に形成するようにし
た所謂オープンセル方式が知られている。また、板氷や
細粒状のクラッシュアイスを連続製造する製氷機、その
他フレーク状の氷片を連続製造するオーガ式製氷機等も
実施されている。
(2) A so-called open cell system is known in which ice-making water is directly supplied to a large number of cube-shaped ice-making chambers that open downward, and ice cubes are formed in the ice-making/h chambers. In addition, ice makers that continuously produce sheet ice or fine crushed ice, and auger-type ice makers that continuously produce ice flakes are also in use.

発明が解決しようとする課題 従来の各種製氷機により製造される氷は、前述した如く
、立方体状の角氷や板氷、その他フレーク状の氷片やク
ラッシュアイスが殆どである。これらの氷で所要の定形
を備え、そのまま飲料に浮かせたり、各種食材の冷却ベ
ツドに供したり出来るのは、僅かに前記の角氷があるに
過ぎない(板氷も定形は備えているが、通常そのままの
寸法では使用し得ない)。
Problems to be Solved by the Invention As mentioned above, most of the ice produced by various conventional ice making machines are cube-shaped ice cubes, sheet ice, other flaky ice pieces, and crushed ice. Only the above-mentioned ice cubes have the required shape and can be floated on drinks or used as a cooling bed for various foodstuffs (board ice also has a shape, but (Usually cannot be used with the same dimensions.)

しかるに最近の喫茶店やレストランその他の飲食施設で
は、同種営業に対し種々の面で優位に立って顧客を吸引
するべく、他社との差別化を図る懸命な努力が払わ九で
いる6その一環として、例えば、従来より広く普及して
いる角氷に替えてボール状(球体状)の氷塊を使用し、
これにより顧客に目先の新しい変化を提供しようとする
傾向がみ受けられる。
However, in recent years, coffee shops, restaurants, and other food and beverage establishments are making strenuous efforts to differentiate themselves from other companies in order to gain an advantage over similar businesses in various ways and attract customers6. For example, instead of the conventionally widely used ice cubes, ball-shaped (spherical) ice cubes are used.
As a result, there is a tendency to try to provide immediate new changes to customers.

しかしこの球状水は、広く飲食に供されることから、空
気混入による白濁がなく、清澄な透明氷塊でなければ商
品価値は低下する。また大量に製造可能であることを必
要とするが、従来この種の要請を満たす球状水の自動製
氷機は存在しなかった。そこで本願の発明者は、透明で
清澄な球状水を大量に製造し得る製氷機の開発に従事し
、前記の要請を充分に満足する機構を得たので、その基
本概念につき昭和63年1月29日付けで、発明「自動
製氷機」として特許出願を行なった。
However, since this spherical water is widely used for eating and drinking, its commercial value will decrease unless it is clear and transparent ice cubes without cloudiness due to aeration. It also needs to be able to be produced in large quantities, but there has been no automatic ice-making machine for spherical water that meets this type of requirement. Therefore, the inventor of the present application engaged in the development of an ice making machine capable of producing a large amount of transparent and clear spherical water, and having obtained a mechanism that fully satisfies the above requirements, the inventor developed the basic concept in January 1988. On the 29th, he filed a patent application for his invention, an "automatic ice maker."

先の出願に係る製氷機は、■下方に開放する第1製氷小
室を多数画成し、背面に蒸発器を備えた第1v3氷室と
、■上方に開放する第2製氷小室を多数画成した第2製
氷室とを基本的に備え、製氷運転に際し両製氷小室が対
応的に閉成して、その内部に球体等の異形水を形成する
空間を画成するものである。この基本構造に係る製氷機
では、除氷運転に際して、第1製氷小室に結氷した球状
水は、蒸発器にホットガスを通過させることにより、積
極的に融解剥離させることが可能である。しかし該製氷
機は、更に第2製氷室を備えているために、これに画成
した第2製氷小室に結氷した球状水を如何にして円滑に
除去するか、が解決課題となっていた。
The ice maker according to the previous application had: ■ a large number of first ice-making chambers that opened downward, a 1V3 ice chamber equipped with an evaporator on the back, and ■ a large number of second ice-making chambers that opened upward. The ice-making chamber basically includes a second ice-making chamber, and during ice-making operation, both ice-making chambers close correspondingly to define a space in which irregularly shaped water such as a sphere is formed. In the ice making machine according to this basic structure, during deicing operation, the spherical water that has frozen in the first ice making chamber can be actively melted and peeled off by passing hot gas through the evaporator. However, since the ice-making machine is further equipped with a second ice-making chamber, the problem to be solved is how to smoothly remove the frozen spherical water from the second ice-making chamber defined therein.

発明の目的 この発明は、前述した課題に鑑み、これを好適に解決す
るべく提案されたものであって、除氷運転に際して、第
2製氷室に画成した第2製氷/h室に結氷した球状や多
面体状の氷塊を円滑に除去し得る新規な構成に係る除氷
構造を提供することを目的とする。
Purpose of the Invention The present invention has been proposed in view of the above-mentioned problems to suitably solve the problems. It is an object of the present invention to provide a deicing structure with a novel configuration that can smoothly remove spherical or polyhedral ice blocks.

W題を解決するための手段 前述した課題を克服し、所期の目的を好適に達成するた
め本発明は、製氷水を製氷室に噴射供給して該製氷室内
に氷塊を形成し、氷結するに到らなかった製氷水は再循
環に供するようにした自動製氷機において、背面に蒸発
器を備えて機内に固定配置され、下方に開放する所要形
状の第1製氷小室を多数形成した第1製氷室と、この@
1製氷室に対して接離自在に配設され、前記第1製氷小
室の夫々を下方から対応的に閉成し得る所要形状の第2
製氷小室を多数形成した第2製氷室と、該第2製氷室の
下方に配設されて、第1製氷小室および第2製氷小室に
製氷水を供給する承りと、この水皿における表面の周端
縁に延出させた後部と側部および、後部と第2製氷室を
挟んで側部の前端近傍に配設された堰止め部とにより画
成され、前記第2製氷室を囲繞する水溜部とからなり、
除氷運転に際して外部から供給さ九る水を前記水滴部に
所要世情めることにより、前記第2製氷室を貯溜水に浸
漬させると共に、余剰の水をオーバーフローさせるよう
構成したことを特徴とする。
Means for Solving the Problem W In order to overcome the above-mentioned problems and suitably achieve the intended purpose, the present invention provides a method for injecting ice-making water into an ice-making chamber to form ice cubes in the ice-making chamber and freezing them. This automatic ice maker is designed to recirculate ice-making water that has not reached the desired temperature.The ice-making machine is equipped with an evaporator on the back, is fixedly placed inside the machine, and has a number of first ice-making chambers of a desired shape that open downward. Ice making room and this@
a second ice-making compartment, which is disposed so as to be movable toward and away from the first ice-making compartment, and has a desired shape and is capable of closing each of the first ice-making compartments correspondingly from below;
A second ice-making compartment formed with a large number of ice-making compartments, a holder disposed below the second ice-making compartment for supplying ice-making water to the first ice-making compartment and the second ice-making compartment, and a periphery of the surface of this water tray. A water reservoir that surrounds the second ice-making compartment and is defined by a rear part and a side part extending to the edge, and a dam part disposed near the front end of the side part with the rear part and the second ice-making compartment in between. It consists of
The second ice making chamber is immersed in the stored water and surplus water is caused to overflow by supplying water supplied from the outside to the water droplet portion during deicing operation. .

