JPH0549108B2 - - Google Patents

Info

Publication number
JPH0549108B2
JPH0549108B2 JP59259353A JP25935384A JPH0549108B2 JP H0549108 B2 JPH0549108 B2 JP H0549108B2 JP 59259353 A JP59259353 A JP 59259353A JP 25935384 A JP25935384 A JP 25935384A JP H0549108 B2 JPH0549108 B2 JP H0549108B2
Authority
JP
Japan
Prior art keywords
layer
photoconductive
refractive index
intermediate layer
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59259353A
Other languages
Japanese (ja)
Other versions
JPS61138258A (en
Inventor
Tetsuya Takei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25935384A priority Critical patent/JPS61138258A/en
Publication of JPS61138258A publication Critical patent/JPS61138258A/en
Publication of JPH0549108B2 publication Critical patent/JPH0549108B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、光導電積層構造部材に関し、更に詳
しくは、表面層と光導電層の間に両層の界面の反
射を減少若しくは無くする機能を有する中間層を
設けてなる光導電積層構造部材に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a photoconductive laminated structural member, and more specifically, a function of reducing or eliminating reflection at the interface between a surface layer and a photoconductive layer. The present invention relates to a photoconductive laminated structural member provided with an intermediate layer having the following properties.

〔従来技術の説明〕[Description of prior art]

複写機の感光板、撮像管の表示装置用素子等に
光半導体材料が使用される場合、通常はこれに電
極膜として透明にして導電性の被膜が施される
が、この被膜は、前記光半導体材料の吸湿防止、
摩耗防止、電荷保持性の向上、更にプロセス上の
必要性といつた意味からして施されるものでもあ
る。
When optical semiconductor materials are used for photosensitive plates in copying machines, display elements in image pickup tubes, etc., a transparent and conductive film is usually applied as an electrode film to the material. Prevention of moisture absorption in semiconductor materials,
It is applied to prevent wear, improve charge retention, and to meet the needs of the process.

したがつて、かくなる従来の光導電部材は、光
半導体材料からなる光導電層に透明にして導電性
の被膜層即ち透明表面層を直接密着せしめてな
る、いわゆる2層構造のものである。
Therefore, such conventional photoconductive members have a so-called two-layer structure in which a transparent conductive coating layer, that is, a transparent surface layer is directly adhered to a photoconductive layer made of an optical semiconductor material.

ところでこの従来の2層構造の光導電部材につ
いては、表面層の表面での反射光と、該表面層と
その下に位置する光導電層の界面での反射光とが
干渉を起こすことがしばしばあり、その場合照射
光の波長、表面層の層厚、屈折率により反射率は
大きく変化し、その結果、光導電層の感色性にム
ラが生じ、得られる画像はムラのあるものとなつ
てしまうという欠点を有する。
However, in this conventional two-layer photoconductive member, interference often occurs between light reflected from the surface of the surface layer and light reflected from the interface between the surface layer and the photoconductive layer located below. In that case, the reflectance changes greatly depending on the wavelength of the irradiated light, the layer thickness of the surface layer, and the refractive index, and as a result, the color sensitivity of the photoconductive layer becomes uneven, resulting in uneven images. It has the disadvantage of being

因みに、使用する光の波長域を400nm−700n
mにし、赤及び青再現のためそのピークを500n
m乃至600nmの付近に持つように設計されてい
て、光源にハロゲンランプ、螢光灯等を使用す
る、一般の原稿を複写する通常の電子写真装置を
例にとつてみると、その光導電部材の表面層が製
造工程に起因するか或いは、使用による摩耗等に
より光学的距離が400nm乃至300nmの波長域で
不均一が生じたとすると、500nm乃至600nmの
波長の光に対しての反射率は、僅かな光学的距離
の違いで大きく変化する関係にあることから、画
像上にはかなりのムラをもたらしてしまうことに
なる。
By the way, the wavelength range of the light used is 400nm-700n.
m and its peak at 500n for red and blue reproduction.
For example, if we take a typical electrophotographic device for copying general originals, which is designed to be held in the vicinity of m to 600 nm and uses a halogen lamp, fluorescent lamp, etc. as a light source, the photoconductive member If the optical distance is uneven in the wavelength range of 400nm to 300nm due to the manufacturing process or wear due to use, the reflectance for light with a wavelength of 500nm to 600nm is Since the relationship changes greatly with a slight difference in optical distance, this results in considerable unevenness on the image.

