JPH0495965A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH0495965A
JPH0495965A JP21004690A JP21004690A JPH0495965A JP H0495965 A JPH0495965 A JP H0495965A JP 21004690 A JP21004690 A JP 21004690A JP 21004690 A JP21004690 A JP 21004690A JP H0495965 A JPH0495965 A JP H0495965A
Authority
JP
Japan
Prior art keywords
layer
electrophotographic photoreceptor
amorphous silicon
photosensitivity
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21004690A
Other languages
Japanese (ja)
Inventor
Takao Kawamura
河村 孝夫
Naooki Miyamoto
宮本 直興
Hiroshi Ito
浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP21004690A priority Critical patent/JPH0495965A/en
Publication of JPH0495965A publication Critical patent/JPH0495965A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To enhance photosensitivity from a shorter wavelength region to the long wavelength region of the whole visible light region by forming a carrier exciting layer comprising an a-SiC layer and an a-SiGe layer of a laminated tandem structure. CONSTITUTION:The first amorphous silicon carbide a-Si1-xCx layer 2, (0.2 < x < 0.5), the amorphous silicon-germanium a-SiGe layer 3, and the second a-Si1-yCy layer 4 (0 < y < 0.5), are successively laminated on a substrate 1, and further, an organic semiconductor layer 5 is laminated, thus permitting light incident on the surface side of the layer 5 to have the short wavelength side mainly absorbed by the layer 4 and the long wavelength side mainly absorbed by the layer 3, and therefore photosensitivity in the whole visible light region to be enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアモルファスシリコンカーバイド層やアモルフ
ァスシリコンゲルマニウム層と有機光半導体層とを積層
して成る電子写真感光体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrophotographic photoreceptor comprising a laminated layer of an amorphous silicon carbide layer or an amorphous silicon germanium layer and an organic optical semiconductor layer.

〔従来技術及びその問題点〕[Prior art and its problems]

特開昭56−14241号により提案された電子写真感
光体は、基板上にアモルファスシリコンカーバイド(以
下アモルファスシリコンカーバイドをa−3iCと略す
)と有機光半導体層とを積層した構成であり、そのa−
3iC層をキャリア励起層としている。
The electrophotographic photoreceptor proposed in JP-A-56-14241 has a structure in which amorphous silicon carbide (hereinafter amorphous silicon carbide is abbreviated as a-3iC) and an organic optical semiconductor layer are laminated on a substrate. −
The 3iC layer is used as a carrier excitation layer.

しかしながら、上記構成の電子写真感光体によれば、そ
のa−SiC層の光学的バンドギャップが大きいために
短波長側の感度が良好となるが、その反面、長波長側の
感度が不十分となり、これにより、PPC(普通紙複写
機)に用いると黄色から赤色に亘る60Qnm以上の波
長領域において感度不足となり、その結果、カラー原稿
などに対しては、その可視領域において−様な感度が得
られないという問題点がある。また、レーザービームプ
リンタやLEDプリンタなど長波長の光源を用いるプリ
ンタに使用する場合にも感度か不足するという問題点か
ある。
However, according to the electrophotographic photoreceptor having the above structure, the a-SiC layer has a large optical bandgap, so the sensitivity on the short wavelength side is good, but on the other hand, the sensitivity on the long wavelength side is insufficient. As a result, when used in a PPC (plain paper copier), the sensitivity is insufficient in the wavelength range of 60 Qnm or more, which ranges from yellow to red, and as a result, for color originals, etc., the sensitivity is poor in the visible range. The problem is that it cannot be done. Furthermore, when used in printers that use long-wavelength light sources, such as laser beam printers and LED printers, there is also the problem of insufficient sensitivity.

更にまた特開昭56−25743号により提案された電
子写真感光体においては、基板上にアモルファスシリコ
ン感光層(以下アモルファスシリコンをa−3iと略す
)と、a−3iC遷移層と、有機光半導体層とを順次積
層した構成であり、このようにa−3i層とa−SiC
層を積層した場合には感度特性か改善されるが、その反
面、表面電位の暗減衰特性か劣化し、暗減衰が速くなり
、これにより、帯電部において発生した表面電位の小さ
なムラが暗減衰後の現像部においては大きな表面電位ム
ラとなり、その結果、画像の濃度ムラが顕著となり、良
好な画像が得られないという問題点がある。また、レー
ザービームプリンタやLEDプリンタなど長波長の光源
を用いるプリンタに使用する場合にも感度が不足すると
いう問題点がある。
Furthermore, in the electrophotographic photoreceptor proposed in JP-A No. 56-25743, an amorphous silicon photosensitive layer (hereinafter amorphous silicon is abbreviated as a-3i), an a-3iC transition layer, and an organic photoconductor are formed on a substrate. The a-3i layer and the a-SiC layer are stacked one after another.
When multiple layers are stacked, the sensitivity characteristics are improved, but on the other hand, the dark decay characteristics of the surface potential deteriorate, and the dark decay becomes faster. There is a problem that large surface potential unevenness occurs in the subsequent developing section, and as a result, density unevenness of the image becomes noticeable, making it impossible to obtain a good image. Furthermore, when used in printers that use long wavelength light sources, such as laser beam printers and LED printers, there is also the problem of insufficient sensitivity.

また、基板上に直接a−3i層を積層した場合、その層
と基板との密着性か不十分であり、剥離するという問題
点もある。
Further, when the a-3i layer is laminated directly on the substrate, there is a problem that the adhesion between the layer and the substrate is insufficient and peeling occurs.

従って本発明の目的は短波長から長波長の可視光全域に
亘って高い光感度か得られ、しがち、表面電位の暗減衰
特性を改善して良好な画像が安定して得られる高信頼性
の電子写真感光体を提供することにある。
Therefore, the purpose of the present invention is to obtain high photosensitivity over the entire visible light range from short wavelengths to long wavelengths, improve the dark decay characteristics of the surface potential, and achieve high reliability in which good images can be stably obtained. An object of the present invention is to provide an electrophotographic photoreceptor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の電子写真感光体は基板上に原子組成比かS1□
−うC,のy値で0.2<x<0.5の範囲にある第1
のa−3iC層と、アモルファスシリコンゲルマニウム
層(以下アモルファスシリコンゲルマニウムをa−3i
Geと略す)と、原子組成比がsi、−yCyのy値で
(1<y<Q、5の範囲にある第2のa−3iC層と、
有機光半導体層とを順次積層したことを特徴とする。
The electrophotographic photoreceptor of the present invention has an atomic composition ratio of S1□ on a substrate.
- the first y-value of C, in the range 0.2<x<0.5
a-3iC layer and amorphous silicon germanium layer (hereinafter amorphous silicon germanium is referred to as a-3i
a second a-3iC layer having an atomic composition ratio of si, a y value of -yCy (1<y<Q, 5);
It is characterized by sequentially stacking organic optical semiconductor layers.

また、本発明の電子写真感光体は第1のa−3iC層に
周期律表Iua族元素を1〜10.000ppmもしく
は第Va族元素を5.000ppm以下含存せしめ、そ
れぞれ正帯電型もしくは負帯電型にした点も特徴である
Further, in the electrophotographic photoreceptor of the present invention, the first a-3iC layer contains 1 to 10.000 ppm of a group Iua element of the periodic table or 5.000 ppm or less of a group Va element, and is positively charged or negatively charged, respectively. Another feature is that it is a charged type.

更にまた本発明の電子写真感光体は上記第1のa−3i
C層に酸素及び/又は窒素を0.01〜3o原子%含有
せしめた点も特徴である。
Furthermore, the electrophotographic photoreceptor of the present invention has the above-mentioned first a-3i
Another feature is that the C layer contains 0.01 to 30 atomic percent of oxygen and/or nitrogen.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図及び第2図は本発明電子写真感光体の層構成を示
す。いずれも基板l上に第1のa−3iC層2、a−3
iGe層3及び第2のa−SiC層4を順次積層してお
り、更に有機光半導体層5を積層する。第2図はその他
の例であり、有機光半導体層5の上に無機質系の保護層
6を積層する。
1 and 2 show the layer structure of the electrophotographic photoreceptor of the present invention. Both have a first a-3iC layer 2, a-3 on the substrate l.
An iGe layer 3 and a second a-SiC layer 4 are sequentially laminated, and an organic optical semiconductor layer 5 is further laminated. FIG. 2 shows another example, in which an inorganic protective layer 6 is laminated on the organic optical semiconductor layer 5.

上記層構成において、第1のa−3iC層2は感光体の
帯電時に基板゛1からのキャリアの注入を阻止する機能
があり、また、感光層と基板1との密着性を高めて膜の
剥離を防ぐ機能かある。
In the above layer structure, the first a-3iC layer 2 has the function of blocking the injection of carriers from the substrate 1 when the photoreceptor is charged, and also improves the adhesion between the photosensitive layer and the substrate 1 to form a film. It has a function to prevent peeling.

a−3iGe層3と第2のa−3iC層4には電荷を発
生する機能があり、有機光半導体層4には電荷を輸送す
る機能がある。
The a-3iGe layer 3 and the second a-3iC layer 4 have a function of generating charges, and the organic optical semiconductor layer 4 has a function of transporting charges.

かかる層構成によれば、有機光半導体層5の表面側より
入射した光は第2のa−8iC層4により主に短波長側
の光が吸収され、次いで残りの主に長波長側の光がa−
3iGe層3により吸収され、その結果、光感度が可視
領域全般において高められる。
According to this layer structure, the second a-8iC layer 4 absorbs mainly the light on the short wavelength side of the light incident from the surface side of the organic optical semiconductor layer 5, and then the remaining light mainly on the long wavelength side is absorbed. is a-
3iGe layer 3, and as a result, the photosensitivity is increased in the entire visible region.