実施例 次に、本発明に係る自動製氷機の除氷構造につき、好適
な実施例を挙げて、添付図面を参照しながら以下説明す
る。第1図は本発明の好適な実施例に係る除氷構造を概
略的に示す斜視図、第2図は第1図に示す第2製氷室を
裏面側から観察した概略斜視図、第3図は本発明に係る
自動製氷機の主要製氷構造を製氷状態で概略的に示す縦
断面図である。なお1本発明の実施例では、第12図(
a)に示す球状氷1を連続製造する自動製氷機につき説
明するが、後述する製氷小室の内部形状を変更するだけ
で、第12図(b)に示す如きダイヤカット状の多面体
氷2の製造にも容易に対応し得る。
Embodiments Next, the deicing structure of an automatic ice maker according to the present invention will be described below with reference to preferred embodiments and the accompanying drawings. FIG. 1 is a perspective view schematically showing a deicing structure according to a preferred embodiment of the present invention, FIG. 2 is a schematic perspective view of the second ice-making chamber shown in FIG. 1 observed from the back side, and FIG. 1 is a vertical cross-sectional view schematically showing the main ice-making structure of the automatic ice-making machine according to the present invention in an ice-making state. In the embodiment of the present invention, FIG. 12 (
An automatic ice making machine that continuously produces the spherical ice 1 shown in a) will be explained, but by simply changing the internal shape of the ice making chamber described later, it is possible to produce the diamond-cut polyhedral ice 2 shown in FIG. 12(b). can also be easily accommodated.

(li#氷構造について) 第3図に概略的に示す如く、所要直径をなす多数の球状
氷を製造する製氷室1oは、水平に配設した第1製氷室
11と、この第1製氷室11を下方から開閉自在に閉成
可能な第2製氷室12とから基本的に構成される6すな
りち、製氷4!!筐体(図示せず)の内部上方に、熱伝
導率の良好な金属を材質とする矩形状の第1製氷室11
が水平に配設固定され、所要の整列パターンで第1爬氷
小室13が、この第1製氷室11に下向きで多数凹設さ
れている。各第1製氷小室1.3は半球状の凹部として
形成され、−例として直径3Q11、深さ1.5anに
設定されている。第1製氷室11の上面には、冷凍系(
図示せず)から導出した蒸発器14が蛇行状に密着固定
され、当該冷凍系の運転により蒸発器14における気化
冷媒の熱交換が促進されて、第1製氷室11が氷点下に
まで冷却される。
(li# Regarding ice structure) As schematically shown in Fig. 3, the ice making compartment 1o that produces a large number of spherical ice having a required diameter consists of a first ice making compartment 11 arranged horizontally, and a first ice making compartment 11 disposed horizontally. 11 and a second ice-making compartment 12 that can be opened and closed from below. ! A rectangular first ice-making chamber 11 made of metal with good thermal conductivity is provided inside and above the housing (not shown).
are arranged and fixed horizontally, and a large number of first ice cube chambers 13 are recessed downward in the first ice making chamber 11 in a required alignment pattern. Each first ice-making chamber 1.3 is formed as a hemispherical recess, and has a diameter of 3Q11 and a depth of 1.5 an, for example. On the top surface of the first ice-making compartment 11, a refrigeration system (
The evaporator 14 led out from the evaporator 14 (not shown) is closely fixed in a meandering manner, and the operation of the refrigeration system promotes heat exchange of the vaporized refrigerant in the evaporator 14, cooling the first ice making chamber 11 to below freezing point. .

第1製氷室11の直下には、銅の如き熱良導性の金属を
材質とする第2製氷室12が後述の如く傾動自在に配設
され、その製氷運転に際して、該第1製氷室11を下方
から閉成すると共に、除氷運転に際して、該第1製氷室
11を開放し得るようになっている6すなわち、第2製
氷室12には、前記第1製氷室11に凹設した第1製氷
小室13と対応して、同じく半球状凹部からなる第2:
I氷小室15が上向きに所要の整列パターンで多数凹設
されている。この第2製氷小室15の直径も、−例とし
て31であり、凹部の深さは1.5■に設定されている
。従って、第1製氷室11に対し第2製氷室12を下方
から閉成すると、両製氷小室13.15が相互に対応し
て各小室内に直径3a11の球状空間が画成される。
Immediately below the first ice making chamber 11, a second ice making chamber 12 made of a metal with good heat conductivity such as copper is provided so as to be tiltable as described below. 6. In other words, the second ice making compartment 12 has a second ice making compartment 11 recessed in the first ice making compartment 11. 1 Corresponding to the ice-making compartment 13, the second ice-making chamber 13 also has a hemispherical recess.
A large number of I ice chambers 15 are recessed upward in a required alignment pattern. The diameter of this second ice-making chamber 15 is also, for example, 31 cm, and the depth of the recess is set to 1.5 cm. Therefore, when the second ice-making compartment 12 is closed from below with respect to the first ice-making compartment 11, the two ice-making compartments 13.15 correspond to each other, and a spherical space with a diameter 3a11 is defined within each compartment.

第2製氷室】2は、前述の如く銅等の熱良導金属を材質
とするブロック体として構成され、各第2製氷小室15
に製氷水を噴射供給するための水皿38が、当該第2製
氷室12の外底部に第2図に示すボルト60を介して一
体的に固定されている。この第2製氷室12における第
2製氷小室15の形成面と反対側の面(水皿38と対向
する而)には、第2図に示す如く、相互に隣接する各第
2製氷小室15の間に溝71が形成されている。すなわ
ち、各第2製氷小室15は底面において溝71で囲繞さ
れており、後述する除氷運転に際し、給水弁Wvを介し
て供給される水道水が溝71と水皿表面との間に画成さ
れる溝通路72に充満し。
As described above, the second ice-making chamber 2 is constructed as a block body made of a heat-conducting metal such as copper, and each of the second ice-making chambers 15
A water tray 38 for spraying and supplying ice-making water to the ice-making chamber 12 is integrally fixed to the outer bottom of the second ice-making chamber 12 via bolts 60 shown in FIG. As shown in FIG. 2, on the surface of the second ice-making compartment 12 opposite to the surface on which the second ice-making compartments 15 are formed (facing the water tray 38), there are two adjacent second ice-making compartments 15. A groove 71 is formed between them. That is, each of the second ice-making compartments 15 is surrounded by a groove 71 on the bottom surface, and during deicing operation to be described later, tap water supplied via the water supply valve Wv is defined between the groove 71 and the surface of the water tray. The groove passageway 72 is filled with water.

第2製氷小室15の加熱促進を図るよう構成される。It is configured to accelerate the heating of the second ice making compartment 15.

なお、第2製氷室12における溝71の所定位置には、
該溝71の深さ寸法と同一の支柱73が突設され、この
支柱73に穿設した穴73aに前記ボルト60が挿通さ
れる。そして、第2製氷室12は、支柱73の先端部と
後述する通孔12aの穿設部位とを水皿38の表面に当
接させた状態で、水皿38にボルト固定される。
In addition, in the predetermined position of the groove 71 in the second ice making chamber 12,
A support 73 having the same depth as the groove 71 is provided in a protruding manner, and the bolt 60 is inserted into a hole 73a formed in the support 73. The second ice-making chamber 12 is bolted to the water tray 38 with the tip of the support 73 and the hole 12a (described later) in contact with the surface of the water tray 38.