前記400nm乃至300nmの波長域以外での光学
的距離についても、使用波長のピークの反射率
は、仮え僅かであつても光学的距離に違いが生ず
ると、大きく変化する関係にあることから、同様
のことがいえる。
Regarding optical distances other than the wavelength range of 400 nm to 300 nm, the reflectance at the peak of the wavelength used will change significantly if there is a difference in the optical distance, even if it is small. The same thing can be said.

また、レーザー光などの単色光を照射光として
使用する場合であつても、表面層製造時のムラや
使用時の摩耗により、表面層の層厚が変化し、感
度が大きく変化する問題点がある。
Furthermore, even when monochromatic light such as laser light is used as the irradiation light, there is the problem that the thickness of the surface layer changes due to unevenness during surface layer manufacturing and wear during use, resulting in a large change in sensitivity. be.

〔発明の目的〕[Purpose of the invention]

本発明は、上述の欠点を除去し、安定した分光
感度を維持する光導電部材を提供することを目的
とするものである。
The present invention aims to eliminate the above-mentioned drawbacks and provide a photoconductive member that maintains stable spectral sensitivity.

〔発明の構成、効果〕[Structure and effect of the invention]

本発明により提供される光導電積層構造部材
は、光導電層の感度が、表面層の層厚、入射光の
波長に影響されることなく絶えず安定に維持され
るもである。詳細には、本発明により提供される
光導電積層構造部材は、炭素原子、窒素原子また
は酸素原子を含有する光導電層、中間層及び表面
層がこの順序で基板上に積層されていて、前記中
間層を前記光導電層と前記表面層の間の反射を減
少若しくは無くする機能を奏するようにしたもの
である。
In the photoconductive laminated structural member provided by the present invention, the sensitivity of the photoconductive layer is constantly maintained stably without being affected by the thickness of the surface layer or the wavelength of incident light. Specifically, the photoconductive laminated structural member provided by the present invention has a photoconductive layer containing carbon atoms, nitrogen atoms, or oxygen atoms, an intermediate layer, and a surface layer laminated in this order on a substrate, and The intermediate layer functions to reduce or eliminate reflection between the photoconductive layer and the surface layer.

即ち、前記中間層は、炭素原子、窒素原子また
は酸素原子を、含有率が層厚方向に変化した状態
で含有し、該中間層の屈折率が、前記表面層の屈
折率より大きく、前記光導電層の屈折率より小さ
いようにされてたものである。
That is, the intermediate layer contains carbon atoms, nitrogen atoms, or oxygen atoms in a state where the content rate changes in the layer thickness direction, and the refractive index of the intermediate layer is larger than the refractive index of the surface layer. The refractive index of the conductive layer is smaller than that of the conductive layer.

本発明の光導電積層構造部材は、このように構
成されていることから、極めて効果的に反射を防
止すること可能にし、それによつて、入射光の波
長に関係なく、層界面での入射光の反射によつて
生じる干渉の問題を効果的に解決することができ
るという顕著な作用効果を奏する。
Since the photoconductive laminated structure member of the present invention is configured in this way, it is possible to extremely effectively prevent reflection, and thereby, regardless of the wavelength of the incident light, the incident light at the layer interface can be prevented. This has the remarkable effect of being able to effectively solve the problem of interference caused by reflection of light.