先ず第1のa−3iC層2については、次のように元素
比率の範囲を設定する。
First, for the first a-3iC layer 2, the range of element ratios is set as follows.

5t1−xCx 0.2<x<0.5 好適には0.3ぐx<0.5 X値が龜2以下の場合は基板1からのキャリアの注入を
十分に阻止できず、また、暗減衰特性を改善することか
できず、基板1との密着性も十分に確保できない。X値
が0.5以上の場合にはa−3iGe層3及び第2のa
−3iC層4て発生した光キャリアが基板lヘスムーズ
に流れず、光感度が低下し、残留電位が上昇する。
5t1-xCx 0.2<x<0.5 Preferably 0.3x<0.5 If the X value is less than 2, carrier injection from the substrate 1 cannot be sufficiently prevented, and Attenuation characteristics cannot be improved, and adhesion to the substrate 1 cannot be sufficiently ensured. When the X value is 0.5 or more, the a-3iGe layer 3 and the second a
-3 Photocarriers generated in the iC layer 4 do not flow smoothly to the substrate 1, resulting in a decrease in photosensitivity and an increase in residual potential.

また第1のa−3iC層2の厚みは0.01〜1.0 
μm、好適には0.05〜0.5μmの範囲内がよく、
この範囲内であれば良好な暗減衰特性が得られ、膜の密
着性も良好となる。
Moreover, the thickness of the first a-3iC layer 2 is 0.01 to 1.0
μm, preferably within the range of 0.05 to 0.5 μm,
Within this range, good dark decay characteristics can be obtained and the adhesion of the film will also be good.

更にまた第1のa−3iC層2の光学的エネルギーギャ
ップはa−3iGe層3に比べて0.1eV以上、望ま
しくは0.2eV以上の差を設けるように大きくすると
よく、これによって基板1からのキャリアの注入を有効
に阻止できる。
Furthermore, the optical energy gap of the first a-3iC layer 2 is preferably increased to provide a difference of 0.1 eV or more, preferably 0.2 eV or more, compared to the a-3iGe layer 3. injection of carriers can be effectively prevented.

また本発明においては上記第1のa−3iC層2に周期
律表第1[Ia族元素を1〜10.000ppm 、好
適には100〜5.000ppm含有させてもよく、こ
の場合、基板からのキャリアのうち特に負電荷の注入を
阻止でき、暗減衰特性か改善できる。その含有量か1 
ppm未満の場合には上記のような効果か得られず、1
0.000ppmを越える場合には、その層内部の欠陥
が増大して膜質が低下し、表面電位の低下並びに残留電
位の上昇をきたす。
Further, in the present invention, the first a-3iC layer 2 may contain 1 to 10.000 ppm, preferably 100 to 5.000 ppm, of an element from group Ia of the periodic table. Among the carriers, injection of particularly negative charges can be prevented, and dark decay characteristics can be improved. Its content is 1
If it is less than ppm, the above effects cannot be obtained, and 1
If it exceeds 0.000 ppm, defects inside the layer increase and the film quality deteriorates, resulting in a decrease in surface potential and an increase in residual potential.

また上記第1[a族元素を含有させるに当たり、基板1
から感光体表面に向かう層厚方向に亘って漸次減少させ
ることで励起層で発生した光キャリア特に正電荷を基板
側へスムーズに流すことかでき、また、基板側のキャリ
ア特に負電荷が感光体層に流入するのを阻止することで
き、これにより、暗減衰特性が一層改善され、光感度が
更に高められ、残留電位も一層低減する。このように勾
配分布を設けた場合、その最大含有量も1〜10.00
0ppm 、好適には100〜5. oooppmにす
ればよい。
In addition, in incorporating the first group a element, the substrate 1
By gradually decreasing the photocarriers, especially positive charges, generated in the excitation layer in the layer thickness direction toward the surface of the photoreceptor, it is possible to smoothly flow the photocarriers, especially positive charges, generated in the excitation layer toward the substrate side. It can be prevented from flowing into the layer, thereby further improving the dark decay properties, further increasing the photosensitivity, and further reducing the residual potential. When a gradient distribution is provided in this way, the maximum content is also 1 to 10.00.
0 ppm, preferably 100-5. Just set it to oooppm.

上記第1[a族元素にはB、  AI!、 Ga、 I
n等があり、就中、B元素が共有結合性に優れて半導体
特性を敏感に変え得る点て、その上、優れた帯電能並び
に光感度か得られる点て望ましい。
Above 1 [group a elements include B, AI! , Ga, I
Among them, element B is desirable because it has excellent covalent bonding properties and can sensitively change semiconductor properties, and also because it can provide excellent charging ability and photosensitivity.

また本発明においては上記第1のa−3iC層2に周期
律表第Va族元素を5.000ppm以下、好適には3
00〜3.000ppm含有させてもよく、この場合、
基板1からのキャリアのうち特に正電荷の注入を阻止で
き、暗減衰特性が改善できる。その含有量が5、000
ppmを越える場合には、その層内部の欠陥が増大して
膜質が低下し、表面電位の低下並びに残留電位の上昇を
きたす。
Further, in the present invention, the first a-3iC layer 2 contains an element of Group Va of the periodic table in an amount of 5.000 ppm or less, preferably 3.
00 to 3.000 ppm may be contained, in this case,
Among carriers from the substrate 1, injection of positive charges in particular can be prevented, and dark decay characteristics can be improved. Its content is 5,000
If it exceeds ppm, defects inside the layer will increase, the film quality will deteriorate, and the surface potential will decrease and the residual potential will increase.

また上記第Va族元素を含有させるに当たり、基板1か
ら感光体表面に向かう層厚方向に亘って漸次減少させる
ことで励起層で発生した光キャリア特に負電荷を基板側
へスムーズに流すことができ、また、基板側のキャリア
特に正電荷が感光体層に流入するのを阻止することでき
、これにより、暗減衰特性が一層改善され、光感度が更
に高められ、残留電位も一層低減する。このように勾配
分布を設けた場合、その最大含有量も5.000ppm
以下、好適には300〜3. OOOppmにすればよ
い。
In addition, when including the Group Va element, by gradually decreasing it in the layer thickness direction from the substrate 1 toward the surface of the photoreceptor, photocarriers, especially negative charges generated in the excitation layer can smoothly flow toward the substrate. Furthermore, it is possible to prevent carriers, particularly positive charges, from the substrate side from flowing into the photoreceptor layer, thereby further improving dark decay characteristics, further increasing photosensitivity, and further reducing residual potential. When a gradient distribution is provided in this way, the maximum content is also 5.000 ppm.
The following range is preferably 300 to 3. It can be set to OOOppm.

上記第Va族元素にはN、  P、 As、 Sb、 
Biかあるか、就中、P元素か共有結合性に優れて半導
体特性を敏感に変え得る点て、その上、優れた帯電能並
びに光感度か得られる点て望ましい。
The Group Va elements include N, P, As, Sb,
Bi, especially P, is desirable because it has excellent covalent bonding properties and can sensitively change semiconductor properties, and also because it provides excellent charging ability and photosensitivity.

a−3iGe層3は長波長光によりキャリアの励起か良
好に行われ、その光感度を高めることかできる。
In the a-3iGe layer 3, carriers are well excited by long wavelength light, and its photosensitivity can be increased.

そのためにはその層の厚みは0.05〜5.0μm1好
適には0.1〜3.0μmの範囲内に設定するのか望ま
しい。
For this purpose, the thickness of the layer is desirably set within the range of 0.05 to 5.0 μm, preferably 0.1 to 3.0 μm.

また、このa−3iGe層3の光学的エネルギーギャッ
プ(以下Eg Optと略す)を1.4〜1.8eVの
範囲内に設定した場合、良好な光導電性か得られ、高い
光感度が得られる。
Furthermore, when the optical energy gap (hereinafter abbreviated as Eg Opt) of this a-3iGe layer 3 is set within the range of 1.4 to 1.8 eV, good photoconductivity and high photosensitivity can be obtained. It will be done.

上記a−3iGe層3の元素比率は5ll−IQ Ge
、のm値で、0.05<m<0.5 、好適には0.1
 <m<O;4の範囲内に設定するのが望ましく、この
範囲内であれば光導電性を大きくするとともに長波長側
の光感度を顛著に高めることがてきる。
The element ratio of the a-3iGe layer 3 is 5ll-IQ Ge
, where m value is 0.05<m<0.5, preferably 0.1
<m<O; It is desirable to set it within the range of 4, and within this range, the photoconductivity can be increased and the photosensitivity on the long wavelength side can be significantly increased.

第2のa−3iC層4については、その元素比率を次の
通りに設定する。
Regarding the second a-3iC layer 4, the element ratio is set as follows.

St+−yCy o<y<0.s 好適には0.05< 7 <0.4 最適にはQ、l <y<0.3 y値か0.5以上の場合には光導電性が著しく低くなり
、光キャリアの励起機能が低下して光感度が低下し、ま
た、残留電位も増加する。
St+-yCy o<y<0. s Preferably 0.05 < 7 < 0.4 Optimally Q, l < y < 0.3 If the y value is 0.5 or more, the photoconductivity will be extremely low and the photocarrier excitation function will be impaired. As a result, the photosensitivity decreases, and the residual potential also increases.