前記水皿38は、その後端部が直角に立上がって後部6
4が形成され、この後部64の開放端において製氷機筐
体(図示せず)の固定部位に、枢軸16により傾動旋回
可能に枢支され、後述のアクチュエータモータAMによ
って第2製氷室12と共に回動付勢される。すなわち、
第8図に示す如く時計方向に回動すれば、水皿38に一
体固定した第2製氷室12は第1製氷小室13を開放し
The water tray 38 has a rear end that stands up at a right angle to the rear portion 6.
4 is formed at the open end of this rear part 64 and is pivotally supported by a pivot 16 to a fixed portion of the ice maker housing (not shown) so as to be tiltable and rotatable, and is rotated together with the second ice maker 12 by an actuator motor AM to be described later. dynamically energized. That is,
When rotated clockwise as shown in FIG. 8, the second ice-making chamber 12 integrally fixed to the water tray 38 opens the first ice-making chamber 13.

また反時計方向に回動すれば、第3図に示す如く、第2
製氷室12は第1製氷小室13を閉成する。
Also, if it is rotated counterclockwise, the second
The ice making chamber 12 closes the first small ice making chamber 13.

水皿38の裏面には、各第2製氷小室15と連通ずる噴
水孔25が対応的に穿設され、これら噴水孔25に製氷
水を供給する分配管24が同じく水皿38の裏面に蛇行
配置されている。また水皿38の下方には、前記分配管
24に製氷水を供給するための製氷水タンク19が一体
的に設けられている。
On the back side of the water tray 38, fountain holes 25 communicating with each of the second ice making chambers 15 are correspondingly bored, and a distribution pipe 24 for supplying ice making water to these fountain holes 25 also meanders on the back side of the water tray 38. It is located. Further, below the water tray 38, an ice-making water tank 19 for supplying ice-making water to the distribution pipe 24 is integrally provided.

図に示す如く、第2製氷室12における各第2製氷小室
15の底部に通孔12aが穿設され、前記水皿38と第
2製氷室12とを固定した際に、各噴水孔25が前記通
孔12aと対応一致するよう寸法設定されている。そし
てこの通孔12aは。
As shown in the figure, a through hole 12a is bored at the bottom of each second ice making compartment 15 in the second ice making compartment 12, and when the water tray 38 and the second ice making compartment 12 are fixed, each water fountain hole 25 is opened. The dimensions are set to correspond to the through hole 12a. And this through hole 12a.

後述する製氷運転に際し、両製氷小室i 3,15に画
成された氷形成用空間に製氷水を供給すると共に、該空
間中で氷結するに到らなかった製氷水(以下r未氷結水
」という)を好適に排出するべく機能する。なお、水皿
38の各噴水孔25に隣接して戻り孔26が穿設され、
前記通孔12aから排出された未氷結水は、この戻り孔
26を介して製氷水タンク19に帰還される。
During the ice-making operation described below, ice-making water is supplied to the ice-forming spaces defined in both ice-making chambers i3 and 15, and ice-making water that has not yet frozen in the spaces (hereinafter referred to as unfrozen water) is supplied. ). In addition, a return hole 26 is bored adjacent to each fountain hole 25 of the water tray 38,
The unfrozen water discharged from the through hole 12a is returned to the ice making water tank 19 through the return hole 26.

前記水皿38の両側部には、水皿表面から上方に所定長
さ延出する側部61,61が形成され、この側部61,
61の一端は前記後部64に密着している。また水皿3
8の前方には、第1図に示す如く、前述の側部61より
所定寸法だけ低く設定した堰止め部62が配設され、こ
の堰止め部62の両端部は両側部SL、61に密着され
ている。すなわち、水皿38の内部表面には1両側部6
1゜61、堰止め部62および前記後部64で囲繞され
た水溜部65が形成される。この水溜部65中には、該
水溜部65の内部寸法よりも小さく設定された前記第2
製氷室12が収納配置され、該第2製氷室12の外側部
と前記両側部61,61.堰止め部62および後部64
との間に、所要寸法の水路が画成される。
Side portions 61, 61 are formed on both sides of the water tray 38, and extend a predetermined length upward from the surface of the water tray.
One end of 61 is in close contact with the rear portion 64. Also water plate 3
As shown in FIG. 1, a dam part 62 is provided in front of the dam part 62, which is set to be lower than the side part 61 by a predetermined dimension. has been done. That is, the inner surface of the water tray 38 has one side portion 6.
1° 61, a water reservoir portion 65 surrounded by the dam portion 62 and the rear portion 64 is formed. In this water reservoir part 65, the second
An ice-making compartment 12 is housed therein, and the outer side of the second ice-making compartment 12 and the both sides 61, 61 . Damping part 62 and rear part 64
A waterway of the required dimensions is defined between the two.

水皿38には、第2製氷室12の前方側端部と堰止め部
62との間に所要径の排水孔63が穿設されている。こ
の排水孔63からの排水量は、除氷運転に際して水溜部
65に外部から供給される水の水量よりも少なく設定さ
れており、従4て水の供給が継続すれば該水溜部65に
水が徐々に貯溜さハる。そして水溜部65に貯溜された
水は、前記第2製氷室12の周囲に画成した水路および
前記溝通路72中に充満し、各第2製氷小室15を加熱
する。更に該水溜部65に貯溜された水の一部は、前記
排水孔63から製氷水タンク19に流下し、他の水は堰
止め部62の上端からオーバーフローして、水皿38の
前方側よりタンクエ9に流入するようにしである。なお
、堰止め部62の高さ寸法は、水皿表面から第2製氷室
12の上面までの高さ寸法よりも低く設定され、後述す
る除氷運転に際し、水溜部65に貯溜された水は第2製
氷室12の上面に達する前に堰止め部62の上端からオ
ーバーフローする。また、製氷水タンク19への給水は
、外部水道系に接続している給水管27の給水弁Wvを
開放することにより行なわれる。
A drain hole 63 of a required diameter is bored in the water tray 38 between the front end of the second ice making chamber 12 and the dam 62. The amount of water discharged from this drainage hole 63 is set to be smaller than the amount of water supplied from the outside to the water reservoir 65 during deicing operation, and therefore, if the water supply continues, water will flow into the water reservoir 65. It gradually accumulates. The water stored in the water reservoir 65 fills the water channel defined around the second ice-making chamber 12 and the groove passage 72, and heats each of the second ice-making compartments 15. Further, a part of the water stored in the water reservoir 65 flows down from the drain hole 63 to the ice-making water tank 19, and the other water overflows from the upper end of the dam 62 and flows from the front side of the water tray 38. It is arranged so that it flows into the tank 9. The height of the damming part 62 is set lower than the height from the surface of the water tray to the top surface of the second ice making chamber 12, so that the water stored in the water reservoir part 65 is It overflows from the upper end of the dam 62 before reaching the upper surface of the second ice making chamber 12 . Furthermore, water is supplied to the ice-making water tank 19 by opening the water supply valve Wv of the water supply pipe 27 connected to the external water supply system.