第1図は従来の光導電部材の略断面図であり、
第2図は本発明により提供される光導電積層構造
部材の1例の略断面図である。図中、1は表面
層、2は光導電層、3は基板、4は中間層をそれ
ぞれ示す。
FIG. 1 is a schematic cross-sectional view of a conventional photoconductive member.
FIG. 2 is a schematic cross-sectional view of one example of a photoconductive laminated structural member provided by the present invention. In the figure, 1 is a surface layer, 2 is a photoconductive layer, 3 is a substrate, and 4 is an intermediate layer, respectively.

本発明の光導電積層構造部材について、前記図
面を必要に応じて参照し、その構成、効果を以下
に詳述する。
The structure and effects of the photoconductive laminated structure member of the present invention will be described in detail below, with reference to the above-mentioned drawings as necessary.

先ず、本発明の光導電積層構造部材の、表面層
1、中間層4、光導電層2の相互関係を説明する
に、表面層、中間層、光導電層の屈折率を、それ
ぞれn1、n2、n3(n1<n2<n3)とするとき、表面
層と中間層、及び、中間層と光導電層の界面の反
射率は、 (n2−n1/n2+n12および(n3−n2/n3+n22 で表わされ、n2が√1×3に近いほど両者の値は
近いものになる。
First, to explain the mutual relationship among the surface layer 1, intermediate layer 4, and photoconductive layer 2 of the photoconductive laminated structure member of the present invention, the refractive index of the surface layer, intermediate layer, and photoconductive layer is n 1 , When n 2 , n 3 (n 1 < n 2 < n 3 ), the reflectance of the interface between the surface layer and the intermediate layer and between the intermediate layer and the photoconductive layer is (n 2 − n 1 /n 2 + n 1 ) 2 and (n 3 −n 2 /n 3 +n 2 ) 2 , and the closer n 2 is to √ 1 × 3 , the closer the two values are.

こととき中間層の層厚をα、入射光の波長をλ
とすると、 2n2α=(m+1/2)λ(mは0以上の整数) の関係式が成り立ち、この関係式の条件を満たす
とき表面層と中間層の界面の反射と中間層と光導
電層の界面の反射が干渉で弱めあい、反射光は減
少することになる。
In this case, the thickness of the intermediate layer is α, and the wavelength of the incident light is λ.
Then, the relational expression 2n 2 α = (m + 1/2) λ (m is an integer greater than or equal to 0) holds true, and when the conditions of this relational expression are satisfied, the reflection at the interface between the surface layer and the intermediate layer, and the interlayer and photoconductive The reflections at the interfaces of the layers weaken each other due to interference, and the amount of reflected light decreases.

このときαが厳密に上式の条件を満たさなくて
も、上式の条件の値に充分近ければ、反射光を減
少させる効果は充分にあり、実用上は問題ない。
At this time, even if α does not strictly satisfy the above condition, as long as it is sufficiently close to the value of the above condition, the effect of reducing reflected light is sufficient and there is no problem in practice.

また、可視光全域で使用する電子複写機の感光
体のように、入射光が単色光ではない場合でも、
使用波長範囲の中心波長付近で表面層と光導電層
の界面の反射が最低になるように中間層の層厚と
屈折率を調整しておけば実用上は全波長域でほぼ
問題ないものである。もちろん、中間層を屈折率
の波長依存性の違う2層以上の構成にし、使用す
る入射光の波長全域で反射率をつねい小さくする
ように調整しておけば、さらに良いことは言うま
でもない。
In addition, even when the incident light is not monochromatic, such as the photoreceptor of an electronic copying machine that uses the entire visible light range,
As long as the thickness and refractive index of the intermediate layer are adjusted so that the reflection at the interface between the surface layer and the photoconductive layer is minimized near the center wavelength of the wavelength range used, there will be virtually no problems in the entire wavelength range in practice. be. Of course, it goes without saying that it would be even better if the intermediate layer had a structure of two or more layers with different wavelength dependencies of refractive index, and the reflectance was adjusted to be always small over the entire wavelength range of the incident light used.