また第2のa−3iC層4の厚みを0.05〜3.01
t m、好適には0.1〜2.5μmの範囲内に設定す
ると、短波長光によるキャリア励起が良好に行われ、短
波長側の光感度を十分に高めることができる。
Further, the thickness of the second a-3iC layer 4 is set to 0.05 to 3.01.
When t m is preferably set within the range of 0.1 to 2.5 μm, carrier excitation by short wavelength light is performed satisfactorily, and the photosensitivity on the short wavelength side can be sufficiently increased.

更にまた第2のa−SiC層4のEg optはa−S
iGe層3に比べて0.tev以上、望ましくは0.2
eV以上大きくなるように設定すればよく、これにより
、長波長側の光があまり吸収されないでa−3iGe層
3に到達する。
Furthermore, E opt of the second a-SiC layer 4 is a-S
0. compared to iGe layer 3. tev or more, preferably 0.2
What is necessary is to set it so that it becomes larger than eV, so that light on the long wavelength side reaches the a-3iGe layer 3 without being absorbed much.

また正帯電型電子写真感光体であれば、a−S iGe
層3及び/又は第2のa−3iC層4に、それぞれ周期
律表第Va族元素を500ppm以下、好適には110
0pp以下の範囲内で含有させると更に一層光感度を高
めることかできる。この第Va族元素にはNP、 As
、 Sb、 Biがあるか、P元素か共有結合性に優れ
て半導体特性を敏感に変え得る点で、その上、優れた帯
電能並びに光感度が得られるという点て望ましい。
In addition, if it is a positively charged electrophotographic photoreceptor, a-S iGe
The layer 3 and/or the second a-3iC layer 4 each contain 500 ppm or less of Group Va elements of the periodic table, preferably 110 ppm or less.
When the content is within the range of 0 pp or less, the photosensitivity can be further increased. This group Va element includes NP, As
, Sb, Bi, or the P element is desirable because it has excellent covalent bonding properties and can sensitively change semiconductor properties, and also because it provides excellent charging ability and photosensitivity.

更に負帯電型電子写真感光体であれば、a−3iGe層
3及び/又は第2のa−3iC層4に、それぞれ周期律
表第■a族元素を1〜11000pp以下、好適には3
0〜300ppmの範囲内で含有させると更に一層光感
度を高めることかできる。この第1[a族元素にはB、
 Aβ、 Ga、 Inなどがあるか、B元素か共有結
合性に優れて半導体特性を敏感に変え得る点て、その上
、優れた帯電能並びに光感度か得られるという点で望ま
しい。
Furthermore, in the case of a negatively charged electrophotographic photoreceptor, the a-3iGe layer 3 and/or the second a-3iC layer 4 contain 1 to 11,000 pp or less, preferably 3 to 11,000 pp of an element from group IV of the periodic table.
When contained within the range of 0 to 300 ppm, photosensitivity can be further enhanced. This first [a group element includes B,
Aβ, Ga, In, etc., or B elements are desirable because they have excellent covalent bonding properties and can sensitively change semiconductor properties, and also provide excellent charging ability and photosensitivity.

上記3種類の各層2. 3. 4はいずれもアモルファ
ス層であり、そのダングリングボンドに水素(H)元素
やハロゲン元素を終端させる。それらの元素A(Hまた
はハロゲン)のa−3iGe層3や第2のa−3iC層
4における含有量は、それぞれ次のような範囲内に設定
するとよい。
Each of the above three types of layers 2. 3. 4 are amorphous layers, and their dangling bonds are terminated with hydrogen (H) elements or halogen elements. The content of the element A (H or halogen) in the a-3iGe layer 3 and the second a-3iC layer 4 is preferably set within the following ranges.

a  (StGe)+−z A z a−(SiC)+−z A により2値として表した場合 0.05 < z <0.5 好適には0.1  <z<0.45 また本発明電子写真感光体は有機光半導体層5の材料選
択により負帯電型又は正帯電型に対応することができる
。即ち、負帯電型電子写真感光体の場合、有機光半導体
層5に電子供与性化合物が選ばれ、一方、正帯電型電子
写真感光体の場合には有機光半導体層5に電子吸引性化
合物が選ばれる。
When expressed as a binary value by a (StGe) + - z A z a - (SiC) + - z A, 0.05 < z < 0.5, preferably 0.1 < z < 0.45. The photographic photoreceptor can be of a negatively charged type or a positively charged type depending on the material selection of the organic photosemiconductor layer 5. That is, in the case of a negatively charged electrophotographic photoreceptor, an electron-donating compound is selected for the organic photosemiconductor layer 5, while in the case of a positively charged electrophotographic photoreceptor, an electron-withdrawing compound is selected for the organic photosemiconductor layer 5. To be elected.

前記電子吸引性化合物には高分子量のものとしてポリ−
N−ビニルカルバゾール、ポリビニルピレン、ポリビニ
ルアントラセン、ピレン〜ポルムアルデヒド縮重合体な
どがあり、また、低分子量のものとしてオキサジアゾー
ル、オキサゾールピラプリン、トリフェニルメタン、ヒ
ドラゾン、トリアリールアミン、N−フェニルカルバゾ
ール、スチルベンなどかあり、この低分子物質は、ポリ
カーボネート、ポリエステル、メタアクリル樹脂、ポリ
アミド、アクリルエポキシ、ポリエチレン、フェノール
、ポリウレタン、ブチラール樹脂、ポリ酢酸ビニル、ユ
リア樹脂などのバインダに分散して用いられる。
The electron-withdrawing compound may have a high molecular weight, such as poly-
These include N-vinylcarbazole, polyvinylpyrene, polyvinylanthracene, pyrene-pormaldehyde condensation polymers, and low molecular weight ones such as oxadiazole, oxazolepyrapurine, triphenylmethane, hydrazone, triarylamine, and N-phenyl. Examples include carbazole and stilbene, and these low-molecular substances are used after being dispersed in binders such as polycarbonate, polyester, methacrylic resin, polyamide, acrylic epoxy, polyethylene, phenol, polyurethane, butyral resin, polyvinyl acetate, and urea resin. .

前記電子吸引性化合物には2.4.7− トIJニトロ
フルオレノンなとかある。
Examples of the electron-withdrawing compounds include 2.4.7-IJ nitrofluorenone.

基板lには、銅、黄銅、SO3、AA’、 Niなとの
金属導電体、或いはガラス、セラミックスなどの絶縁体
の表面に導電性薄膜をコーティングしたものなどがある
The substrate 1 may be a metal conductor such as copper, brass, SO3, AA', or Ni, or an insulator such as glass or ceramics coated with a conductive thin film.

この基板1はシート状、ベルト状もしくはウェブ状可撓
性導電シートてもよい。このようなシートには八1、N
i、ステンレスなどの金属シート、或いはポリエステル
フィルム、ナイロン、ポリイミドなどの高分子樹脂の上
にAA、Niなとの金属もしくはSnO□、インジウム
とスズの複合酸化物:ITO(Indium Tin 
0xide)などの透明導電性材料や有機導電性材料を
蒸着など導電処理したものか用いられる。
This substrate 1 may be a flexible conductive sheet in the form of a sheet, belt or web. Such a sheet has 81, N
i. Metal sheets such as stainless steel, or polymer resins such as polyester films, nylon, and polyimide are coated with metals such as AA and Ni, or SnO□, and composite oxides of indium and tin: ITO (Indium Tin).
A transparent conductive material such as (Oxide) or an organic conductive material that has been subjected to conductive treatment such as vapor deposition is used.

更に第2図に示すように保護層6を設けてもよい。この
層6はa−3i層もしくはa−3iC層(その元素比率
を5ll−acaのa値で0≦a<0.95、好適には
0.5 < a <0.95の範囲内にする)、或いは
aSi層やa−3iC層に窒素や酸素などの元素を含有
させてもよい。このような層を保護層6として設けるこ
とにより有機光半導体層が表面に露出している場合より
も耐摩耗性が向上する。その上、保護層6の表面か化学
的に安定しており、変質か生じないため、長期間の使用
において画像流れか生じない。
Furthermore, a protective layer 6 may be provided as shown in FIG. This layer 6 is an a-3i layer or an a-3iC layer (its elemental ratio is in the range of 0≦a<0.95, preferably 0.5<a<0.95 with a value of 5ll-aca) ), or the aSi layer or the a-3iC layer may contain elements such as nitrogen or oxygen. By providing such a layer as the protective layer 6, wear resistance is improved compared to when the organic optical semiconductor layer is exposed on the surface. Moreover, since the surface of the protective layer 6 is chemically stable and does not undergo deterioration, only image fading occurs during long-term use.

更にまた第1のa−3iC層2に酸素及び/又は窒素の
元素Bをその合計量が下記の通りに含有させると、それ
を含有させない場合に比べて基板1に対する密着力並び
に基板1からのキャリア注入の阻止能が高められる。
Furthermore, when the first a-3iC layer 2 contains the element B of oxygen and/or nitrogen in the total amount as shown below, the adhesion to the substrate 1 and the release from the substrate 1 are improved compared to the case where the element B is not contained. The ability to stop carrier injection is enhanced.

(Si+−8C8)14B。(Si+-8C8)14B.

0.0001<b <0.3 好適には 0.001 <b <0.1次に本発明電子
写真感光体の製法を述べる。
0.0001<b<0.3 Preferably 0.001<b<0.1 Next, a method for manufacturing the electrophotographic photoreceptor of the present invention will be described.

第1のa−3iC層2、a−3iGe層3及び第2のa
−3iC層、並びにa−3i、 a−3iC及びアモル
ファス化したSi−C−N系元素やSi−C−0−N系
元素等から成る保護層6を形成するにはグロー放電分解
法、イオンブレーティング法、反応性スパッタリング法
、真空蒸着法、CVD法などの薄膜形成方法かある。
a first a-3iC layer 2, an a-3iGe layer 3 and a second a-3iC layer 2;
The -3iC layer and the protective layer 6 made of a-3i, a-3iC, amorphized Si-C-N elements, Si-C-0-N elements, etc. are formed using glow discharge decomposition method, ionization method, etc. There are thin film forming methods such as a brating method, a reactive sputtering method, a vacuum evaporation method, and a CVD method.

グロー放電分解法を用いてSiC層を形成する場合、S
i元素含有ガスとC元素含有ガスを組合せ、この混合ガ
スをプラズマ分解して成膜形成する。
When forming a SiC layer using glow discharge decomposition method, S
A gas containing an i element and a gas containing a C element are combined, and this mixed gas is subjected to plasma decomposition to form a film.

このSi元素含有ガスにはSiH4,Si2Hs、 S
i3Hs。
This Si element-containing gas contains SiH4, Si2Hs, S
i3Hs.

5IF4.5IC14,SiHC1s等々があり、また
、C元素含有ガスにはCH4,C2H4,C2H2,C
−Ha等々があり、就中、C2H2は高速成膜性が得ら
れるという点で望ましい。
5IF4.5IC14, SiHC1s, etc., and C element-containing gases include CH4, C2H4, C2H2, C
-Ha, etc., and C2H2 is particularly desirable in that it can provide high-speed film formation.

有機光半導体層は浸漬塗工方法またはコーティング法に
より形成し、前者は感光材が溶媒中に分散した塗工液の
中に浸漬し、次いで一定の速度で引き上げ、そして、自
然乾燥及び熱エージング(約150℃、約1時間)を行
うという方法であり、また、後者のコーティング法によ
れば、コーター(塗機)を用いて溶媒に分散された感光
材を塗布し、次いで熱風乾燥を行う。
The organic photosemiconductor layer is formed by a dip coating method or a coating method. According to the latter coating method, a photosensitive material dispersed in a solvent is applied using a coater, and then dried with hot air.

かくして本発明の電子写真感光体によれば、キャリア励
起層かa−3iC層とa−3iGe層とを積層したタン
デム構成であるために、有機光半導体層5側から入射し
た光は第2のa−3iC層4により主に短波長側の光が
吸収され、次いで、その層4を透過した主に長波長側の
光がa−3iGe層3により吸収され、これにより、a
−3iC層単独の励起層に比べて可視領域全般に亘って
光感度が高められ、残留電位か小さくなる。
Thus, according to the electrophotographic photoreceptor of the present invention, since the carrier excitation layer has a tandem structure in which the a-3iC layer and the a-3iGe layer are laminated, light incident from the organic optical semiconductor layer 5 side is transmitted to the second layer. The a-3iC layer 4 mainly absorbs light on the short wavelength side, and then the a-3iGe layer 3 absorbs mainly the light on the long wavelength side that has passed through the layer 4.
Compared to an excitation layer consisting of a -3iC layer alone, the photosensitivity is increased over the entire visible region, and the residual potential is reduced.

また第3図に示す通り、基板上に直接a−SiGe層と
a−3iC層を積層した構成である電子写真感光体Rで
あれば、そのa−3iGe層により基板からのキャリア
注入を有効に阻止できないため、その注入されたキャリ
アにより表面電位の暗減衰が速くなり、これに伴って電
子写真プロセスにおける帯電部から現像部までの表面電
位の低下が大きくなる。
Furthermore, as shown in Fig. 3, if the electrophotographic photoreceptor R has a structure in which an a-SiGe layer and an a-3iC layer are laminated directly on the substrate, the a-3iGe layer can effectively inject carriers from the substrate. Since this cannot be prevented, the dark decay of the surface potential becomes faster due to the injected carriers, and as a result, the decrease in the surface potential from the charging section to the developing section in the electrophotographic process increases.

また、帯電部での小さな帯電ムラが現像部では大きな表
面電位のムラとなり、従って、画像濃度のムラも大きく
なるため、良好な画像特性か得難いという問題点があっ
た。更に、暗減衰か速いと現像部での表面電位の変動か
大きくなりやすく、連続した使用において良好な画質の
画像を安定して得ることが難しくなる。これに対して本
発明の電子写真感光体Tであれば、a−3iGe層より
も暗抵抗か高いことやEg optが大きい第1のa−
3iC層2を設けており、基板1からのキャリア注入を
有効に阻止し、暗減衰を遅くすることか出来るため、前
記のような問題点を解決することかできる。
Further, small unevenness in charging at the charging section results in large unevenness in surface potential at the developing section, which results in large unevenness in image density, making it difficult to obtain good image characteristics. Furthermore, if the dark decay is fast, fluctuations in the surface potential at the developing section tend to be large, making it difficult to stably obtain images of good quality during continuous use. On the other hand, in the case of the electrophotographic photoreceptor T of the present invention, the dark resistance is higher than that of the a-3iGe layer, and the first a-
Since the 3iC layer 2 is provided and can effectively block carrier injection from the substrate 1 and slow dark decay, the above-mentioned problems can be solved.

〔実施例〕〔Example〕

次に本発明の実施例を述べる。 Next, examples of the present invention will be described.

(例1) 電子写真感光体作製用の容量結合型グロー放電分解装置
を用いて第1表の成膜条件によりAI!基板上に第1の
a−3iC層2、a−3iGe層3及び第2のa−3i
C層4を順次積層した。
(Example 1) AI! A first a-3iC layer 2, an a-3iGe layer 3 and a second a-3i
C layers 4 were sequentially laminated.

次に有機光半導体層5を厚み15μmで形成した。Next, an organic optical semiconductor layer 5 was formed to a thickness of 15 μm.

その形成においては、2.4.7− トリニト口フルオ
レノンを1.4−ジオキサンの溶剤に入れて溶かし、更
にポリエステル樹脂(レフサン−LS2−11)を加え
、超音波分散を40分間行った。これによって得た溶液
をバー・コーターを用いて塗布し、次いで80°Cにて
熱風乾燥を行った。
In its formation, 2.4.7-trinitorenone was dissolved in a solvent of 1.4-dioxane, a polyester resin (Refsan-LS2-11) was added, and ultrasonic dispersion was performed for 40 minutes. The resulting solution was applied using a bar coater and then dried with hot air at 80°C.

[以下余白] かくして得られた正帯電型の電子写真感光体において、
各層のカーボン含有比率(X値及びy値)、ゲルマニウ
ム含有比率(m値)、H含有比率(Z値)並びにEg 
optをそれぞれX線マイクロアナリシス及び赤外吸収
法並びに可視光分光器により測定した透過光スペクトル
の(αhν)1″対hνのプロットにより求めたところ
、第1表に示す通りの結果か得られた。
[Left below] In the positively charged electrophotographic photoreceptor thus obtained,
Carbon content ratio (X value and y value), germanium content ratio (m value), H content ratio (Z value), and Eg of each layer
opt was determined by plotting (αhν)1'' versus hν of the transmitted light spectrum measured by X-ray microanalysis, infrared absorption method, and visible light spectrometer, and the results shown in Table 1 were obtained. .

また本例の電子写真感光体を作製するに当たり、第1の
a−3iC層とa−3iGe層を形成せず、第2のa−
3iC層のみを形成し、その他を本例と同様に形成して
比較例Aとした。
Further, in producing the electrophotographic photoreceptor of this example, the first a-3iC layer and the a-3iGe layer were not formed, and the second a-3iC layer and the a-3iGe layer were not formed.
Comparative Example A was obtained by forming only the 3iC layer and forming the rest in the same manner as in this example.

更にまた本例の電子写真感光体を作製するに当たり、第
1のa−3iC層を形成せず、a−3iGe層と第2の
a−3iC層のみを形成し、その他を本例と同様に形成
して比較例Bとした。
Furthermore, in producing the electrophotographic photoreceptor of this example, the first a-3iC layer was not formed, only the a-3iGe layer and the second a-3iC layer were formed, and the rest was the same as in this example. Comparative Example B was formed.

上記本発明電子写真感光体と比較例Aの分光感度を測定
したところ、第4図に示す通りの結果が得られた。同図
中横軸は波長であり、縦軸は光感度であって、各波長で
の光量が0.3μW/cm”である露光に対する表面電
位の変化を光透過型プローブを有する表面電位計を用い
て測定し、表面電位を半減させるのに必要な露光量の逆
数によって求めた。
When the spectral sensitivities of the electrophotographic photoreceptor of the present invention and Comparative Example A were measured, the results shown in FIG. 4 were obtained. In the figure, the horizontal axis is the wavelength, and the vertical axis is the photosensitivity, and the change in surface potential in response to exposure with a light intensity of 0.3 μW/cm at each wavelength was measured using a surface electrometer with a light transmission probe. It was determined by the reciprocal of the exposure amount required to halve the surface potential.

第4図に示す結果より明らかな通り、本発明は比較例A
に比べて600nm以上の長波長側ての光感度か高いこ
とが判る。
As is clear from the results shown in FIG.
It can be seen that the photosensitivity is higher on the long wavelength side of 600 nm or more compared to the above.

また比較例Bの光感度は本例と同様な分光感度特性が得
られたが、その反面、帯電後の暗中での表面電位の経過
を追ったところ、第5図に示す通り本例の感光体に比べ
て表面電位の暗減衰か速く、帯電も低く、電位ムラも大
きいことが判る。
In addition, the photosensitivity of Comparative Example B was similar to that of this example, but on the other hand, when we followed the progress of the surface potential in the dark after charging, we found that the photosensitivity of this example was as shown in Figure 5. It can be seen that the dark decay of the surface potential is faster than that of the body, the charge is low, and the potential unevenness is large.