(水皿傾動機構と水循環系とについて)水皿38を傾動
させるアクチュエータモータAMは減速機を備え、その
回転軸にカムレバー17およびレバー片37が半径方向
に延出するよう固定され、前記カムレバー17の先端1
7aと水皿38の前方端部との間に、コイルスプリング
18が弾力的に係着されている。前記カムレバー17の
基部に形成したカム面17bは、水皿38の側部61の
上面にカム係合可能に寸法設定されている。また第1製
氷室11を支持する固定部位に切換スイッチS2が配設
され、除氷運転に伴なうモータAMの回転により前記レ
バー片37が回動すると、前記切換スイッチS2が切換
えられて、モ−タAMを停止させ、航記水皿38を傾動
状態で停止させる。また冷凍系の弁を切り換えて、前記
蒸発器14にホットガスを流通させる機能も果す。
(Regarding the water pan tilting mechanism and water circulation system) The actuator motor AM for tilting the water pan 38 is equipped with a speed reducer, and the cam lever 17 and the lever piece 37 are fixed to the rotating shaft thereof so as to extend in the radial direction. tip 1
A coil spring 18 is elastically engaged between 7a and the front end of the water tray 38. A cam surface 17b formed at the base of the cam lever 17 is dimensioned to be able to cam engage with the upper surface of the side portion 61 of the water tray 38. Further, a changeover switch S2 is disposed at a fixed portion that supports the first ice making chamber 11, and when the lever piece 37 is rotated by the rotation of the motor AM accompanying the deicing operation, the changeover switch S2 is changed over. The motor AM is stopped, and the navigation water tray 38 is stopped in a tilted state. It also functions to switch the refrigeration system valve and circulate hot gas to the evaporator 14.

前記製氷水タンク19の底部側面から導出した給水管2
1は、給水ポンプ22を介してタンク側方に設けた圧力
室23に連通し、更に圧力室23から前記分配管24に
連通している。従って、製氷水タンク19からポンプ2
2を介して圧送される製氷水は、分配管24に穿設した
前記各噴水孔25および第2製氷室12に穿設した前記
通孔12aを介して、各第2製氷小室15中に噴射供給
されるものである。なお、後述する製氷運転に際し両製
氷小室13.15で氷結するに到らなかった未氷結水は
1通孔12aおよび前記水皿38に穿設した前記戻り孔
26から製氷水タンク19に戻し得るようになっている
Water supply pipe 2 led out from the bottom side of the ice-making water tank 19
1 communicates with a pressure chamber 23 provided on the side of the tank via a water supply pump 22, and further communicates from the pressure chamber 23 with the distribution pipe 24. Therefore, from the ice making water tank 19 to the pump 2
2 is injected into each of the second ice making compartments 15 through the water fountain holes 25 drilled in the distribution pipe 24 and the through holes 12a drilled in the second ice making compartment 12. It is supplied. In addition, during the ice-making operation to be described later, unfrozen water that has not frozen in both ice-making compartments 13.15 can be returned to the ice-making water tank 19 through the first hole 12a and the return hole 26 formed in the water tray 38. It looks like this.

(感温機構について) 第1製氷室11の上面における所定位置に、製氷完了検
知手段として機能する製氷検知サーモTh、の感温部(
プローブ)が配設され、また同じ第1製氷室上面の別位
置に、除氷完了検知手段として機能する除氷検知サーモ
Th、の感温部が配設されている。更に、第2製氷室1
2における所要の側部にサーモTh、の感温部が配設さ
れ、該サーモTh、の電気信号を発する本体は、水皿3
8の前記後部64に取付けられている。
(Regarding the temperature-sensing mechanism) A temperature-sensing section (
A temperature sensing section of a de-icing detection thermometer Th, which functions as a de-icing completion detecting means, is disposed at a different position on the top surface of the first ice-making chamber. Furthermore, the second ice making room 1
A temperature-sensing part of a thermometer Th is disposed on a required side of the thermometer Th, and the main body of the thermometer Th that emits an electric signal is a water tray 3.
8.

(水案内板について) 製氷水タンク19の下方には、製氷残水等を受けて機外
へ排出するための排水皿69が配設され。
(Regarding the water guide plate) A drain tray 69 is provided below the ice making water tank 19 to receive ice making water and discharge it to the outside of the machine.

該排水皿69の上方に、軸68に固定した水案内板67
が臨んでいる。この水案内板67は、その製氷運転中に
おいて、筐体の固定部から延出垂下する位置決め部材7
0に当接して位置決めされ、第3図に示す如くタンク1
9の開放先端部に近接した位置で停止している。この状
態において、タンク19中の製氷水がオーバーフローす
ると、第7図に示すように、この水は前記水案内板67
の裏面に沿って流下した後、前記排水皿69から機外へ
排出される。また除氷運転の際には、第8図に示す如く
、水案内@67が固定されている前記@68を1図示し
ない駆動手段により反時計方向に駆動すれば、この水案
内板67は傾動状態にある(後述)第2製氷室12の上
面に倒れ込み、各第2製氷小室15を塞ぐに到る。そし
て第9図に示す如く、$1製氷室11から落下する疎水
を、この水案内板67において滑落させて貯氷連(図示
せず)へ円滑に案内する。
A water guide plate 67 fixed to the shaft 68 above the drain tray 69
is coming. During the ice making operation, this water guide plate 67 has a positioning member 7 that extends and hangs down from the fixed part of the housing.
tank 1 as shown in FIG.
It is stopped at a position close to the open tip of No.9. In this state, when the ice-making water in the tank 19 overflows, this water flows through the water guide plate 67 as shown in FIG.
After flowing down along the back surface of the drain plate 69, it is discharged to the outside of the machine. Further, during deicing operation, as shown in FIG. 8, if the water guide @68 to which the water guide @67 is fixed is driven counterclockwise by a driving means (not shown), the water guide plate 67 can be tilted. It collapses onto the upper surface of the second ice-making compartment 12 in the state (described later) and blocks each of the second ice-making compartments 15. As shown in FIG. 9, the hydrophobic water falling from the $1 ice making compartment 11 is caused to slide down on this water guide plate 67 and is smoothly guided to the ice storage chamber (not shown).

なお、水皿38(第2製氷室)が原位置に復帰する際に
は、水案内板67は水平状態に復帰する水皿38により
押圧されて時計方向に旋回し、第3図に示す如く、前記
位置決め部材70に当接して停止する。この水案内板6
7は、#68を支点にして重心の移動で傾動させられる
Note that when the water tray 38 (second ice making compartment) returns to its original position, the water guide plate 67 is pressed by the water tray 38 returning to the horizontal state and rotates clockwise, as shown in FIG. , comes into contact with the positioning member 70 and stops. This water guide plate 6
7 can be tilted by moving the center of gravity using #68 as a fulcrum.

次に、第11図は本発明に係る除氷構造に採用される第
2製氷室12の変形例であって、該第2製氷室12は板
金等の薄肉材からなり、この薄肉材に半球状凹部からな
る第2製氷小室15が上向きに所要の整列パターンで多
数凹設されている。
Next, FIG. 11 shows a modification of the second ice making chamber 12 adopted in the deicing structure according to the present invention, and the second ice making chamber 12 is made of a thin material such as a sheet metal, and the thin material has a hemispherical shape. A large number of second ice-making chambers 15 each having a shape of a recess are provided upward in a desired alignment pattern.

更に詳細に説明すれば、各第2製氷小室15は。To explain in more detail, each of the second ice making compartments 15 is as follows.