また、別法として中間層の屈折率を光導電層か
ら表面層の方向へ光等電層の屈折率と同じ、又は
近い値から表面層の屈折率と同じ、又は近い値へ
徐々に変化させることも反射光を減少させるには
効果的である。
Alternatively, the refractive index of the intermediate layer is gradually changed from a value that is the same as or close to the refractive index of the photoisoelectric layer in the direction from the photoconductive layer to the surface layer to a value that is the same as or close to the refractive index of the surface layer. This is also effective in reducing reflected light.

本発明において、中間層に用いる材料として
は、実質的に光透過性であつて、屈折率が適当な
ものであれば、無機、有機を問わずいずれの材料
であつても使用できる。該中間層を製造するにつ
いては、スプレーコーテイング、蒸着等任意の手
段を採用することができるが、層厚制御の容易
性、屈折率調節の容易性等の観点からして蒸着
法、イオンプレーテイング法、スパツタリング
法、グロー放電法等を用いるのがより有利であ
る。
In the present invention, any material can be used for the intermediate layer, whether inorganic or organic, as long as it is substantially light-transmissive and has an appropriate refractive index. Any method such as spray coating or vapor deposition can be used to manufacture the intermediate layer, but from the viewpoint of ease of controlling the layer thickness and ease of adjusting the refractive index, vapor deposition, ion plating, etc. It is more advantageous to use a method such as a sputtering method, a sputtering method, or a glow discharge method.

特に、非品質シリコン系の光導電層上に、炭素
原子、窒素原子、酸素原子等を含む非晶質シリコ
ン透明層を有する光導電部材の場合、中間層につ
いて炭素原子、窒素原子、酸素原子等の含有率を
変化させることにより所望の屈折率の非晶質層を
設けることができる。そしてその場合、各層の相
互接着も良好であり、また製造も同一系で行うこ
とができるので有利である。
In particular, in the case of a photoconductive member having an amorphous silicon transparent layer containing carbon atoms, nitrogen atoms, oxygen atoms, etc. on a non-quality silicon-based photoconductive layer, the intermediate layer may contain carbon atoms, nitrogen atoms, oxygen atoms, etc. By changing the content of , an amorphous layer having a desired refractive index can be provided. In this case, the mutual adhesion of each layer is good and manufacturing can be carried out in the same system, which is advantageous.

本発明に於ける光導電層の光導電材料として
は、アモルフアスSi、アモルフアスSe等の無機
光導電材料及び有機の光導電材料等任意の光導電
材料が使用できるが、光導電層が金属光沢表面を
有し、表面反射が大きいものである場合、本発明
による中間層は特に有利である。
As the photoconductive material of the photoconductive layer in the present invention, any photoconductive material such as inorganic photoconductive materials such as amorphous Si and amorphous Se, and organic photoconductive materials can be used. The intermediate layer according to the invention is particularly advantageous if the intermediate layer has a high surface reflection.

光導電層の基板(図中3で示されている)につ
いては、光導電層がそれ自身十分な自己支持性を
有する場合には必ずしも必要としないが、必要で
ある場合任意のものが採用でき、アルミニウム等
の金属あるいは有機材料フイルムを導電性に処理
したもの等も使用できる。
The substrate of the photoconductive layer (indicated by 3 in the figure) is not necessarily required if the photoconductive layer itself has sufficient self-supporting properties, but if necessary, any substrate can be adopted. , a metal such as aluminum or an organic material film treated to be conductive can also be used.

以下、本発明を実施例に従つて更に詳細に説明
する。なお、以下の実施例は本発明を説明するた
めのものであつて、それ等実施例により本発明は
限定されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples. It should be noted that the following examples are for illustrating the present invention, and the present invention is not limited by these examples.

〔従来例〕[Conventional example]

比較目的で従来の感光体を作成した。 A conventional photoreceptor was made for comparison purposes.

真空中で250℃で加熱したアルミニウム基板上
に、必要に応じてジボランガスや酸素などをドー
ピングガスとして混入したシランガスをグロー放
電分解して、光導電層として非晶質シリコン層
(層厚〜40μ、屈折率3.5)を成層した。次に、光
導電層の上にシランガスとメタンガスをグロー放
電分解することにより、表面保護層として非晶質
炭化けい素透明層(層厚0.3〜1.0μ、屈折率1.8)
を積層した。(第1図) この電子写真用感光体を波長800mmの半導体レ
ーザー光を像露光として使用したところ、表面層
の層厚によつて試料により反射がほぼ0から20%
近くまで変化し、それがそのまま光導電部材の感
度のばらつきとなつた。
On an aluminum substrate heated at 250°C in vacuum, silane gas mixed with diborane gas, oxygen, etc. as a doping gas is decomposed by glow discharge to form an amorphous silicon layer (layer thickness ~40 μm) as a photoconductive layer. refractive index 3.5). Next, by glow discharge decomposition of silane gas and methane gas on the photoconductive layer, an amorphous silicon carbide transparent layer (layer thickness 0.3 to 1.0μ, refractive index 1.8) is formed as a surface protective layer.
were laminated. (Figure 1) When this electrophotographic photoreceptor was used for image exposure with semiconductor laser light with a wavelength of 800 mm, the reflection was approximately 0 to 20% depending on the thickness of the surface layer.
It changed to a close range, and this directly became a variation in the sensitivity of the photoconductive member.

また、同一の試料でも、長期間コピーを続ける
ことにより表面層が削れ、感度が変化し、画質が
変動することも問題となつた。この変動を光導電
部材の表面電位で測定したところ、暗部表面電位
が500Vのとき露光量が一定でも明部表面電位の
変動は最大で100Vであつた。
Another problem was that even if the same sample was copied for a long period of time, the surface layer would be scratched, the sensitivity would change, and the image quality would fluctuate. When this variation was measured using the surface potential of the photoconductive member, it was found that when the dark area surface potential was 500V, even if the exposure amount was constant, the bright area surface potential varied by a maximum of 100V.

〔参考例〕[Reference example]

光導電層と表面層の間に、作成時にシランガス
とメタンガスの量を調整することにより屈折率
2.5層厚800Åの炭素原子を含む非晶質シリコンの
中間層を設けたほかは、従来例と同様の操作を行
つて感光体を作成し(第2図)、これについて従
来例に於けると同様の試験を行なつた。
The refractive index can be adjusted by adjusting the amount of silane gas and methane gas between the photoconductive layer and the surface layer.
A photoreceptor was fabricated using the same operations as in the conventional example (Fig. 2), except that an intermediate layer of amorphous silicon containing carbon atoms with a thickness of 2.5 800 Å was provided. A similar test was conducted.

〔本参考例〕感光体では、表面層の層厚によら
ず反射率はほぼ10%であつた。そして、作成時の
表面層の厚さや、耐久中の表面層の削れによる層
厚変化に感度はほとんど変化せず、むらのない安
定した画像が得られた。表面電位を測定したとこ
ろ従来例と同じ条件では、明部表面電位の変動は
最大で30V以下であつた。
[This reference example] In the photoreceptor, the reflectance was approximately 10% regardless of the layer thickness of the surface layer. Furthermore, the sensitivity hardly changed due to the thickness of the surface layer at the time of preparation or changes in layer thickness due to abrasion of the surface layer during durability, and stable images without unevenness were obtained. When the surface potential was measured, under the same conditions as the conventional example, the maximum variation in bright area surface potential was 30V or less.

実施例 1 光導電層の側から表面層の方向へ炭素原子の含
有率を変化させることにより2.5から1.8へ屈折率
を変化させたものを中間層とした以外は参考例と
同様にして感光体を作成し、これについて従来例
に於けると同様の試験を行なつた。
Example 1 A photoreceptor was prepared in the same manner as in the reference example, except that the intermediate layer was made of a material whose refractive index was changed from 2.5 to 1.8 by changing the carbon atom content from the photoconductive layer side to the surface layer. A test was conducted on the same as in the conventional example.

その結果参考例におけると同様の結果が得られ
た。
As a result, the same results as in the reference example were obtained.

なお、表面層および中間層は、炭素原子を含む
非晶質シリコンによるものだけが有効なわけでは
なく、窒素原子や酸素原子などを含む非晶質シリ
コンなど、感光体に悪影響をおよぼさないものの
組み合せならばいづれのものも有効であつた。
Note that it is not only effective to use amorphous silicon containing carbon atoms as the surface layer and intermediate layer, but also amorphous silicon containing nitrogen atoms, oxygen atoms, etc., which do not adversely affect the photoreceptor. Any combination of things was effective.

実施例 2 参考例と同様の試験を、ハロゲンランプを光源
とし、550nm付近ををピークとして可視光全域
を使用する電子写真装置についても行なつた。
Example 2 A test similar to that of Reference Example was also conducted on an electrophotographic device using a halogen lamp as a light source and using the entire visible light range with a peak around 550 nm.

ただし、このとき中間層の屈折率は2.5、層厚
は550Åとし、550nm付近の光の反射率が、表面
層と光導電層の界面で最低となるように調整し
た。
However, at this time, the refractive index of the intermediate layer was 2.5, the layer thickness was 550 Å, and the reflectance of light around 550 nm was adjusted to be the lowest at the interface between the surface layer and the photoconductive layer.

この感光体を、使用し、100万枚、画像を出し
たところ表面層を摩耗により多いところは3000
Å、少ないところは1000Å減少した。
When this photoreceptor was used and 1 million images were printed, the surface layer was worn out and the number of images was 3000.
Å, where it is less, it decreased by 1000 Å.

このとき従来の感光体では、10万枚目付近から
画像上にむらが発生したが、本発明による感光体
では100万枚に達しても実用上問題となる画像上
のむらは発生しなかつた。
At this time, with the conventional photoreceptor, unevenness occurred on the image from around the 100,000th sheet, but with the photoreceptor of the present invention, no unevenness on the image that would be a practical problem occurred even after reaching 1 million sheets.

その他、光導電層を有機光半導体、CdSまたは
ZnOバインダー系のもので作成し、表面層を樹脂
で作成する等して各種の組合せを試みたが、いず
れの場合についても好適な結果が得られた。
In addition, the photoconductive layer may be organic photoconductor, CdS or
Various combinations were tried, such as making it with a ZnO binder and making the surface layer with a resin, but favorable results were obtained in all cases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の光導電部材の略断面図であ
り、第2図は本発明の光導電積層構造部材の1例
の略断面図である。 1……表面層、2……光導電層、3……基板、
4……中間層。
FIG. 1 is a schematic sectional view of a conventional photoconductive member, and FIG. 2 is a schematic sectional view of an example of the photoconductive laminated structure member of the present invention. 1...Surface layer, 2...Photoconductive layer, 3...Substrate,
4...middle class.

Claims (1)

【特許請求の範囲】 1 基板と、該基板上に積層された、炭素原子、
窒素原子または酸素原子を含有する表面層と中間
層及び光導電層で構成され、前記表面層の屈折率
をn1、前記中間層の屈折率をn2、前記光導電層の
屈折率をn3とした時、n1<n2<n3なる関係とされ
ると共に、前記中間層に含有される炭素原子、窒
素原子または酸素原子の含有率が層厚方向に変化
されていることを特徴とする光導電積層構造部
材。 2 前記中間層の屈折率nxが1.8から2.5の範囲で
ある特許請求の範囲第1項に記載の光等電積層構
造部材。
[Claims] 1. A substrate, carbon atoms laminated on the substrate,
It is composed of a surface layer containing nitrogen atoms or oxygen atoms, an intermediate layer, and a photoconductive layer, where the refractive index of the surface layer is n 1 , the refractive index of the intermediate layer is n 2 , and the refractive index of the photoconductive layer is n 3 , the relationship is n 1 < n 2 < n 3 , and the content of carbon atoms, nitrogen atoms, or oxygen atoms contained in the intermediate layer is varied in the layer thickness direction. A photoconductive laminated structure member. 2. The photoisoelectric layered structure member according to claim 1, wherein the intermediate layer has a refractive index n x in a range of 1.8 to 2.5.
JP25935384A 1984-12-10 1984-12-10 Photoconductive laminate structure Granted JPS61138258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25935384A JPS61138258A (en) 1984-12-10 1984-12-10 Photoconductive laminate structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25935384A JPS61138258A (en) 1984-12-10 1984-12-10 Photoconductive laminate structure

Publications (2)

Publication Number Publication Date
JPS61138258A JPS61138258A (en) 1986-06-25
JPH0549108B2 true JPH0549108B2 (en) 1993-07-23

Family

ID=17332927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25935384A Granted JPS61138258A (en) 1984-12-10 1984-12-10 Photoconductive laminate structure

Country Status (1)

Country Link
JP (1) JPS61138258A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090214967A1 (en) * 2008-02-26 2009-08-27 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, and image forming apparatus and process cartridge using the same
JP5595081B2 (en) * 2010-03-29 2014-09-24 京セラ株式会社 Image forming apparatus
JP2011209360A (en) * 2010-03-29 2011-10-20 Kyocera Corp Electrophotographic photoreceptor and image forming apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133949A (en) * 1984-12-05 1986-06-21 Toshiba Corp Electrophotographic sensitive body
JPS61133948A (en) * 1984-12-05 1986-06-21 Toshiba Corp Electrophotographic sensitive body
JPS61133947A (en) * 1984-12-05 1986-06-21 Toshiba Corp Electrophotographic sensitive body
JPS61137158A (en) * 1984-12-07 1986-06-24 Toshiba Corp Electrophotographic sensitive body
JPS61137160A (en) * 1984-12-07 1986-06-24 Toshiba Corp Electrophotographic sensitive body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133949A (en) * 1984-12-05 1986-06-21 Toshiba Corp Electrophotographic sensitive body
JPS61133948A (en) * 1984-12-05 1986-06-21 Toshiba Corp Electrophotographic sensitive body
JPS61133947A (en) * 1984-12-05 1986-06-21 Toshiba Corp Electrophotographic sensitive body
JPS61137158A (en) * 1984-12-07 1986-06-24 Toshiba Corp Electrophotographic sensitive body
JPS61137160A (en) * 1984-12-07 1986-06-24 Toshiba Corp Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPS61138258A (en) 1986-06-25

Similar Documents

Publication Publication Date Title
JPS60168156A (en) Optical receptive member
WO2006062256A1 (en) Electrophotographic photoreceptor
US5168023A (en) Photosensitive element used in electrophotography
JPH0549108B2 (en)
US5268247A (en) Electrophotographic copying machine and electrophotographic member therefor and method of forming an electrophotographic member
US4592643A (en) Copying machine having reduced image memory
JPS6125154A (en) Electrophotographic sensitive body
JPH0495966A (en) Electrophotographic sensitive body
JPH0488352A (en) Electrophotographic sensitive body
JPH0683091A (en) Electrophotographic sensitive body and manufacture thereof
JPS60218653A (en) Light receptive member
JPS61100758A (en) Photoreceptor
JPS60262164A (en) Photoreceiving member
JPS59226352A (en) Photosensitive body
JPS6199147A (en) Photoreceptor
JPS61109063A (en) Photoreceptive member
JPS61103162A (en) Photoreceptor
JPS61109060A (en) Photoreceptive member
JPH0488351A (en) Electrophotographic sensitive body
JPS6195360A (en) Light receiving material
JPS6120047A (en) Photodetecting member
JPS6126045A (en) Light receiving member
JPH0495965A (en) Electrophotographic sensitive body
JPS60225853A (en) Light receiving member
JPS63273868A (en) Overcoat type electrophotographic sensitive body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term