また、本例の感光体と比較例Bを35°C95%RHの
環境下に24時間放置したところ、本例の感光体では何
等変化が認められなかったのに対し、比較例Bでは基板
とa−3iGe層との間で膜の剥離が生じ、膜の密着性
に問題があることも確かめられた。
Furthermore, when the photoreceptor of this example and Comparative Example B were left in an environment of 35°C and 95% RH for 24 hours, no change was observed in the photoreceptor of this example, whereas in Comparative Example B, the substrate It was also confirmed that the film peeled off from the a-3iGe layer and there was a problem with the adhesion of the film.

(例2) (例1)と同様の電子写真感光体を作製するに当たり、
成膜条件を変化させ、第1のa−3iC層、a−3iG
e層及び第2のa−3iC層のそれぞれの組成及び厚み
を変化させて第2表に示すA−Jの10種類の感光体を
作製し、各々の感光体の暗減衰、光感度及び残留電位を
評価した。表中の各々の層のZ値をIR法により測定し
たところ、いずれも0.05<z<0.5の範囲内であ
った。
(Example 2) In producing an electrophotographic photoreceptor similar to (Example 1),
By changing the film forming conditions, the first a-3iC layer, a-3iG
Ten types of photoreceptors A to J shown in Table 2 were prepared by changing the composition and thickness of the e layer and the second a-3iC layer, and the dark decay, photosensitivity, and residual amount of each photoreceptor were measured. The potential was evaluated. When the Z value of each layer in the table was measured by IR method, all of them were within the range of 0.05<z<0.5.

また表中の暗減衰、光感度及び残留電位において、◎印
は最も優れた結果か得られた場合であり、○印は幾分価
れた結果が得られた場合であり、Δ印はやや劣る結果が
得られた場合である。
In addition, regarding dark decay, photosensitivity, and residual potential in the table, ◎ marks are cases where the best results were obtained, ○ marks are cases where somewhat better results were obtained, and Δ marks are cases where slightly better results were obtained. This is a case where an inferior result is obtained.

〔以下余白〕[Margin below]

第2表に示す結果より明らかな通り、感光体D〜Gは暗
減衰、光感度及び残留電位のいずれにおいても優れてい
ることか判る。
As is clear from the results shown in Table 2, it can be seen that photoreceptors D to G are excellent in all of dark decay, photosensitivity, and residual potential.

(例3) 電子写真感光体作製用の容量結合型グロー放電分解装置
を用いて第3表の成膜条件によりA[基板上に第1のa
−3iC層2、a−3iGe層3及び第2のa−3iC
層4を順次積層した。
(Example 3) A [first a
-3iC layer 2, a-3iGe layer 3 and second a-3iC
Layers 4 were laminated in sequence.

次に有機光半導体層5を(例1)と同様に厚み15μm
で形成した。
Next, the organic optical semiconductor layer 5 was formed to a thickness of 15 μm in the same manner as in (Example 1).
It was formed with

〔以下余白〕[Margin below]

かくして得られた正帯電型の電子写真感光体において、
第1のa−SiC層のN、 O元素合計含有量を測定し
たところ、4.0原子%であり、そして、各層のカーボ
ン含有比率(X値及びy値)、ゲルマニウム含有比率(
m値)、H含有比率(Z値)並びにEg Optを求め
たところ、第3表に示す通りの結果が得られた。
In the positively charged electrophotographic photoreceptor thus obtained,
When the total content of N and O elements in the first a-SiC layer was measured, it was 4.0 at%, and the carbon content ratio (X value and y value) and germanium content ratio (
When the H content ratio (Z value) and Eg Opt were determined, the results shown in Table 3 were obtained.

また本例の電子写真感光体を作製するに当たり、第1の
a−SiC層とa−S iGe層を形成せず、第2のa
−SiC層のみを形成し、その他を本例と同様に形成し
て比較例Cとした。
Further, in producing the electrophotographic photoreceptor of this example, the first a-SiC layer and the a-SiGe layer were not formed, and the second a-SiC layer and the a-SiGe layer were not formed.
Comparative Example C was obtained by forming only the -SiC layer and forming the others in the same manner as in this example.

更にまた本例の電子写真感光体を作製するに当たり、第
1のa−3iC層を形成時にNoガスを導入せず、a−
3iGe層と第2のa−3iC層を同様に形成し、その
他も同様に形成して比較例りとした。
Furthermore, in producing the electrophotographic photoreceptor of this example, No gas was not introduced during the formation of the first a-3iC layer;
The 3iGe layer and the second a-3iC layer were formed in the same manner, and the others were formed in the same manner as a comparative example.

上記本発明電子写真感光体と比較例Cの分光感度を測定
したところ、第4図と同様の結果が得られた。
When the spectral sensitivities of the electrophotographic photoreceptor of the present invention and Comparative Example C were measured, the same results as shown in FIG. 4 were obtained.

また比較例りの光感度は本例と同様な分光感度特性が得
られたが、その反面、帯電後の暗中ての表面電位の経過
を追ったところ、本例の感光体に比べて表面電位の暗減
衰か約20%早く、帯電も低く、電位ムラも大きいこと
か判った。
In addition, the photosensitivity of the comparative example was similar to that of this example, but on the other hand, when we followed the progress of the surface potential in the dark after charging, the surface potential was higher than that of the photoreceptor of this example. It was found that the dark decay was about 20% faster, the charge was low, and the potential unevenness was large.

(例4) (例3)と同様の電子写真感光体を作製するに当たり、
Noガスを変化させて第1のa−3iC層の0、 N元
素の合計含有量を変え、第4表に示す通りに−Rの8種
類の感光体を作製し、各々の感光体の暗減衰、光感度及
び残留電位を評価した。表中の各々の層のZ値をIR法
により測定したところ、いずれも0.05< z <0
.5の範囲内であった。
(Example 4) In producing an electrophotographic photoreceptor similar to (Example 3),
By changing the No gas and changing the total content of 0 and N elements in the first a-3iC layer, eight types of -R photoreceptors were prepared as shown in Table 4. Attenuation, photosensitivity and residual potential were evaluated. When the Z value of each layer in the table was measured by IR method, all were 0.05<z<0
.. It was within the range of 5.

〔以下余白〕[Margin below]

第4表 第4表に示す結果より明らかな通り、感光体L〜Qは暗
減衰、光感度及び残留電位のいずれにおいても優れてい
ることか判る。
As is clear from the results shown in Table 4, it can be seen that photoreceptors L to Q are excellent in all of dark decay, photosensitivity, and residual potential.

(例5) 電子写真感光体作製用の容量結合型グロー放電分解装置
を用いて第5表の成膜条件によりAA基板上に第1のa
−SiC層2、a−SiGe層3及び第2のa−3iC
層4を順次積層した。
(Example 5) Using a capacitively coupled glow discharge decomposition apparatus for producing an electrophotographic photoreceptor, the first a
-SiC layer 2, a-SiGe layer 3 and second a-3iC
Layers 4 were laminated in sequence.

次に有機光半導体層5を厚み15μmで形成した。Next, an organic optical semiconductor layer 5 was formed to a thickness of 15 μm.

その形成においては、2.4.7− )リニトロフルオ
レノンを1.4−ジオキサンの溶剤に入れて溶かし、更
にポリエステル樹脂(レフサン−LS2−11)を加え
、超音波分散を40分間行った。これによって得た溶液
をバー・コーターを用いて塗布し、次いで80″Cにて
熱風乾燥を行った。
In its formation, 2.4.7-)linitrofluorenone was dissolved in a 1.4-dioxane solvent, a polyester resin (Refsan-LS2-11) was added, and ultrasonic dispersion was performed for 40 minutes. The resulting solution was applied using a bar coater and then dried with hot air at 80''C.

[以下余白] *印は本発明の範囲外である。[Margin below] *marks are outside the scope of the present invention.

かくして得られた正帯電型の電子写真感光体において、
第1のa−3iC層のB元素含有量を二次イオン質量分
析計により測定したところ、1.000ppmであり、
また、各層のカーボン含有比率(X値及びy値)、H含
有比率(Z値)並びにEg optを求めたところ、第
5表に示す通りの結果が得られた。
In the positively charged electrophotographic photoreceptor thus obtained,
When the B element content of the first a-3iC layer was measured using a secondary ion mass spectrometer, it was 1.000 ppm,
Furthermore, when the carbon content ratio (X value and y value), H content ratio (Z value), and Egopt of each layer were determined, the results shown in Table 5 were obtained.

また本例の電子写真感光体を作製するに当たり、第1の
a−3iC層とa−3iGe層を形成せず、第2のa−
3iC層のみを形成し、その他を本例と同様に形成して
比較例Eとした。
Further, in producing the electrophotographic photoreceptor of this example, the first a-3iC layer and the a-3iGe layer were not formed, and the second a-3iC layer and the a-3iGe layer were not formed.
Comparative Example E was obtained by forming only the 3iC layer, and forming the rest in the same manner as in this example.

更にまた本例の電子写真感光体を作製するに当たり、第
1のa−3iC層を形成せず、a−3iGe層と第2の
a−3iC層のみを形成し、その他を本例と同様に形成
して比較例Fとした。
Furthermore, in producing the electrophotographic photoreceptor of this example, the first a-3iC layer was not formed, only the a-3iGe layer and the second a-3iC layer were formed, and the rest was the same as in this example. Comparative Example F was prepared.

上記本発明電子写真感光体と比較例Eの分光感度を測定
したところ、第4図に示す通りの結果か得られた。
When the spectral sensitivities of the electrophotographic photoreceptor of the present invention and Comparative Example E were measured, the results shown in FIG. 4 were obtained.

第4図に示す結果より明らかな通り、本発明は比較例E
に比べて600nm以上の長波長側での光感度が高いこ
とが判る。
As is clear from the results shown in FIG.
It can be seen that the photosensitivity is higher on the long wavelength side of 600 nm or more compared to the above.

また比較例Fの光感度は本例と同様な分光感度特性か得
られたか、その反面、帯電後の暗中ての表面電位の経過
を追ったところ、本例の感光体に比べて表面電位の暗減
衰が速く、帯電も低く、電位ムラも大きいことが判った
In addition, the photosensitivity of Comparative Example F was similar to that of this example. On the other hand, when we followed the progress of the surface potential in the dark after charging, we found that the surface potential was lower than that of the photoreceptor of this example. It was found that dark decay was fast, charging was low, and potential unevenness was large.

また、本例の感光体と比較例Fを35°C95%RHの
環境下に24時間放置したところ、本例の感光体では何
等変化が認められなかったのに対し、比較例Fでは基板
とa−3iGe層との間で膜の剥離か生じ、膜の密着性
に問題があることも確かめられた。
Furthermore, when the photoconductor of this example and Comparative Example F were left in an environment of 35°C and 95% RH for 24 hours, no change was observed in the photoconductor of this example, whereas in Comparative Example F, the substrate It was also confirmed that the film peeled off from the a-3iGe layer, and there was a problem in the adhesion of the film.

更にまた本例の感光体を作製するに当たり、第1のa−
3iC層の形成時にB2Hgガスを導入せず、その他は
全く同じ成膜条件に設定し、これにより、B元素を含有
しない第1のa−3iC層を備えた正帯電型の電子写真
感光体を作製した。
Furthermore, in producing the photoreceptor of this example, the first a-
B2Hg gas was not introduced during the formation of the 3iC layer, and the other conditions were set to be exactly the same, thereby producing a positively charged electrophotographic photoreceptor having the first a-3iC layer containing no B element. Created.

この電子写真感光体の特性評価を行ったところ、分光感
度において600nm以上の長波長側での感度か本例の
感光体とほぼ同等であったが、その反面、本例の感光体
に比べて表面電位の暗減衰が約20%速く、帯電も低く
、電位ムラも大きかった。
When the characteristics of this electrophotographic photoreceptor were evaluated, the spectral sensitivity on the long wavelength side of 600 nm or more was almost the same as that of the photoreceptor of this example, but on the other hand, compared to the photoreceptor of this example, The dark decay of the surface potential was about 20% faster, the charging was low, and the potential unevenness was large.

(例6) (例5)と同様の電子写真感光体を作製するに当たり、
B2H,ガス流量を変化させ、第1のa−3iC層2の
B元素含有量を変えて、第6表に示すA〜Jの10種類
の感光体を作製し、各々の感光体の暗減衰、光感度及び
残留電位を評価した。
(Example 6) In producing an electrophotographic photoreceptor similar to (Example 5),
Ten types of photoreceptors A to J shown in Table 6 were prepared by changing the B2H and gas flow rates and the B element content of the first a-3iC layer 2, and the dark decay of each photoreceptor was , photosensitivity and residual potential were evaluated.

〔以下余白〕 第 表 *印は本発明の範囲外である。[Margin below] No. table *marks are outside the scope of the present invention.

第6表に示す結果より明らかな通り、感光体B〜■は暗
減衰、光感度及び残留電位のいずれにおいても優れてい
ることが判る。
As is clear from the results shown in Table 6, it can be seen that photoreceptors B to (2) are excellent in all of dark decay, photosensitivity and residual potential.

(例7) 電子写真感光体作製用の容量結合型グロー放電分解装置
を用いて第7表の成膜条件によりAl基板上に第1のa
−3iC層2、a−3iGe層3及び第2のa−3iC
層4を順次積層した。
(Example 7) Using a capacitively coupled glow discharge decomposition apparatus for producing electrophotographic photoreceptors, the first a was deposited on an Al substrate under the film forming conditions shown in Table 7.
-3iC layer 2, a-3iGe layer 3 and second a-3iC
Layers 4 were laminated in sequence.

次に有機光半導体層5を(例5)と同様に厚み15μm
で形成した。
Next, the organic optical semiconductor layer 5 was formed to a thickness of 15 μm in the same manner as in (Example 5).
It was formed with

〔以下余白〕[Margin below]

かくして得られた電子写真感光体において、第1のa−
3iC層のB元素含有量及びO,N各元素の合計含有量
を二次イオン質量分析計により測定したところ、それぞ
れ1.000ppm、 4原子%てあった。
In the electrophotographic photoreceptor thus obtained, the first a-
When the content of B element and the total content of O and N elements in the 3iC layer were measured using a secondary ion mass spectrometer, they were found to be 1.000 ppm and 4 atomic %, respectively.

また本例の電子写真感光体を作製するに当たり、第1の
a−SiC層とa−3iGe層を形成せず、第2のa−
3iC層のみを形成し、その他を本例と同様に形成して
比較例Gとした。
Further, in producing the electrophotographic photoreceptor of this example, the first a-SiC layer and the a-3iGe layer were not formed, and the second a-SiC layer and the a-3iGe layer were not formed.
Comparative Example G was obtained by forming only the 3iC layer and forming the other parts in the same manner as in this example.

更にまた本例の電子写真感光体を作製するに当たり、第
1のa−3iC層を形成せず、a−3iGe層と第2の
a−3iC層を同様に形成し、その他も本例と同様に形
成して比較例Hとした。
Furthermore, in producing the electrophotographic photoreceptor of this example, the first a-3iC layer was not formed, but the a-3iGe layer and the second a-3iC layer were formed in the same manner, and the rest was the same as in this example. Comparative Example H was obtained.

上記本発明電子写真感光体と比較例Gの分光感度を測定
したところ、第4図と同様の結果か得られた。
When the spectral sensitivities of the electrophotographic photoreceptor of the present invention and Comparative Example G were measured, results similar to those shown in FIG. 4 were obtained.

また比較例Hの光感度は本例と同様な分光感度特性が得
られたが、その反面、帯電後の暗中での表面電位の経過
を追ったところ、本例の感光体に比べて表面電位の暗減
衰が速く、帯電も低く、電位ムラも大きいことが判った
In addition, the photosensitivity of Comparative Example H was similar to that of this example, but on the other hand, when we followed the course of the surface potential in the dark after charging, we found that the surface potential was higher than that of the photoreceptor of this example. It was found that the dark decay was fast, the charge was low, and the potential unevenness was large.

また、本例の感光体と比較例Hを35°C95%RHの
環境下に24時間放置したところ、本例の感光体では何
ら変化が認められなかったのに対し、比較例Hては基板
とa−3i層との間で膜の剥離か生じ、膜の密着性に問
題かあることも確かめられた。
Furthermore, when the photoconductor of this example and Comparative Example H were left in an environment of 35°C and 95% RH for 24 hours, no change was observed in the photoconductor of this example, while the substrate of Comparative Example H It was also confirmed that peeling of the film occurred between the film and the a-3i layer, and that there was a problem with the adhesion of the film.

更にまた本例の電子写真感光体を作製するに当たり、第
1のa−3iC層の形成時にB2H@ガス及びNOガス
を導入せず、その他は全く同じ成膜条件に設定し、これ
により、B元素、0元素及びN元素を含有しない第1の
a−3iC層を備えた正帯電型の電子写真感光体を作製
した。
Furthermore, in producing the electrophotographic photoreceptor of this example, B2H@ gas and NO gas were not introduced during the formation of the first a-3iC layer, and the other conditions were set to be exactly the same. A positively charged electrophotographic photoreceptor including a first a-3iC layer containing no element, 0 element, and N element was produced.

この電子写真感光体の特性評価を行ったところ、分光感
度において600nm以上の長波長側での感度か本例の
感光体とほぼ同等であったが、その反面、本例の感光体
に比べて表面電位の暗減衰が約25%速く、帯電も低く
、電位ムラも大きかった。
When the characteristics of this electrophotographic photoreceptor were evaluated, the spectral sensitivity on the long wavelength side of 600 nm or more was almost the same as that of the photoreceptor of this example, but on the other hand, compared to the photoreceptor of this example, The dark decay of the surface potential was about 25% faster, the charging was low, and the potential unevenness was large.

(例8) (例6)と同様の電子写真感光体を作製するに当たり、
82H6ガス流量とNOガス流量を変化させ、第1のa
−3iC層のB元素含有量並びに0元素及びN元素の合
計含存量を変えて第8表に示すに−Uの11種類の感光
体を作製し、各々の感光体の暗減衰、光感度および残留
電位を評価した。
(Example 8) In producing an electrophotographic photoreceptor similar to (Example 6),
By changing the 82H6 gas flow rate and the NO gas flow rate, the first a
-3 Eleven types of photoreceptors of -U as shown in Table 8 were prepared by changing the B element content and the total content of 0 element and N element in the iC layer, and the dark decay, photosensitivity and The residual potential was evaluated.

〔以下余白〕[Margin below]

第 表 第8表に示す結果より明らかな通り、感光体M〜Sは暗
減衰、光感度及び残留電位のいずれにおいても優れてい
ることか判る。
As is clear from the results shown in Table 8, it can be seen that the photoreceptors M to S are excellent in all of dark decay, photosensitivity, and residual potential.

(例9) 電子写真感光体作製用の容量結合型グロー放電分解装置
を用いて第9表の成膜条件によりAI基板上に第1のa
−3iC層2、a−3iGe層3及び第2のa−3iC
層4を順次積層した。
(Example 9) Using a capacitively coupled glow discharge decomposition apparatus for producing an electrophotographic photoreceptor, the first a
-3iC layer 2, a-3iGe layer 3 and second a-3iC
Layers 4 were laminated in sequence.

次に有機半導体層5を厚み15μmで形成した。Next, an organic semiconductor layer 5 was formed to a thickness of 15 μm.

その形成によれば、ヒドラゾンを1.4−ジオキサンの
溶剤に入れて溶かし、更にポリエステル樹脂(レフサン
−LS2−11)をヒドラゾンと同重量加え、そして、
超音波分散を40分間行い、これによって得られる溶液
をバー・コーターを用いて塗布し、次いで80°Cにて
熱風乾燥を行った。
According to its formation, hydrazone is dissolved in a solvent of 1,4-dioxane, and then polyester resin (Refsan-LS2-11) is added in the same weight as hydrazone, and
Ultrasonic dispersion was performed for 40 minutes, and the resulting solution was applied using a bar coater, followed by hot air drying at 80°C.

〔以下余白〕[Margin below]

*印は本発明の範囲外である。 *marks are outside the scope of the present invention.

かくして得られた負帯電型の電子写真感光体において、
第1のa−3iC層のP元素含有量及び第2の計SiC
層のB元素含有量を測定したところ、それぞれ2. O
OOppm及び1100ppであった。
In the negatively charged electrophotographic photoreceptor thus obtained,
P element content of first a-3iC layer and second total SiC
When the B element content of the layers was measured, they were 2. O
OOppm and 1100pp.

また本例の電子写真感光体を作製するに当たり、第1の
a−3iC層とa−3iGe層を形成せず、第2のa−
3iC層のみを形成し、その他を本例と同様に形成して
比較例Iとした。
Further, in producing the electrophotographic photoreceptor of this example, the first a-3iC layer and the a-3iGe layer were not formed, and the second a-3iC layer and the a-3iGe layer were not formed.
Comparative Example I was obtained by forming only the 3iC layer and forming the other parts in the same manner as in this example.

更にまた本例の電子写真感光体を作製するに当たり、第
1のa−3iC層を形成せず、a−3iGe層と第2の
a−3iC層のみを形成し、その他を本例と同様に形成
して比較例Jとした。
Furthermore, in producing the electrophotographic photoreceptor of this example, the first a-3iC layer was not formed, only the a-3iGe layer and the second a-3iC layer were formed, and the rest was the same as in this example. Comparative Example J was formed.

上記本発明電子写真感光体と比較例■の分光感度を測定
したところ、第4図に示す通りの結果か得られた。
When the spectral sensitivities of the electrophotographic photoreceptor of the present invention and Comparative Example (2) were measured, the results shown in FIG. 4 were obtained.

第4図に示す結果より明らかな通り、本発明は比較例■
に比べて600nm以上の長波長側での光感度が高いこ
とか判る。
As is clear from the results shown in FIG.
It can be seen that the photosensitivity is higher on the long wavelength side of 600 nm or more compared to the above.

また比較例Jの光感度は本例と同様な分光感度特性が得
られたが、その反面、帯電後の暗中ての表面電位の経過
を追ったところ、本例の感光体に比べて表面電位の暗減
衰が速く、帯電も低く、電位ムラも大きいことが判った
In addition, the photosensitivity of Comparative Example J was similar to that of this example, but on the other hand, when we followed the progress of the surface potential in the dark after charging, we found that the surface potential was higher than that of the photoreceptor of this example. It was found that the dark decay was fast, the charge was low, and the potential unevenness was large.

また、本例の感光体と比較例Jを35°C95%RHの
環境下に24時間放置したところ、本例の感光体では何
等変化が認められなかったのに対し、比較例Jでは基板
とa−3iGe層との間で膜の剥離が生じ、膜の密着性
に問題かあることも確かめられた。
Furthermore, when the photoconductor of this example and Comparative Example J were left in an environment of 35°C and 95% RH for 24 hours, no change was observed in the photoconductor of this example, whereas in Comparative Example J, the substrate It was also confirmed that the film peeled off from the a-3iGe layer, and there was a problem with the adhesion of the film.

更にまた本例の感光体を作製するに当たり、第1のa−
3iC層の形成時にPH,ガスを導入せず、その他は全
く同じ成膜条件に設定し、これによりP元素を含有しな
い第1のa−3iC層を備えた負帯電型の電子写真感光
体を作製した。
Furthermore, in producing the photoreceptor of this example, the first a-
During the formation of the 3iC layer, PH and gas were not introduced, and the other conditions were set to be exactly the same, thereby producing a negatively charged electrophotographic photoreceptor with the first a-3iC layer containing no P element. Created.

この電子写真感光体の特性評価を行ったところ、分光感
度において600nm以上の長波長側での感度が本例の
感光体とほぼ同等であったが、その反面、本例の感光体
に比べて表面電位の暗減衰が約20%速く、帯電も低く
、電位ムラも大きかった。
When the characteristics of this electrophotographic photoreceptor were evaluated, the spectral sensitivity on the long wavelength side of 600 nm or more was almost the same as the photoreceptor of this example, but on the other hand, compared to the photoreceptor of this example, The dark decay of the surface potential was about 20% faster, the charging was low, and the potential unevenness was large.

(例9)と同様の電子写真感光体を作製するに当たり、
PH,ガス流量を変化させ、第1のa−3iC層2のP
元素含有量を変えて、第1O表に示すアルコの10種類
の感光体を作製し、各々の感光体の暗減衰、光感度及び
残留電位を評価した。
In producing an electrophotographic photoreceptor similar to (Example 9),
P of the first a-3iC layer 2 by changing the PH and gas flow rate.
Ten types of Alco photoreceptors shown in Table 1O were prepared with varying element contents, and the dark decay, photosensitivity, and residual potential of each photoreceptor were evaluated.

〔以下余白〕[Margin below]

第 表 *印は本発明の範囲外である。 No. table *marks are outside the scope of the present invention.

第10表に示す結果より明らかな通り、感光体ア〜りは
暗減衰、光感度及び残留電位のいずれにおいても優れて
いることか判る。
As is clear from the results shown in Table 10, it can be seen that photoreceptors A to A are excellent in all of dark decay, photosensitivity, and residual potential.

(例10) 電子写真感光体作製用の容量結合型グロー放電分解装置
を用いて第11表の成膜条件によりAI!基板上に第1
のa−3iC層2、a−SiGe層3及び第2のa−S
iC層4を順次積層した。
(Example 10) AI! 1st on the board
a-3iC layer 2, a-SiGe layer 3 and a second a-S
The iC layers 4 were sequentially laminated.

次に有機光半導体層5を(例8)と同様に厚み15μm
で形成した。
Next, the organic optical semiconductor layer 5 was formed to a thickness of 15 μm in the same manner as in (Example 8).
It was formed with

〔以下余白〕[Margin below]

かくして得られた負帯電型の電子写真感光体において、
第1のa−3iC層のP元素含有量及び0゜N各元素の
合計含有量を測定したところ、それぞれ2,000pp
m、  4原子%であった。
In the negatively charged electrophotographic photoreceptor thus obtained,
The P element content and the total content of each 0°N element in the first a-3iC layer were measured and found to be 2,000pp each.
m, 4 at%.

また本例の電子写真感光体を作製するに当たり、第1の
a−3iC層とa−3iGe層を形成せず、第2のa−
3iC層のみを形成し、その他を本例と同様に形成して
比較例にとした。
Further, in producing the electrophotographic photoreceptor of this example, the first a-3iC layer and the a-3iGe layer were not formed, and the second a-3iC layer and the a-3iGe layer were not formed.
A comparative example was prepared in which only the 3iC layer was formed and the others were formed in the same manner as in this example.

更にまた本例の電子写真感光体を作製するに当たり、第
1のa−3iC層を形成せず、a−3iGe層と第2の
a−3iC層を同様に形成し、その他も本例と同様に形
成して比較例しとした。
Furthermore, in producing the electrophotographic photoreceptor of this example, the first a-3iC layer was not formed, but the a-3iGe layer and the second a-3iC layer were formed in the same manner, and the rest was the same as in this example. A comparative example was prepared.

上記本発明電子写真感光体と比較例にの分光感度を測定
したところ、第4図と同様の結果が得られた。
When the spectral sensitivities of the electrophotographic photoreceptor of the present invention and the comparative example were measured, results similar to those shown in FIG. 4 were obtained.

また比較例りの光感度は本例と同様な分光感度特性が得
られたが、その反面、帯電後の暗中での表面電位の経過
を追ったところ、本例の感光体に比べて表面電位の暗減
衰が速く、帯電も低く、電位ムラも大きいことが判った
In addition, the photosensitivity of the comparative example was similar to that of this example, but on the other hand, when we followed the progress of the surface potential in the dark after charging, the surface potential was higher than that of the photoreceptor of this example. It was found that the dark decay was fast, the charge was low, and the potential unevenness was large.

また、本例の感光体と比較例りを35°C95%RHの
環境下に24時間放置したところ、本例の感光体では何
ら変化が認められなかったのに対し、比較例しては基板
とa−3iGe層との間で膜の剥離が生じ、膜の密着性
に問題があることも確かめられた。
Furthermore, when the photoconductor of this example and the comparative example were left in an environment of 35°C and 95% RH for 24 hours, no change was observed in the photoconductor of this example, while the substrate of the comparative example It was also confirmed that peeling of the film occurred between the a-3iGe layer and the a-3iGe layer, and that there was a problem in the adhesion of the film.

更にまた本例の電子写真感光体を作製するに当たり、第
1のa−3iC層の形成時にPH,ガス及びNOガスを
導入せず、その他は全く同じ成膜条件に設定し、これに
よりP元素、0元素及びN元素を含有しない第1のa−
3iC層を備えた負帯電型の電子写真感光体を作製した
Furthermore, in producing the electrophotographic photoreceptor of this example, PH, gas, and NO gas were not introduced during the formation of the first a-3iC layer, and the other conditions were set to be exactly the same, whereby the P element , the first a- which does not contain 0 element and N element
A negatively charged electrophotographic photoreceptor including a 3iC layer was produced.

この電子写真感光体の特性評価を行ったところ、分光感
度において600nm以上の長波長側での感度が本例の
感光体とほぼ同等であったが、その反面、本例の感光体
に比べて表面電位の暗減衰が約20%速く、帯電も低く
、電位ムラも大きかった。
When the characteristics of this electrophotographic photoreceptor were evaluated, the spectral sensitivity on the long wavelength side of 600 nm or more was almost the same as the photoreceptor of this example, but on the other hand, compared to the photoreceptor of this example, The dark decay of the surface potential was about 20% faster, the charging was low, and the potential unevenness was large.

(例11) (例10)と同様の電子写真感光体を作製するに当たり
、PH3ガス流量とNOガス流量を変化させ、第1のa
−3iC層のP元素含有量並びにO元素及びN元素の合
計含有量を変えて第12表に示すす〜すの11種類の感
光体を作製し、各々の感光体の暗減衰、光感度および残
留電位を評価した。
(Example 11) In producing an electrophotographic photoreceptor similar to (Example 10), the PH3 gas flow rate and NO gas flow rate were changed, and the first a
-3 Eleven types of photoreceptors shown in Table 12 were prepared by changing the P element content and the total content of O and N elements in the iC layer, and the dark decay, photosensitivity and The residual potential was evaluated.

〔以下余白〕[Margin below]

第 表 第12表に示す結果より明らかな通り、感光体ス〜テは
暗減衰、光感度及び残留電位のいずれにおいても優れて
いることが判る。
As is clear from the results shown in Table 12, it can be seen that the photoreceptor ST is excellent in all of dark decay, photosensitivity and residual potential.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、可視光の全域に亘って高
い光感度が得られ、また、残留電位か小さくなり、しか
も、画像の濃度ムラか少なく、これによって良好な画像
が安定して得られる高性能且つ高信頼性の電子写真感光
体を提供できた。
As described above, according to the present invention, high photosensitivity can be obtained over the entire visible light range, the residual potential is small, and there is little density unevenness in the image, which makes it possible to stably produce good images. A high-performance and highly reliable electrophotographic photoreceptor could be provided.

また本発明の電子写真感光体においては、基板に対する
膜の密着力に優れており、その点でも信頼性を高めてい
る。
Furthermore, in the electrophotographic photoreceptor of the present invention, the film has excellent adhesion to the substrate, and reliability is also improved in this respect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明電子写真感光体の層構成を表
す断面図、第3図は表面電位の減衰を説明する線図、第
4図は波長に対する光感度を表す線図、第5図は表面電
位を表す線図である。 2:第1のアモルファスシリコンカーバイド層3:アモ
ルファスシリコンゲルマニウム層4:第2のアモルファ
スシリコンカーバイド層*印は本発明の範囲外である。 :有機光半導体層 :保護層
1 and 2 are cross-sectional views showing the layer structure of the electrophotographic photoreceptor of the present invention, FIG. 3 is a diagram illustrating attenuation of surface potential, and FIG. 4 is a diagram illustrating photosensitivity with respect to wavelength. Figure 5 is a diagram showing surface potential. 2: First amorphous silicon carbide layer 3: Amorphous silicon germanium layer 4: Second amorphous silicon carbide layer Those marked with * are outside the scope of the present invention. :Organic optical semiconductor layer:Protective layer

Claims (4)

【特許請求の範囲】[Claims] (1)基板上に原子組成比がSi_1_−_xC_xの
x値で0.2<x<0.5の範囲にある第1のアモルフ
ァスシリコンカーバイド層を形成し、該第1のアモルフ
ァスシリコンカーバイド層の上にアモルファスシリコン
ゲルマニウム層、原子組成比がSi_1_−_yC_y
のy値で0<y<0.5の範囲にある第2のアモルファ
スシリコンカーバイド層及び有機光半導体層を順次積層
したことを特徴とする電子写真感光体。
(1) A first amorphous silicon carbide layer having an atomic composition ratio of Si_1_−_xC_x with an x value in the range of 0.2<x<0.5 is formed on the substrate, and the first amorphous silicon carbide layer is Amorphous silicon germanium layer on top, atomic composition ratio Si_1_-_yC_y
An electrophotographic photoreceptor characterized in that a second amorphous silicon carbide layer and an organic optical semiconductor layer having a y value in the range of 0<y<0.5 are sequentially laminated.
(2)基板上に原子組成比がSi_1_−_xC_xの
x値で0.2<x<0.5の範囲にあるとともに周期律
表第IIIa族元素を1〜10,000ppm含有する第
1のアモルファスシリコンカーバイド層を形成し、該第
1のアモルファスシリコンカーバイド層の上にアモルフ
ァスシリコンゲルマニウム層、原子組成比がSi_1_
−_yC_yのy値で0<y<0.5の範囲にある第2
のアモルファスシリコンカーバイド層及び有機光半導体
層を順次積層したことを特徴とする電子写真感光体。
(2) A first amorphous film having an atomic composition ratio of Si_1_-_xC_x in the range of 0.2<x<0.5 and containing 1 to 10,000 ppm of Group IIIa elements of the periodic table on the substrate. A silicon carbide layer is formed, and an amorphous silicon germanium layer is formed on the first amorphous silicon carbide layer, and an atomic composition ratio of Si_1_
- The second y value of _yC_y in the range 0<y<0.5
An electrophotographic photoreceptor characterized in that an amorphous silicon carbide layer and an organic photoconductor layer are sequentially laminated.
(3)基板上に原子組成比がSi_1_−_xC_xの
x値で0.2<x<0.5の範囲にあるとともに周期律
表第Va族元素を5,000ppm以下含有する第1の
アモルファスシリコンカーバイド層を形成し、該第1の
アモルファスシリコンカーバイド層の上にアモルファス
シリコンゲルマニウム層、原子組成比がSi_1_−_
yC_yのy値で0<y<0.5の範囲にある第2のア
モルファスシリコンカーバイド層及び有機光半導体層を
順次積層したことを特徴とする電子写真感光体。
(3) First amorphous silicon having an atomic composition ratio in the range of 0.2<x<0.5 in the x value of Si_1_-_xC_x and containing 5,000 ppm or less of Group Va elements of the periodic table on the substrate. A carbide layer is formed, and an amorphous silicon germanium layer is formed on the first amorphous silicon carbide layer, and an atomic composition ratio of Si_1_-_
An electrophotographic photoreceptor characterized in that a second amorphous silicon carbide layer and an organic optical semiconductor layer having a y value of yC_y in the range of 0<y<0.5 are sequentially laminated.
(4)前記第1のアモルファスシリコンカーバイド層に
酸素及び/又は窒素を0.01〜30原子%含有せしめ
ることを特徴とする請求項(1)、請求項(2)または
請求項(3)記載の電子写真感光体。
(4) Claim (1), Claim (2), or Claim (3), characterized in that the first amorphous silicon carbide layer contains 0.01 to 30 atomic percent of oxygen and/or nitrogen. electrophotographic photoreceptor.
JP21004690A 1990-08-07 1990-08-07 Electrophotographic sensitive body Pending JPH0495965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21004690A JPH0495965A (en) 1990-08-07 1990-08-07 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21004690A JPH0495965A (en) 1990-08-07 1990-08-07 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH0495965A true JPH0495965A (en) 1992-03-27

Family

ID=16582910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21004690A Pending JPH0495965A (en) 1990-08-07 1990-08-07 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH0495965A (en)

Similar Documents

Publication Publication Date Title
JPS58217938A (en) Recording material
WO2006062260A1 (en) Electrophotographic photoreceptor
US4696884A (en) Member having photosensitive layer with series of smoothly continuous non-parallel interfaces
US5737671A (en) Electrophotographic photoreceptor and an image forming method using the same
JPH0495965A (en) Electrophotographic sensitive body
JPH0495966A (en) Electrophotographic sensitive body
JPH0488352A (en) Electrophotographic sensitive body
US5945241A (en) Light receiving member for electrophotography and fabrication process thereof
JPH0488351A (en) Electrophotographic sensitive body
JPS5984254A (en) Photosensitive body
JPS5915940A (en) Photoreceptor
JP3606395B2 (en) Light receiving member for electrophotography
JP2668242B2 (en) Electrophotographic photoreceptor
JP2722074B2 (en) Electrophotographic photoreceptor
JP2789100B2 (en) Electrophotographic photoreceptor
JP2668241B2 (en) Electrophotographic photoreceptor
JP2761734B2 (en) Electrophotographic photoreceptor
JPS58219561A (en) Recording body
JP2562583B2 (en) Electrophotographic photoreceptor
JPS59212843A (en) Photosensitive body
JP2668240B2 (en) Electrophotographic photoreceptor
JP2775259B2 (en) Electrophotographic photoreceptor
JP2000171995A (en) Electrophotographic photoreceptive member
JP3113453B2 (en) Manufacturing method of electrophotographic photoreceptor
JP2678449B2 (en) Electrophotographic photoreceptor