薄肉材の裏面側に陥凹形成され、この裏面側において隣
接し合う他の第2製氷小室15との間に、所要の溝71
が形成される。そして、第21氷室12は、各第2製氷
小室15の頂部を前記水皿38に当接した状態で固定さ
れ、前記溝71と水皿38の表面との間に、除氷運転に
際して外部水道水の流通路として機能する溝通路72が
画成される。
A recess is formed on the back side of the thin material, and a required groove 71 is formed between the other adjacent second ice making compartments 15 on the back side.
is formed. The 21st ice chamber 12 is fixed with the top of each second ice making compartment 15 in contact with the water tray 38, and between the groove 71 and the surface of the water tray 38, an external water supply is provided during the deicing operation. A groove passage 72 is defined that functions as a water flow passage.

また、各第2製氷小室15の頂部には、水皿38の噴水
孔25と連通する通孔12aが穿設され、との通孔12
aは後述する製氷運転に際し、WJ*氷lJs室13.
15に画成された氷形成用空間に製氷水を供給すると共
に、該空間中で氷結するに到らなかった未氷結水を排出
するべく機能する。
Further, a through hole 12a communicating with the fountain hole 25 of the water tray 38 is bored at the top of each second ice making compartment 15.
a is the WJ*ice lJs chamber 13. during the ice making operation described later.
It functions to supply ice-making water to the ice-forming space defined by 15 and to discharge unfrozen water that has not yet frozen in the space.

実施例の作用 次に、実施例に係る除氷構造の作用につき説明する。先
ず製氷運転に際し、第3図に示す如く第2製氷室12は
、第1製氷室11を下方から閉成して、各第1!liI
氷小室13と各第2製氷小室15とを対応させ、内部に
氷形成用空間を画成している。この状態で自動製氷機の
電源を投入すると、製氷運転が開始され、第1製氷室1
1に設けた蒸発器14に冷媒が循環供給され、当該第1
製氷室11の冷却がなされる。また製氷水タンク19か
らの製氷水は分配管24にポンプ圧送され、該分配管2
4の各噴水孔25および第2製氷室12の通孔L2aを
介して、両製氷/J%室13.15に画成される球状空
II中に噴射される。
Function of the embodiment Next, the function of the de-icing structure according to the embodiment will be explained. First, during ice-making operation, as shown in FIG. 3, the second ice-making chamber 12 closes the first ice-making chamber 11 from below, and each first! liI
The ice compartment 13 and each of the second ice making compartments 15 are associated with each other to define an ice forming space therein. When the automatic ice maker is turned on in this state, ice making operation starts and the first ice maker
Refrigerant is circulated and supplied to the evaporator 14 provided in the first
The ice making compartment 11 is cooled. In addition, the ice making water from the ice making water tank 19 is pumped to the distribution pipe 24, and the ice making water is pumped to the distribution pipe 24.
The ice is injected into the spherical air II defined in both ice making/J% chambers 13.15 through the four water fountain holes 25 and the through hole L2a of the second ice making chamber 12.

噴射された製氷水は、第1I氷室11の内面に接触して
冷却され、下方の第2製氷/JX室15を潤した後、前
記通孔12aを介して前記球状空間から排出される。こ
の未氷結水は、水皿38に穿設した前記戻り孔26を介
して、製氷水タンク19に戻されて再度の循環に供され
る。そして製氷水の循環が反復される内に、タング19
中に貯留される製氷水全体の温度が次第に低下すると共
に、第2製氷小室15の温度も同様に次第に低下する。
The injected ice-making water contacts the inner surface of the first ice chamber 11 and is cooled, moistens the second ice-making/JX chamber 15 located below, and then is discharged from the spherical space through the through hole 12a. This unfrozen water is returned to the ice-making water tank 19 through the return hole 26 formed in the water tray 38 and is circulated again. Then, while the circulation of ice making water is repeated, the tongue 19
The temperature of the entire ice-making water stored therein gradually decreases, and the temperature of the second ice-making chamber 15 also gradually decreases.

そして、先ず第1製氷/JX室13の内壁面で製氷水の
一部が凍結して氷層が形成され始め(第4図参照)、未
氷結水は通孔12aおよび戻り孔26からタンク19に
帰還する運転を重ねる間に、前記氷層の成長が更に進行
して、第5図および第6図に示す如く、最終的に両製氷
yJX室13.15に形成される球状空間中に球状氷1
が生成される。なお。
First, a portion of the ice-making water freezes on the inner wall surface of the first ice-making/JX chamber 13 and an ice layer begins to form (see Fig. 4), and unfrozen water flows from the through hole 12a and the return hole 26 to the tank 19. During repeated operations, the ice layer continues to grow, and as shown in FIGS. ice 1
is generated. In addition.

第4図に示す製氷状態となったタイミングをもって製氷
運転を終了させると、第12図(c)に示す如き中空の
球状氷が得られる。このようにして得た中空氷は、その
内部空間にチェリー等の食材や。
When the ice making operation is terminated at the timing when the ice making state shown in FIG. 4 is reached, hollow spherical ice as shown in FIG. 12(c) is obtained. The hollow ice obtained in this way can contain ingredients such as cherries in its inner space.

ジュース等の飲料および花びら等の観賞材を入れること
によって、新たな氷の需要を喚起させることができる。
By adding beverages such as juice and ornamental materials such as flower petals, new demand for ice can be stimulated.

更に、この中空氷の穴あき部(噴水孔25と戻り孔26
とに対応する部分)を下唇にあてて吹くことにより、W
(氷’sr>とじても使用できて。
Furthermore, the perforated parts of this hollow ice (the fountain hole 25 and the return hole 26
By placing the part corresponding to ) on your lower lip and blowing,
(It can also be used even when closed.

独特の趣きが得られる。You can get a unique taste.

製氷進行状態を更に詳細に説明すると、第2製氷室12
は、前述の如く銅等の金属を材質とする熱良導体で構成
されているので、第1製氷室11からの熱伝導が良好に
なされ、早期に第1製氷室11と整置−の適正冷却温度
となる。このため。
To explain the progress of ice making in more detail, the second ice making chamber 12
As mentioned above, since it is made of a good thermal conductor made of metal such as copper, good heat conduction from the first ice making compartment 11 is achieved, and proper cooling between the first ice making compartment 11 and the arrangement is quickly achieved. temperature. For this reason.

第1I2氷室11で水層が形成されると同時に、第2製
氷室12でも氷層が形成されて、第4図に示す状態とな
る。また、第21!!!氷室12の裏面側に溝71を形
成したことにより、第2製氷室12の体積が減少し、こ
れにより熱負荷が減少して冷却効率が良好になる利点が
ある。
At the same time as a water layer is formed in the first I2 ice compartment 11, an ice layer is also formed in the second ice making compartment 12, resulting in the state shown in FIG. Also, the 21st! ! ! By forming the groove 71 on the back side of the ice chamber 12, the volume of the second ice making chamber 12 is reduced, which has the advantage of reducing the heat load and improving the cooling efficiency.

第6図に示す如く1球状氷の製造が完了し、第1製氷室
11の温度が所要の温度域まで低下すると、この温度低
下を製氷検知サーモTh、が検知し。
As shown in FIG. 6, when the production of one spherical ice is completed and the temperature of the first ice making chamber 11 drops to a required temperature range, this temperature drop is detected by the ice making detection thermo Th.

製氷水の循環供給を停止すると共に、蒸発器14への冷
媒の供給を続行する。そして第7図に示す如く、給水弁
Wvを開放して、水皿38の表面に両成しである前記水
溜部65に給水を開始する。
The circulating supply of ice-making water is stopped, and the supply of refrigerant to the evaporator 14 is continued. Then, as shown in FIG. 7, the water supply valve Wv is opened to start supplying water to the water reservoir 65 formed on the surface of the water tray 38.

給水弁Wvを介して供給される水道水は、排水孔63か
らタンク19に流下する量に比べ多量であるので、水溜
部65での水位は次第に上昇し、遂には水皿38の堰止
め部62からオーバーフローするに到る。オーバーフロ
ーする際の水溜部65の水面レベルは、第2製氷室12
の上端近傍に到来するよう設定しておくことにより、常
温の水道水は第2製氷室12を主として加熱することが
できる。
Since the amount of tap water supplied via the water supply valve Wv is large compared to the amount flowing down from the drain hole 63 to the tank 19, the water level in the water reservoir 65 gradually rises and finally reaches the dam part of the water tray 38. 62, resulting in an overflow. The water surface level of the water reservoir section 65 when overflowing is the same as that of the second ice making chamber 12.
By setting the temperature so that the water reaches the vicinity of the upper end, the tap water at room temperature can mainly heat the second ice making chamber 12.

このとき、第2製氷室12における各第2製氷小室15
の囲りに溝71が形成されているので、この溝71と水
皿38の表面との間に画成される溝通路72に水が充満
し、これにより水と第2製氷室12との接触面積が充分
大きく確保される。
At this time, each second ice making compartment 15 in the second ice making compartment 12
Since the groove 71 is formed around the groove 71, the groove passage 72 defined between the groove 71 and the surface of the water tray 38 is filled with water, which causes the water to flow into the second ice making compartment 12. A sufficiently large contact area is ensured.

従って、水と第2製氷室12との熱交換効率が向上し、
除氷運転に要する時間を短縮化し得る。
Therefore, the heat exchange efficiency between the water and the second ice making chamber 12 is improved,
The time required for deicing operation can be shortened.

前記堰止め部62からのオーバーフロー水は、水皿38
の先端からタンク19内に流下する。この水皿先端部か
ら流入する水と、前記排水孔63から流下する水とによ
りタンク19内の水位は次第に上昇し、短時間でタンク
先端部から溢流して前記待機位置にある水案内板67に
沿いつつ排水皿69から機外へ排出される。
The overflow water from the dam 62 is transferred to the water tray 38.
The water flows down into the tank 19 from the tip. The water level in the tank 19 gradually rises due to the water flowing in from the tip of the water dish and the water flowing down from the drain hole 63, and the water overflows from the tip of the tank in a short time, causing the water guide plate 67 to be in the standby position. It is discharged from the drain tray 69 to the outside of the machine along the same direction.

第2製氷室12は、水溜部65および溝通路72に貯溜
される水道水で加熱されて温度上昇し、第2製氷小室1
5の壁面と原水との氷結力が低下する。また、第1製氷
室11との近接面に形成された氷の固着力も弱まる。こ
のように第2製氷室12の温度が上昇すると、これを前
記サーモTh。
The second ice-making chamber 12 is heated by the tap water stored in the water reservoir 65 and the groove passage 72, and the temperature rises.
The freezing power between the wall of No. 5 and the raw water decreases. Furthermore, the adhesion force of the ice formed on the surface adjacent to the first ice making chamber 11 is also weakened. When the temperature of the second ice-making compartment 12 rises in this way, this temperature is increased by the thermostat Th.

が検出して、給水弁Wvを閉成すると共に、前記アクチ
ュエータAMが付勢されて、第3図において反時計方向
への回動を開始する。これにより。
is detected and closes the water supply valve Wv, and at the same time, the actuator AM is energized and starts rotating counterclockwise in FIG. 3. Due to this.

第8図に示す如く、カムレバー17が回転し、その基部
に形成したカム面17bが水皿38の側部上面を強制的
に下方に押圧する。既に述べた如く。
As shown in FIG. 8, the cam lever 17 rotates, and the cam surface 17b formed at its base forcibly presses the upper side surface of the water tray 38 downward. As already mentioned.

第2製氷室12は水道水により加熱されて、第1製氷室
11と球状氷1との固着力は低下しているので、当該水
皿38および第2裂氷室12は、第1′I!1氷室11
から強M剥離されて斜め下方に傾動し始める。この水皿
38およびタンク19の傾動により、当該タンク19内
の製氷水と水溜部内の水とは外部に廃棄される。
The second ice-making compartment 12 is heated by tap water, and the adhesion force between the first ice-making compartment 11 and the spherical ice 1 is reduced, so the water tray 38 and the second ice-breaking compartment 12 are heated by the 1'I! 1 Himuro 11
It is strongly separated from M and begins to tilt diagonally downward. By tilting the water tray 38 and the tank 19, the ice-making water in the tank 19 and the water in the water reservoir are disposed of to the outside.

水皿38の傾動途中において、#168に一体的に配設
された反転レバー(図示せず)を水皿組の一部で押すこ
とにより前記の水案内板67が反転し、水皿38に寄り
かかった状態で傾動する。水皿38が最大限に傾動した
タイミングをもって、前記レバー片37が切換スイッチ
8つを押圧付勢し。
During the tilting of the water tray 38, by pushing a reversing lever (not shown) integrally provided with #168 with a part of the water tray assembly, the water guide plate 67 is reversed, and the water tray 38 is rotated. Tilt while leaning. At the timing when the water tray 38 tilts to the maximum, the lever piece 37 presses and biases the eight changeover switches.

こハによりモータAMはその回転を停止して水皿38の
傾動を停止させる。水案内板67は、先に述べた如く、
第21!2氷室12の上面を覆って氷塊滑落用の円滑面
を提供している。
This causes the motor AM to stop its rotation and stop the tilting of the water tray 38. As mentioned above, the water guide plate 67 is
The upper surface of the 21st!2nd ice chamber 12 is covered to provide a smooth surface for sliding ice blocks down.

更に、前記スイッチS2の切換えにより、凝縮器用ファ
ンモータ(図示せず)が停止し、ホットガス弁(図示せ
ず)が開放して蒸発器14にホットガスが供給さ九、第
1製氷室11の加温がなされて。
Furthermore, by switching the switch S2, the condenser fan motor (not shown) is stopped, the hot gas valve (not shown) is opened, and hot gas is supplied to the evaporator 14. heating has been done.

第1製氷小室13の内面と球状氷1との氷結面の融解を
開始する6なお第1製氷室11は、前述の如く、水皿3
8が傾動開放するまで冷却が続行されているので1球状
氷1と第1製氷小室13の内面との氷結力(固着力)は
強く、第211O氷室12の開放時に球状氷1は、第8
図に示すように、第1製氷/Jl室13に固着している
。しかるに、蒸発器14には先程よりホットガスが循環
しているから。
As mentioned above, the first ice making chamber 11 starts melting of the frozen surface between the inner surface of the first ice making chamber 13 and the spherical ice 1.
Since the cooling continues until the ice chamber 8 is tilted and opened, the freezing force (adhesion force) between the spherical ice 1 and the inner surface of the first ice making chamber 13 is strong, and when the ice chamber 211O is opened, the spherical ice 1 is
As shown in the figure, it is firmly attached to the first ice making/Jl chamber 13. However, hot gas is circulating in the evaporator 14 from earlier.

第1製氷室11は温度上昇中である。そして、第1製氷
小室13が成る程度加温されると、第9図に示す如く、
小室壁面と球状氷1との氷結が解除されて自重落下し、
傾動待機している前記水案内板67の表面に落着し貯水
庫(図示せず)に滑落回収される。
The temperature of the first ice making chamber 11 is rising. When the temperature is increased to such an extent that the first ice-making chamber 13 is formed, as shown in FIG.
The ice between the small chamber wall and the spherical ice 1 is broken and falls under its own weight,
It lands on the surface of the water guide plate 67 that is tilted and is on standby, and is slid down and collected into a water storage (not shown).

このように、球状氷1が全て第1製氷小室13から離脱
すると、第10図に示す如く、第1製氷室11は蒸発器
14に循環しているホットガスにより一挙に温度上昇す
る。この温度上昇を除氷検知サーモTh、が検知すると
、除氷運転を完了させると共に、前記モータAMが逆回
転してカムレバー17を駆動する。従って該レバー17
と水皿38との間に弾力的に係着したコイルスプリング
1日により、水皿38および製氷水タンク19を反時計
方向に回動付勢し、水平状態に復帰させることによって
、第1製氷室11を再び下方から閉成する。
In this way, when all the spherical ice 1 leaves the first ice making chamber 13, the temperature of the first ice making chamber 11 rises all at once due to the hot gas circulating in the evaporator 14, as shown in FIG. When the deicing detection thermo Th detects this temperature rise, the deicing operation is completed and the motor AM reversely rotates to drive the cam lever 17. Therefore, the lever 17
A coil spring elastically engaged between the water tray 38 and the water tray 38 rotates the water tray 38 and the ice making water tank 19 counterclockwise and returns them to the horizontal state. Chamber 11 is closed again from below.

次いで、前記モータAMの逆回転によりカムレバー17
も逆回転し、前記切換えスイッチS2を押圧付勢して前
記冷凍系の弁を切換え、前記蒸発器14へのホットガス
の供給を停止する。また、給水弁W■を開放して、水位
の低下したタンク19に新たな製氷水を供給する。そし
て、製氷運転が再開されて前述した動作を繰り返す。
Next, the cam lever 17 is rotated by the reverse rotation of the motor AM.
The refrigeration system valve also rotates in the opposite direction, presses and energizes the changeover switch S2, switches the refrigeration system valve, and stops the supply of hot gas to the evaporator 14. Also, the water supply valve W■ is opened to supply new ice-making water to the tank 19 whose water level has decreased. Then, the ice making operation is restarted and the above-described operation is repeated.

発明の詳細 な説明した如く1本発明に係る除氷構造によれば、下方
に開放する第1製氷小室を備えた第1製氷室と、上方に
開放する第2製氷小室が画成された第2製氷室と1両製
氷小室に製氷水を供給する水皿とを基本的に備え1両製
氷/JX室の開成により内部画成される氷形成用空間で
氷塊を生成する製氷機に関連して、水皿表面に第2製氷
室を四項する水滴部を画成し、除氷運転に際して外部か
ら供給される水道水を水溜部に供給するよう構成したも
のである。そして、水溜部に外部水道水が所要水位で貯
溜された後、オーバーフローすることにより、前記第2
製氷室を加温し、第2製氷小室に結氷した球状や多面体
状の氷塊を、短時間で円滑に除去し得る。従って、除氷
に要する時間が短縮でき、製氷能力が向上すると共に、
除氷用に供給される水道水や電力の浪費を防いで、省エ
ネルギーが有効に図られる。
DETAILED DESCRIPTION OF THE INVENTION According to the de-icing structure according to the present invention, the first ice-making chamber includes a first ice-making chamber that opens downward, and a second ice-making chamber that opens upward. It is related to an ice-making machine that basically has two ice-making compartments and a water tray that supplies ice-making water to the one-car ice-making compartment and generates ice blocks in the ice-forming space that is internally defined by opening the one-car ice-making/JX compartment. A water droplet portion forming a second ice making chamber is defined on the surface of the water tray, and tap water supplied from the outside is supplied to the water reservoir portion during deicing operation. After the external tap water is stored at the required water level in the water storage section, it overflows, thereby causing the second
To heat an ice making compartment and to smoothly remove spherical or polyhedral ice blocks frozen in a second ice making compartment in a short time. Therefore, the time required for deicing can be shortened, ice making capacity can be improved, and
Energy saving can be effectively achieved by preventing wastage of tap water and electricity supplied for deicing.

更に、加熱手段として外部水道水を直接用いる場合につ
き説明したが、ヒータや湯沸し器等で予め加温した温水
を供給することも実施可能である。
Furthermore, although the case has been described in which external tap water is directly used as the heating means, it is also possible to supply hot water that has been heated in advance with a heater, water heater, or the like.

また球状氷の製造につき説明したが1本発明はこ九に限
定されるものではなく、他の形状を有する多面体氷の製
造にも実施できることは勿論である。
Further, although the production of spherical ice has been described, the present invention is not limited to this, and it goes without saying that it can be implemented to produce polyhedral ice having other shapes.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の好適実施例に係る除氷構造を示すもので
あって、第1図は実施例に係る除氷構造を示す概略斜視
図、第2図は第1図に示す第2製氷室を縦断した状態で
裏面側からwt察した概略斜視図、第3図〜第10図は
本発明の好適実施例に係る製氷機構の概略構成を夫々示
す縦断面図であって、第3図は第1製氷室に対し第2製
氷室を閉成して、製氷運転を開始した初期の状態を示し
、第4図は製氷が進行して両製氷小室中に中空の球状氷
が形成された状態を示し、第5図は製氷完了に近づき始
めた段階において1両製氷小室中に略中実な球状氷が形
成され、タンク中の製氷水の水位が低下している状態を
示し、第6図は略製氷が完了して両製氷小室中に中実な
球状氷が形成された状態を示し、第7@は製氷が完了し
て給水弁が開放し、水溜部での水位上昇により堰止め部
からオーバーフローした水が、水案内板の裏面に沿って
流下して排水皿から機外へ排出される状態を示し、第8
図はアクチュエータモータが付勢されて第2製氷室を時
評方向に傾動開放し、水案内板を第210氷室の上面に
倒れ込ませて各第2製氷小室を塞いだ状態を示し、第9
図は第1製氷室から球状氷が落下して、その直下に傾斜
位置する水案内板を滑落する状態を示し、第10図は除
氷が完了して、第2製氷室が反時計方向に回動復帰し始
めると共に、水案内板も原位置に戻される状態を夫々示
し、第11図は本発明に係る除氷構造に採用される第2
製氷室の変形例を縦断した状態で裏酊側から観陰した概
略斜視図、第12図(a)は球状氷を示す説明図、第1
2図(b)は多面状氷を示す説、明図、第12図(c)
は中空の球状氷を示す説明図である。 11・・・第1製氷室  12・・・第2製氷室13・
・・第1製氷小室 15・・・第2製氷小室 61・・・側部 64・・・後部 4・・・蒸発器 8・・・水皿 2・・・堰止め部 5・・・水溜部
The drawings show a deicing structure according to a preferred embodiment of the present invention, and FIG. 1 is a schematic perspective view showing the deicing structure according to the embodiment, and FIG. 2 shows a second ice making compartment shown in FIG. 1. FIGS. 3 to 10 are longitudinal cross-sectional views showing the schematic structure of the ice making mechanism according to the preferred embodiment of the present invention, respectively, and FIG. Figure 4 shows the initial state when the second ice-making compartment is closed to the first ice-making compartment and ice-making operation has started. Figure 4 shows the state in which ice-making has progressed and hollow spherical ice is formed in both ice-making compartments. Figure 5 shows a state in which approximately solid spherical ice is formed in the ice-making chamber of one car and the water level of the ice-making water in the tank is decreasing as the ice-making process approaches completion. 7 shows a state where ice making is almost completed and solid spherical ice is formed in both ice making chambers, and 7 @ shows a state where ice making is completed and the water supply valve is opened, and the water level rises in the water reservoir and the dam is closed. This shows the state in which water overflowing from the water flows down along the back surface of the water guide plate and is discharged from the drain tray to the outside of the machine.
The figure shows a state in which the actuator motor is energized to tilt and open the second ice-making compartment in the direction of rotation, and the water guide plate is collapsed onto the top surface of the 210th ice compartment to block each of the second ice-making compartments, and the 9th
The figure shows the state in which spherical ice falls from the first ice-making compartment and slides down the water guide plate located at an angle directly below it. In Figure 10, after deicing is completed, the second ice-making compartment is moved counterclockwise. FIG. 11 shows the state in which the water guide plate is also returned to its original position as the rotation starts to return.
FIG. 12(a) is a schematic perspective view of a modified example of the ice-making compartment viewed from the rear side, and FIG. 12(a) is an explanatory diagram showing spherical ice.
Figure 2 (b) is an explanation showing multifaceted ice, a clear diagram, and Figure 12 (c)
is an explanatory diagram showing hollow spherical ice. 11...First ice making room 12...Second ice making room 13.
...First ice-making chamber 15...Second ice-making chamber 61...Side section 64...Rear section 4...Evaporator 8...Water tray 2...Weir stop section 5...Water reservoir section

Claims (1)

【特許請求の範囲】 〔1〕製氷水を製氷室に噴射供給して該製氷室内に氷塊
を形成し、氷結するに到らなかった製氷水は再循環に供
するようにした自動製氷機において、背面に蒸発器(1
4)を備えて機内に固定配置され、下方に開放する所要
形状の第1製氷小室(13)を多数形成した第1製氷室
(11)と、 この第1製氷室(11)に対して接離自在に配設され前
記第1製氷小室(13)の夫々を下方から対応的に閉成
し得る所要形状の第2製氷小室(15)を多数形成した
第2製氷室(12)と、 該第2製氷室(12)の下方に配設されて、第1製氷小
室(13)および第2製氷小室(15)に製氷水を供給
する水皿(38)と、 この水皿(38)における表面の周端縁に延出させた後
部(64)と側部(61、61)および、後部(64)
と第2製氷室(12)を挟んで側部(61、61)の前
端近傍に配設された堰止め部(62)とにより画成され
、前記第2製氷室(12)を囲繞する水溜部(65)と
からなり、除氷運転に際して外部から供給される水を前
記水溜部(65)に所要量溜めることにより、前記第2
製氷室(12)を貯溜水に浸漬させると共に、余剰の水
をオーバーフローさせるよう構成した ことを特徴とする自動製氷機の除氷構造。 〔2〕前記水皿(38)に形成した堰止め部(62)は
、水皿表面から第2製氷室(12)の上面までの高さ寸
法よりも低く、かつ側部(61、61)より所定寸法だ
け低く設定され、水溜部(65)に貯溜した水は該堰止
め部(62)の上端からオーバーフローするよう構成し
たことを特徴とする請求項1記載の自動製氷機の除氷構
造。 〔3〕前記水皿(38)に排水孔(63)が穿設され、
この排水孔(63)の排水量は水溜部(65)に外部か
ら供給される水の水量よりも少なく設定される請求項1
または2記載の自動製氷機の除氷構造。
[Scope of Claims] [1] An automatic ice-making machine in which ice-making water is injected into an ice-making chamber to form ice cubes in the ice-making chamber, and ice-making water that has not yet frozen is recirculated, Evaporator (1
4), which is fixedly arranged inside the machine and has a number of first ice-making compartments (13) of a desired shape that open downward; a second ice-making chamber (12) formed with a large number of second ice-making chambers (15) of a desired shape that are arranged so as to be detachable and capable of correspondingly closing each of the first ice-making chambers (13) from below; a water tray (38) disposed below the second ice-making compartment (12) and supplying ice-making water to the first ice-making compartment (13) and the second ice-making compartment (15); The rear part (64) and side parts (61, 61) extending to the peripheral edge of the surface, and the rear part (64)
and a damming part (62) disposed near the front end of the side parts (61, 61) with the second ice making compartment (12) in between, and surrounding the second ice making compartment (12). (65), and by storing a required amount of water supplied from the outside during deicing operation in the water reservoir (65),
A deicing structure for an automatic ice maker, characterized in that an ice maker (12) is immersed in stored water and surplus water is allowed to overflow. [2] The damming part (62) formed on the water tray (38) is lower than the height from the surface of the water tray to the top surface of the second ice making compartment (12), and the side part (61, 61) 2. The deicing structure for an automatic ice maker according to claim 1, wherein the deicing structure is set lower by a predetermined dimension, and the water stored in the water reservoir (65) overflows from the upper end of the dam (62). . [3] A drainage hole (63) is bored in the water tray (38),
Claim 1: The amount of water discharged from the drainage hole (63) is set to be smaller than the amount of water supplied from the outside to the water reservoir (65).
Or the deicing structure of the automatic ice maker described in 2.
JP29571188A 1988-11-22 1988-11-22 Ice removing structure for automatic ice making machine Withdrawn JPH02143072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29571188A JPH02143072A (en) 1988-11-22 1988-11-22 Ice removing structure for automatic ice making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29571188A JPH02143072A (en) 1988-11-22 1988-11-22 Ice removing structure for automatic ice making machine

Publications (1)

Publication Number Publication Date
JPH02143072A true JPH02143072A (en) 1990-06-01

Family

ID=17824169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29571188A Withdrawn JPH02143072A (en) 1988-11-22 1988-11-22 Ice removing structure for automatic ice making machine

Country Status (1)

Country Link
JP (1) JPH02143072A (en)

Similar Documents

Publication Publication Date Title
US4910974A (en) Automatic ice making machine
JPH0532668B2 (en)
JPH0541913B2 (en)
JPH0544587B2 (en)
JPH01210778A (en) Ice removing structure for automatic ice-making machine
JPH02176380A (en) Automatic ice making machine
JPH02143068A (en) Ice guiding device in automatic ice making machine
JPH02143072A (en) Ice removing structure for automatic ice making machine
JPH02161272A (en) Ice making structure of automatic ice machine
JPH02140575A (en) Ice making structure in automatic ice making machine
JPH0543948B2 (en)
JPH02140576A (en) Ice removing structure in automatic ice making machine
JPH02143069A (en) Water guiding structure of automatic ice making machine
JPH02143071A (en) Ice removing structure for automatic ice making machine
JPH0543949B2 (en)
JPH0543951B2 (en)
JPH0551832B2 (en)
JPH02154962A (en) Deicing control method for automatic ice making machine
JPH0615279Y2 (en) Evaporator structure of automatic ice machine
JPH0586544B2 (en)
JPH0551831B2 (en)
JPH0551830B2 (en)
JPH0554027B2 (en)
JPH0710216Y2 (en) Automatic ice machine
JPH01196477A (en) Automatic ice making machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees