JPH0488352A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH0488352A
JPH0488352A JP20447890A JP20447890A JPH0488352A JP H0488352 A JPH0488352 A JP H0488352A JP 20447890 A JP20447890 A JP 20447890A JP 20447890 A JP20447890 A JP 20447890A JP H0488352 A JPH0488352 A JP H0488352A
Authority
JP
Japan
Prior art keywords
layer
amorphous silicon
electrophotographic photoreceptor
photoreceptor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20447890A
Other languages
Japanese (ja)
Inventor
Takao Kawamura
河村 孝夫
Naooki Miyamoto
宮本 直興
Hiroshi Ito
浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP20447890A priority Critical patent/JPH0488352A/en
Publication of JPH0488352A publication Critical patent/JPH0488352A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high photosensitivity over the entire region of visible light and to stably obtain good images by successively laminating an amorphous silicon layer, a specific 2nd amorphous silicon carbide layer and an optical org. semiconductor layer on a specific 1st amorphous silicon carbide a-SiC layer. CONSTITUTION:The 1st a-SiC layer 2 having the atom comps. ratios within a 0.2<x<0.5 range in (x) value of Si1-xCx and the 1st a-SiC layer 2 contg. 1 to 10,000ppm periodic table group IIIa element or 5,000ppm group Va element, the a-SiC layer 3, the 2nd a-SiC layer 4 having the atom compsn. ratios within a 0.2<y<0.5 range in (y) value of Si1-yCy, and the optical org. semiconductor layer 5 are successively laminated on a substrate 1. The high photosensitivity over the entire region of visible light is obtd. in this way and the unequal densities of images are decreased, by which the good images are stably obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアモルファスシリコンカーバイド層やアモルフ
ァスシリコン層と有機光半導体層とを積層して成る電子
写真感光体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrophotographic photoreceptor comprising an amorphous silicon carbide layer or a laminated layer of an amorphous silicon layer and an organic optical semiconductor layer.

〔従来技術及びその問題点〕[Prior art and its problems]

特開昭56−14241号により提案された電子写真感
光体は、基板上にアモルファスシリコンカーバイド(以
下アモルファスシリコンカーバイドをa−3iCと略す
)と有機光半導体層とを積層した構成であり、そのa−
3iC層をキャリア励起層としている。
The electrophotographic photoreceptor proposed in JP-A-56-14241 has a structure in which amorphous silicon carbide (hereinafter amorphous silicon carbide is abbreviated as a-3iC) and an organic optical semiconductor layer are laminated on a substrate. −
The 3iC layer is used as a carrier excitation layer.

しかしながら、上記構成の電子写真感光体によれば、そ
のa−3iC層の光学的バンドギャップが大きいために
短波長側の感度が良好となるが、その反面、長波長側の
感度が不十分となり、これにより、PPC(普通紙複写
機)を用いると黄色から赤色に亘る600nm以上の波
長領域において感度不足となり、その結果、カラー原稿
などに対しては、その可視領域において−様な感度が得
られないという問題点がある。
However, according to the electrophotographic photoreceptor having the above structure, the a-3iC layer has a large optical bandgap, so the sensitivity on the short wavelength side is good, but on the other hand, the sensitivity on the long wavelength side is insufficient. As a result, when a PPC (plain paper copier) is used, the sensitivity is insufficient in the wavelength range of 600 nm or more, which ranges from yellow to red, and as a result, for color originals, etc., the sensitivity in the visible range is poor. The problem is that it cannot be done.

また特開昭56−25743号により提案された電子写
真感光体においては、基板上にアモルファスシリコン感
光層(以下アモルファスシリコンをa−3iと略す)と
、a−3iC遷移層と、有機光半導体層とを順次積層し
た構成であり、このようにa−3i層とaSiC層を積
層した場合には感度特性が改善されるが、その反面、表
面電位の暗減衰特性が劣化し、暗減衰が速くなり、これ
により、帯電部において発生した表面電位の小さなムラ
が暗減衰後の現像部においては大きな表面電位ムラとな
り、その結果、画像の濃度ムラが顕著となり、良好な画
像か得られないという問題点がある。
Furthermore, in the electrophotographic photoreceptor proposed in JP-A No. 56-25743, an amorphous silicon photosensitive layer (hereinafter amorphous silicon is abbreviated as a-3i), an a-3iC transition layer, and an organic photosemiconductor layer are formed on a substrate. When the a-3i layer and the aSiC layer are stacked in this way, the sensitivity characteristics are improved, but on the other hand, the dark decay characteristics of the surface potential deteriorate, and the dark decay becomes faster. As a result, a small unevenness in the surface potential that occurs in the charging section becomes a large unevenness in the surface potential in the developing section after dark decay, and as a result, the density unevenness of the image becomes noticeable, and a good image cannot be obtained. There is a point.

また、基板上に直接a−3i層を積層した場合、その層
と基板との密着性か不十分であり、剥離するという問題
点もある。
Further, when the a-3i layer is laminated directly on the substrate, there is a problem that the adhesion between the layer and the substrate is insufficient and peeling occurs.

従って本発明の目的は可視光の全域に亘って高い光感度
が得られ、しかも、表面電位の暗減衰特性を改善して良
好な画像が安定して得られる高信頼性の電子写真感光体
を提供することにある。
Therefore, an object of the present invention is to provide a highly reliable electrophotographic photoreceptor that can obtain high photosensitivity over the entire visible light range and that can also stably produce good images by improving the dark decay characteristics of the surface potential. It is about providing.

C問題点を解決するための手段〕 本発明の電子写真感光体は基板上に原子組成比がSi+
−xCxのy値で0.2<x<0.5の範囲にあるとと
もに、周期律表第1I[a族元素を1〜10.000p
pmもしくは第Va族元素を5. oooppm含有す
る第1のa−SiC層と、a−8i層と、原子組成比が
31+−yCアのy値でo<y<0.5の範囲にある第
2のaSiC層と、有機光半導体層とを順次積層し、そ
れぞれ正帯電型もしくは負帯電型にしたことを特徴とす
る。
Means for Solving Problem C] The electrophotographic photoreceptor of the present invention has an atomic composition ratio of Si+ on a substrate.
The y value of -xCx is in the range of 0.2<x<0.5, and the periodic table II [a group elements are 1 to 10.000p
5. pm or Group Va elements. A first a-SiC layer containing oooppm, an a-8i layer, a second a-SiC layer having an atomic composition ratio of 31+-yC and a y value in the range of o<y<0.5, and an organic light It is characterized by sequentially stacking semiconductor layers, each of which is positively charged or negatively charged.

また本発明の電子写真感光体は上記第1のa−3iC層
に酸素及び/又は窒素を0.01〜30原子%含有せし
めた点も特徴である。
The electrophotographic photoreceptor of the present invention is also characterized in that the first a-3iC layer contains 0.01 to 30 atomic percent of oxygen and/or nitrogen.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図及び第2図は本発明電子写真感光体の層構成を示
す。いずれも基板1上に第1のa−3iC層2、a−S
 i層3及び第2 a−3iC層4を順次積層しており
、更に有機光半導体層5を積層する。第2図はその他の
例であり、有機光半導体層5の上に無機質系の保護層6
を積層する。
1 and 2 show the layer structure of the electrophotographic photoreceptor of the present invention. In both cases, a first a-3iC layer 2, a-S
The i-layer 3 and the second a-3iC layer 4 are sequentially laminated, and an organic optical semiconductor layer 5 is further laminated. FIG. 2 shows another example, in which an inorganic protective layer 6 is provided on the organic optical semiconductor layer 5.
Laminate.

上記層構成において、第1のa−3iC層2は感光体の
帯電時に基板lからのキャリアの注入を阻止する機能が
あり、また、感光層と基板1との密着性を高めて膜の剥
離を防ぐ機能がある。
In the above layer structure, the first a-3iC layer 2 has a function of blocking injection of carriers from the substrate 1 when the photoreceptor is charged, and also improves the adhesion between the photosensitive layer and the substrate 1 so that the film can be peeled off. It has a function to prevent

a−3i層3と第2のa−3iC層4には電荷を発生す
る機能があり、有機光半導体層4には電荷を輸送する機
能がある。
The a-3i layer 3 and the second a-3iC layer 4 have a function of generating charges, and the organic optical semiconductor layer 4 has a function of transporting charges.

かかる層構成によれば、有機光半導体層50表面側より
入射した光は第2のa−3iC層4により主に短波長側
の光が吸収され、次いで残りの主に長波長側の光がa−
3i層3により吸収され、その結果、光感度が可視領域
全般において高められる。
According to this layer structure, the second a-3iC layer 4 absorbs mainly the light on the short wavelength side of the light incident from the surface side of the organic optical semiconductor layer 50, and then the remaining light mainly on the long wavelength side is absorbed. a-
3i layer 3, and as a result, the photosensitivity is increased in the entire visible region.

先ず第1のa−3iC層2については、次のように元素
比率の範囲を設定する。
First, for the first a-3iC layer 2, the range of element ratios is set as follows.

S1+−xCx 0゜2<x<0.5 好適には0.3<x<0.5 y値か0.2以下の場合は基板1からのキャリアの注入
を十分に阻止できず、また、暗減衰特性を改善すること
ができず、基板lとの密着性も十分に確保できない。y
値が0.5以上の場合にはa−3i層3及び第2のa−
3iC層4て発生した光キャリアが基板1ヘスムーズに
流れず、光感度が低下し、残留電位か上昇する。
S1+-xCx 0°2<x<0.5 Preferably 0.3<x<0.5 If the y value is less than 0.2, carrier injection from the substrate 1 cannot be sufficiently prevented, and Dark decay characteristics cannot be improved, and adhesion to the substrate 1 cannot be sufficiently ensured. y
If the value is 0.5 or more, the a-3i layer 3 and the second a-
Photocarriers generated in the 3iC layer 4 do not flow smoothly to the substrate 1, resulting in decreased photosensitivity and increased residual potential.

また第1 (7)a−3iC層2の厚みハ0.01〜1
.Ourn、好適には0.05〜0.5μmの範囲内が
よく、この範囲内であれば良好な暗減衰特性が得られ、
膜の密着性も良好となる。
Also, the thickness of the first (7) a-3iC layer 2 is 0.01 to 1
.. Own, preferably within the range of 0.05 to 0.5 μm, within this range good dark decay characteristics can be obtained,
The adhesion of the film is also improved.

更にまた第1のa−3iC層2の光学的エネルギーギャ
ップはa−Si層3に比べて0.IeV以上、望ましく
は0.2eV以上の差を設けるように大きくするとよく
、これによって基板lからのキャリアの注入を育効に阻
止できる。
Furthermore, the optical energy gap of the first a-3iC layer 2 is 0.0% compared to that of the a-Si layer 3. It is preferable to set a difference of IeV or more, preferably 0.2eV or more, so that injection of carriers from the substrate 1 can be effectively prevented.

また本発明においては上記第1のa−3iC層2に周期
律表第1IIa族元素を1〜10.OOOppm 、好
適には100〜5.000ppm含有させる点も特徴で
あり、これにより、基板からのキャリアのうち特に負電
荷の注入を阻止でき、暗減衰特性か改善できる。その含
有量が1 ppm未満の場合には上記のような効果が得
られず、10. OOOppmを越える場合には、その
層内部の欠陥が増大して膜質が低下し、表面電位の低下
並びに残留電位の上昇をきたす。
Further, in the present invention, the first a-3iC layer 2 contains 1 to 10% of Group 1IIa elements of the periodic table. Another feature is that it contains OOOppm, preferably 100 to 5.000 ppm, which can prevent the injection of particularly negative charges among carriers from the substrate and improve the dark decay characteristic. If the content is less than 1 ppm, the above effects cannot be obtained, and 10. If it exceeds OOOppm, defects inside the layer will increase and the film quality will deteriorate, resulting in a decrease in surface potential and an increase in residual potential.

また上記第1[[a族元素を含有させるに当たり、基板
1から感光体表面に向かう層厚方向に亘って漸次減少さ
せることで励起層で発生した光キャリア特に正電荷を基
板側へスムーズに流すことかでき、また、基板側のキャ
リア特に負電荷が感光体層に流入するのを阻止すること
てき、これにより、暗減衰特性か一層改善され、光感度
が更に高められ、残留電位も一層低減する。このように
勾配分布を設けた場合、その最大含有量も1〜10.0
001)pm 、好適には100〜5. OOOppm
にすればよい。
In addition, when incorporating the above-mentioned group 1 [[A group element, it is gradually reduced in the layer thickness direction from the substrate 1 to the photoreceptor surface, so that the photocarriers generated in the excitation layer, particularly the positive charges, smoothly flow toward the substrate side. In addition, carriers on the substrate side, especially negative charges, can be prevented from flowing into the photoreceptor layer, thereby further improving dark decay characteristics, further increasing photosensitivity, and further reducing residual potential. do. When a gradient distribution is provided in this way, the maximum content is also 1 to 10.0.
001) pm, preferably 100-5. OOOppm
Just do it.

上記第IIIa族元素にはB、  A1. Ga、 I
n等があり、就中、B元素か共有結合性に優れて半導体
特性を敏感に変え得る点で、その上、優れた帯電能並び
に光感度が得られる点で望ましい。
The Group IIIa elements include B, A1. Ga, I
Among them, the B element is desirable because it has excellent covalent bonding properties and can sensitively change semiconductor properties, and also because it can provide excellent charging ability and photosensitivity.

また本発明においては上記第1のa−3iC層2に周期
律表第Va族元素を5.000ppm以下、好適には3
00〜3. OOOppm含有させる点も特徴であり、
これにより、基板からのキャリアのうち特に正電荷の注
入を阻止でき、暗減衰特性か改善できる。その含有量が
5.000ppmを越える場合には、その層内部の欠陥
が増大して膜質か低下し、表面電位の低下並びに残留電
位の上昇をきたす。
Further, in the present invention, the first a-3iC layer 2 contains an element of Group Va of the periodic table in an amount of 5.000 ppm or less, preferably 3.
00-3. Another feature is that it contains OOOppm,
This makes it possible to prevent the injection of particularly positive charges among carriers from the substrate, and improve dark decay characteristics. If the content exceeds 5.000 ppm, defects inside the layer increase and the film quality deteriorates, resulting in a decrease in surface potential and an increase in residual potential.

また上記第Va族元素を含有させるに当たり、基板1か
ら感光体表面に向かう層厚方向に亘って漸次減少させる
ことで励起層で発生した光キャリア特に負電荷を基板側
へスムーズに流すことができ、また、基板側のキャリア
特に正電荷が感光体層に流入するのを阻止することてき
、これにより、暗減衰特性が一層改善され、光感度か更
に高められ、残留電位も一層低減する。このように勾配
分布を設けた場合、その最大含有量も5.000ppm
以下、好適には300〜3.000ppmにすればよい
In addition, when including the Group Va element, by gradually decreasing it in the layer thickness direction from the substrate 1 toward the surface of the photoreceptor, photocarriers, especially negative charges generated in the excitation layer can smoothly flow toward the substrate. Furthermore, carriers, particularly positive charges, on the substrate side can be prevented from flowing into the photoreceptor layer, thereby further improving dark decay characteristics, further increasing photosensitivity, and further reducing residual potential. When a gradient distribution is provided in this way, the maximum content is also 5.000 ppm.
Hereinafter, the content may preferably be set to 300 to 3,000 ppm.

上記第Va族元素にはN、  P、 As、 Sb、 
Biかあるが、就中、P元素が共存結合性に優れて半導
体特性を敏感に変え得る点で、その上、優れた帯電能並
びに光感度が得られ−る点で望ましい。
The Group Va elements include N, P, As, Sb,
Although there is Bi, the P element is particularly desirable because it has excellent coexistence bonding properties and can sensitively change semiconductor properties, and also because it can provide excellent charging ability and photosensitivity.

a−3i層3は長波長光によりキャリアの励起が良好に
行われ、その光感度を高めることができる。
In the a-3i layer 3, carriers are well excited by long wavelength light, and its photosensitivity can be increased.

そのためにはその層の厚みは0.05〜5.0μm、好
適には0.1〜3.0μmの範囲内に設定するのが望ま
しい。
For this purpose, it is desirable to set the thickness of the layer within the range of 0.05 to 5.0 μm, preferably 0.1 to 3.0 μm.

また、このa−3i層3の光学的エネルギーギャップ(
以下Eg optと略す)を1.6〜1.9eVの範囲
内に設定した場合、良好な光導電性が得られ、高い光感
度が得られる。
Moreover, the optical energy gap of this a-3i layer 3 (
When Eg opt (hereinafter abbreviated as E opt) is set within the range of 1.6 to 1.9 eV, good photoconductivity and high photosensitivity can be obtained.

第2のa−SiC層4については、その元素比率を次の
通りに設定する。
Regarding the second a-SiC layer 4, its element ratio is set as follows.

St+−y Cア o<y<o、s 好適には0.05<y<0.4 最適には0.1 <y<0.3 y値が0.5以上の場合には光導電性が著しく低くなり
、光キャリアの励起機能か低下して光感度か低下し、ま
た、残留電位も増加する。
St+-y Cao < y < o, s Preferably 0.05 < y < 0.4 Optimally 0.1 < y < 0.3 If the y value is 0.5 or more, photoconductivity becomes significantly lower, the excitation function of photocarriers is lowered, the photosensitivity is lowered, and the residual potential is also increased.

また第2 (7)a−SiC層4の厚みをo、05〜3
.0μm、好適には0.1〜2.5μmの範囲内に設定
すると、短波長光によるキャリア励起が良好に行われ、
短波長側の光感度を十分に高めることができる。
In addition, the thickness of the second (7) a-SiC layer 4 is o, 05 to 3
.. When set to 0 μm, preferably within the range of 0.1 to 2.5 μm, carrier excitation by short wavelength light is performed well,
Photosensitivity on the short wavelength side can be sufficiently increased.

更にまた第2のa−SjC層4のEg optはa−3
i層3に比べて0. leV以上、望ましくは0.2e
V以上太き(なるように設定すればよく、これにより、
長波長側の光があまり吸収されないでa−Si層3に到
達する。
Furthermore, E opt of the second a-SjC layer 4 is a-3
0. compared to i-layer 3. leV or more, preferably 0.2e
V or thicker (just set it so that it is, by doing this,
Light on the longer wavelength side reaches the a-Si layer 3 without being absorbed much.

また正帯電型電子写真感光体であれば、a−Si層3及
び/又は第2のa−SiC層4に、それぞれ周期律表第
Va族元素を500ppm以下、好適には1100pl
)以下の範囲内で含有させると更に一層光感度を高める
ことができる。この第Va族元素にはN、  P、 A
s、 Sb、 Biがあるか、P元素が共有結合性に優
れて半導体特性を敏感に変え得る点で、その上、優れた
帯電能並びに光感度が得られるという点て望ましい。
In addition, in the case of a positively charged electrophotographic photoreceptor, the a-Si layer 3 and/or the second a-SiC layer 4 each contain 500 ppm or less, preferably 1100 pl, of Group Va elements of the periodic table.
) When contained within the following range, photosensitivity can be further enhanced. This group Va element includes N, P, and A.
S, Sb, Bi, or P elements are desirable because they have excellent covalent bonding properties and can sensitively change semiconductor properties, and also because they provide excellent charging ability and photosensitivity.

更に負帯電型電子写真感光体であれば、a−3i層3及
び/又は第2のa−Si0層4に、それぞれ周期律表第
■a族元素をl〜toooppm以下、好適には30〜
300ppmの範囲内で含有させると更に一層光感度を
高めることができる。この第IIIa族元素にはB、A
 I!+ Ga−Inなどかあるが、B元素が共有結合
性に優れて半導体特性を敏感に変え得る点で、その上、
優れた帯電能並びに光感度が得られるという点で望まし
い。
Furthermore, in the case of a negatively charged electrophotographic photoreceptor, the a-3i layer 3 and/or the second a-Si0 layer 4 each contain an element of group IV of the periodic table in an amount of 1 to too ppm, preferably 30 to
When the content is within the range of 300 ppm, the photosensitivity can be further increased. These group IIIa elements include B, A
I! + There are Ga-In, etc., but the B element has excellent covalent bonding properties and can sensitively change semiconductor properties, and in addition,
This is desirable because it provides excellent charging ability and photosensitivity.

上記3種類の各層2. 3. 4はいずれもアモルファ
ス層であり、そのダングリングボンドに水素(H)元素
やハロゲン元素を終端させる。それらの元素A (Hま
たはハロゲン)のa−3i層3や第2のa−Si0層4
における含有量は、それぞれ次のような範囲内に設定す
るとよい。
Each of the above three types of layers 2. 3. 4 are amorphous layers, and their dangling bonds are terminated with hydrogen (H) elements or halogen elements. The a-3i layer 3 and the second a-Si0 layer 4 of those elements A (H or halogen)
It is preferable that the contents of each of these are set within the following ranges.

asi+−tAg a  (StC)+−t A によりZ値として表した場合 0.05 < z <0.5 好適には0.1  <z<0.45 また本発明電子写真感光体は有機光半導体層5の材料選
択により負帯電型又は正帯電型に対応することができる
。即ち、負帯電型電子写真感光体の場合、有機半導体層
5に電子供与正比合物か選ばれ、一方、正帯電型電子写
真感光体の場合には有機光半導体層5に電子吸引性化合
物が選ばれる。
When expressed as a Z value by asi+-tAga (StC)+-tA, 0.05 < z < 0.5, preferably 0.1 < z < 0.45 The electrophotographic photoreceptor of the present invention is an organic photosemiconductor. Depending on the material selection of the layer 5, it can be of a negatively charged type or a positively charged type. That is, in the case of a negatively charged electrophotographic photoreceptor, an electron-donating compound is selected for the organic semiconductor layer 5, while in the case of a positively charged electrophotographic photoreceptor, an electron-withdrawing compound is selected for the organic semiconductor layer 5. To be elected.

前記電子吸引性化合物には高分子量のものとしてポリ−
N−ビニルカルバゾール、ポリビニルピレン、ポリビニ
ルアントラセン、ピレン−ホルムアルデヒド縮重合体な
どがあり、また、低分子量のものとしてオキサジアゾー
ル、オキサゾール、ピラゾリン、トリフェニルメタン、
ヒドラゾン、トリアリールアミン、N−フェニルカルバ
ゾール、スチルベンなどがあり、この低分子物質は、ポ
リカーボネート、ポリエステル、メタアクリル樹脂、ポ
リアミド、アクリルエポキシ、ポリエチレン、フェノー
ル、ポリウレタン、ブチラール樹脂、ポリ酢酸ビニル、
ユリア樹脂などのバインダに分散して用いられる。
The electron-withdrawing compound may have a high molecular weight, such as poly-
N-vinylcarbazole, polyvinylpyrene, polyvinylanthracene, pyrene-formaldehyde condensation polymer, etc., and low molecular weight ones include oxadiazole, oxazole, pyrazoline, triphenylmethane,
These include hydrazone, triarylamine, N-phenylcarbazole, and stilbene.These low-molecular substances include polycarbonate, polyester, methacrylic resin, polyamide, acrylic epoxy, polyethylene, phenol, polyurethane, butyral resin, polyvinyl acetate,
It is used after being dispersed in a binder such as urea resin.

前記電子吸引性化合物には2.4.7〜トリニトロフル
オレノンなどがある。
Examples of the electron-withdrawing compound include 2.4.7-trinitrofluorenone.

基板1には、銅、黄銅、SOS、Af、Niなとの金属
導電体、或いはガラス、セラミックスなどの絶縁体の表
面に導電性薄膜をコーティングしたものなどがある。
The substrate 1 may be a metal conductor such as copper, brass, SOS, Af, or Ni, or an insulator such as glass or ceramics coated with a conductive thin film.

この基板1はシート状、ベルト状もしくはウェブ状可撓
性導電シートでもよい。このようなシートにはl、Ni
1ステンレンスなどの金属シート、或いはポリエステル
フィルム、ナイロン、ポリイミドなどの高分子樹脂の上
にAI、Niなどの金属もしくは5n02、インジウム
とスズの複合酸化物:ITO(Indium Tin 
0xide)などの透明導電性材料や有機導電性材料を
蒸着など導電処理したものが用いられる。
The substrate 1 may be a flexible conductive sheet in the form of a sheet, belt or web. Such sheets include l, Ni
1 Metal sheets such as stainless steel, or metals such as AI and Ni, or composite oxides of indium and tin: ITO (Indium Tin)
A transparent conductive material such as (Oxide) or an organic conductive material subjected to conductive treatment such as vapor deposition is used.

更に第2図に示すように保護層6を設けてもよい。この
層6はa−3i層もしくはa−3iC層(その元素比率
を5ll−aC@のa値でO≦a<0.95、好適には
0.5 < a <0.95の範囲内にする)、或いは
a−3i層やa−3iC層に窒素や酸素などの元素を含
有させてもよい。このような層を保護層6として設ける
ことにより有機光半導体層が表面に露出している場合よ
りも耐摩耗性が向上する。その上、保護層(6)の表面
が化学的に安定しており、変質が生じないため、長期間
の使用において画像流れが生じない。
Furthermore, a protective layer 6 may be provided as shown in FIG. This layer 6 is an a-3i layer or an a-3iC layer (its elemental ratio is within the range of O≦a<0.95, preferably 0.5<a<0.95 with a value of 5ll-aC@). ), or the a-3i layer or the a-3iC layer may contain elements such as nitrogen or oxygen. By providing such a layer as the protective layer 6, wear resistance is improved compared to when the organic optical semiconductor layer is exposed on the surface. Moreover, since the surface of the protective layer (6) is chemically stable and does not undergo deterioration, image fading does not occur during long-term use.

更にまた第1のa−3iC層2に酸素及び/又は窒素の
元素Bをその合計量が下記の通りに含有させると、それ
を含有させない場合に比べて基板1に対する密着力並び
に基板1からのキャリア注入の阻止能が高められる。
Furthermore, when the first a-3iC layer 2 contains the element B of oxygen and/or nitrogen in the total amount as shown below, the adhesion to the substrate 1 and the release from the substrate 1 are improved compared to the case where the element B is not contained. The ability to stop carrier injection is enhanced.

(Sir、−* C,)+−bBb 0.0001<b <0.3 好適には 0.001 <b <0.1次に本発明電子
写真感光体の製法を述べる。
(Sir, -*C,)+-bBb 0.0001<b<0.3 Preferably 0.001<b<0.1 Next, a method for manufacturing the electrophotographic photoreceptor of the present invention will be described.

第1のa−3iC層2、a−3i層3及び第2のa−s
ic層、並びにa−3i、 a−3iC及びアモルファ
ス化したSi−C−N系元素やSi−C−0−N系元素
等から成る保護層6を形成するにはグロー放電分解法、
イオンブレーティング法、反応性スパッタリング法、真
空蒸着法、CVD法などの薄膜形成方法がある。
First a-3iC layer 2, a-3i layer 3 and second a-s
To form the IC layer and the protective layer 6 made of a-3i, a-3iC, amorphous Si-C-N elements, Si-C-0-N elements, etc., glow discharge decomposition method,
There are thin film forming methods such as an ion blasting method, a reactive sputtering method, a vacuum evaporation method, and a CVD method.

グロー放電分解法を用いてSiC層を形成する場合、S
i元素含有ガスとC元素含有ガスを組合せ、この混合ガ
スをプラズマ分解して成膜形成する。
When forming a SiC layer using glow discharge decomposition method, S
A gas containing an i element and a gas containing a C element are combined, and this mixed gas is subjected to plasma decomposition to form a film.

このSi元素含有ガスにはSiHa、 Si2Hs、 
SisHs。
This Si element-containing gas includes SiHa, Si2Hs,
SisHs.

SiF4.SiC14,SiHC1s等々があり、また
、C元素含有ガスにはCH4,C2H4,C2H2,C
aH8等々があり、就中、C2H2は高速成膜性が得ら
れるという点で望ましい。
SiF4. There are SiC14, SiHC1s, etc., and C element-containing gases include CH4, C2H4, C2H2, C
There are aH8 and the like, and C2H2 is particularly desirable because it can provide high-speed film formation.

有機光半導体層は浸漬塗工方法またはコーティング法に
より形成し、前者は感光材が溶媒中に分散した塗工液の
中に浸漬し、次いで一定の速度で引き上げ、そして、自
然乾燥及び熱エージング(約150°C1約1時間)を
行うという方法であり、また、後者のコーティング法に
よれば、コーター(塗機)を用いて溶媒に分散された感
光材を塗布し、次いで熱風乾燥を行う。
The organic photosemiconductor layer is formed by a dip coating method or a coating method. According to the latter coating method, a photosensitive material dispersed in a solvent is applied using a coater, and then hot air drying is performed.

かくして本発明の電子写真感光体によれば、キャリア励
起層がa−3iC層とa−3i層とを積層したタンデム
構成であるために、有機光半導体層5側から入射した光
は第2のa−3iC層4により主に短波長側の光が吸収
され、次いで、その層4を透過した主に長波長側の光が
a−3i層3により吸収され、これにより、a−3iC
層単独の励起層に比べて可視領域全般に亘って光感度が
高められ、残留電位が小さくなる。
Thus, according to the electrophotographic photoreceptor of the present invention, since the carrier excitation layer has a tandem structure in which the a-3iC layer and the a-3i layer are laminated, light incident from the organic photosemiconductor layer 5 side is transmitted to the second layer. The a-3iC layer 4 mainly absorbs light on the short wavelength side, and then the a-3i layer 3 absorbs mainly the light on the long wavelength side that has passed through the layer 4.
Compared to a single excitation layer, the photosensitivity is increased over the entire visible region and the residual potential is reduced.

また第3図に示す通り、基板上に直接a−3i層とa−
SiC層を積層した構成である公知の電子写真感光体R
であれば、そのa−3i層により基板からのキャリア注
入を有効に阻止できないため、その注入されたキャリア
により表面電位の暗減衰が速くなり、これに伴って電子
写真プロセスにおける帯電部から現像部までの表面電位
の低下が大きくなる。
In addition, as shown in Fig. 3, the a-3i layer and the a-3i layer are directly placed on the substrate.
A known electrophotographic photoreceptor R having a structure in which SiC layers are laminated
If so, the a-3i layer cannot effectively block carrier injection from the substrate, and the injected carriers accelerate the dark decay of the surface potential. The decrease in surface potential increases until

また、帯電部での小さな帯電ムラが現像部では大きな表
面電位のムラとなり、従って、画像濃度のムラも大きく
なるため、良好な画像特性が得難いとうい問題点があっ
た。更に、暗減衰が速いと現像部での表面電位の変動か
大きくなりやすく、連続した使用において良好な画質の
画像を安定して得ることか難しくなる。これに対して本
発明の電子写真感光体Tであれば、a−3i層よりも暗
抵抗が高いことやEg Optが大きい第1のa−8i
C層2を設けており、基板lからのキャリア注入を有効
に阻止し、暗減衰を遅くすることが出来るため、前記の
ような問題点を改善することができる。
Further, small charging unevenness in the charging section becomes large unevenness in surface potential in the developing section, and therefore, unevenness in image density becomes large, so there is a problem in that it is difficult to obtain good image characteristics. Furthermore, if the dark decay is fast, fluctuations in the surface potential at the developing area tend to increase, making it difficult to stably obtain images of good quality during continuous use. On the other hand, in the electrophotographic photoreceptor T of the present invention, the first a-8i layer has a higher dark resistance and a larger Eg Opt than the a-3i layer.
Since the C layer 2 is provided and can effectively block carrier injection from the substrate 1 and slow dark decay, the above-mentioned problems can be improved.

〔実施例〕〔Example〕

次に本発明の実施例を述べる。 Next, examples of the present invention will be described.

(例1) 電子写真感光体作製用の容量結合型グロー放電分解装置
を用いて第1表の成膜条件によりAf基板上に第1のa
−SiC層2、a−Si層3及び第2(7)a−3iC
層4を順次積層した。
(Example 1) Using a capacitively coupled glow discharge decomposition apparatus for producing an electrophotographic photoreceptor, a first a
-SiC layer 2, a-Si layer 3 and second (7) a-3iC
Layers 4 were laminated in sequence.

次に有機光半導体層5を厚み15μmで形成した。Next, an organic optical semiconductor layer 5 was formed to a thickness of 15 μm.

その形成においては、2.4.7− トリニトロフルオ
レノンを1.4−ジオキサンの溶剤に入れて溶がし、更
にポリエステル樹脂(レフサン−LS2−11)を加え
、超音波分散を40分間行った。これによって得た溶液
をバー・コーターを用いて塗布し、次いで80″Cにて
熱風乾燥を行った。
In its formation, 2.4.7-trinitrofluorenone was dissolved in 1.4-dioxane solvent, polyester resin (Refsan-LS2-11) was added, and ultrasonic dispersion was performed for 40 minutes. . The resulting solution was applied using a bar coater and then dried with hot air at 80''C.

[以下余白] かくして得られた正帯電型の電子写真感光体において、
第1のa−3iC層のB元素含有量を二次イオン質量分
析計により測定したところ、1.000ppmであり、
また、各層のカーボン含有比率(X値及びy値)、H含
有比率(Z値)並びにPg optをそれぞれXJ1!
マイクロアナリシス及び赤外吸収法により並びに可視光
分光器により測定した透過光スペクトルの(αhν)x
/2対hνのプロットにより求めたところ、第1表に示
す通りの結果が得られた。
[Left below] In the positively charged electrophotographic photoreceptor thus obtained,
When the B element content of the first a-3iC layer was measured using a secondary ion mass spectrometer, it was 1.000 ppm,
In addition, the carbon content ratio (X value and y value), H content ratio (Z value), and Pg opt of each layer were set to XJ1!
(αhν)x of the transmitted light spectrum measured by microanalysis and infrared absorption method and by visible light spectrometer
As a result of plotting /2 vs. hv, the results shown in Table 1 were obtained.

また本例の電子写真感光体を作製するに当たり、第1の
a−3iC層とa−3i層を形成せず、第2のa−3i
C層のみを形成し、その他を本例と同様に形成して比較
例Aとした。
Further, in producing the electrophotographic photoreceptor of this example, the first a-3iC layer and the a-3i layer were not formed, and the second a-3iC layer was not formed.
Comparative Example A was obtained by forming only the C layer and forming the rest in the same manner as in this example.

更にまた本例の電子写真感光体を作製するに当たり、第
1のa−3iC層を形成せず、a−3i層と第2のa−
3iC層のみを形成し、その他を本例と同様に形成して
比較例Bとした。
Furthermore, in producing the electrophotographic photoreceptor of this example, the first a-3iC layer was not formed, and the a-3i layer and the second a-3iC layer were formed.
Comparative Example B was prepared by forming only the 3iC layer and forming the rest in the same manner as in this example.

上記本発明電子写真感光体と比較例Aの分光感度を測定
したところ、第4図に示す通りの結果か得られた。同図
中横軸は波長てあり、縦軸は光感度であって、各波長で
の光量か0.3μW/cm2である露光に対する表面電
位の変化を光透過型プローブを有する表面電位計を用い
て測定し、表面電位を半減させるのに必要な露光量の逆
数によって求めた。
When the spectral sensitivities of the electrophotographic photoreceptor of the present invention and Comparative Example A were measured, the results shown in FIG. 4 were obtained. In the figure, the horizontal axis is the wavelength, and the vertical axis is the photosensitivity, and the change in surface potential in response to exposure to light of 0.3 μW/cm2 at each wavelength was measured using a surface potential meter with a light transmission probe. It was determined by the reciprocal of the exposure amount required to reduce the surface potential by half.

第4図に示す結果より明らかな通り、本発明は比較例A
に比べて600nm以上の長波長側での光感度が高いこ
とが判る。
As is clear from the results shown in FIG.
It can be seen that the photosensitivity is higher on the long wavelength side of 600 nm or more compared to the above.

また比較例Bの光感度は本例と同様な分光感度特性が得
られたが、その反面、帯電後の暗中での表面電位の経過
を追ったところ、本例の感光体に比べて表面電位の暗減
衰が速く、帯電も低く、電位ムラも大きいことが判る。
In addition, the photosensitivity of Comparative Example B was similar to that of this example, but on the other hand, when we followed the course of the surface potential in the dark after charging, we found that the surface potential was higher than that of the photoreceptor of this example. It can be seen that the dark decay is fast, the charging is low, and the potential unevenness is large.

また、本例の感光体と比較例Bを35°C95%RHの
環境下に24時間放置したところ、本例の感光体では何
等変化が認められなかったのに対し、比較例Bでは基板
とa−Si層との間で膜の剥離か生じ、膜の密着性に問
題かあることも確かめられた。
Furthermore, when the photoreceptor of this example and Comparative Example B were left in an environment of 35°C and 95% RH for 24 hours, no change was observed in the photoreceptor of this example, whereas in Comparative Example B, the substrate It was also confirmed that the film peeled off from the a-Si layer, and that there was a problem with the adhesion of the film.

更にまた本例の感光体を作製するに当たり、第1のa−
3iC層の形成時にB2H,ガスを導入せず、その他は
全く同じ成膜条件に設定し、これにより、B元素を含有
しない第1のa−SiC層を備えた正帯電型の電子写真
感光体を作製した。
Furthermore, in producing the photoreceptor of this example, the first a-
B2H and gas were not introduced during the formation of the 3iC layer, and the other conditions were set to be exactly the same, thereby producing a positively charged electrophotographic photoreceptor with a first a-SiC layer that does not contain B element. was created.

この電子写真感光体の特性評価を行ったところ、分光感
度において600nm以上の長波長側での感度が本例1
の感光体とほぼ同等であったが、その反面、本例の感光
体に比べて表面電位の暗減衰が約20%速く、帯電も低
く、電位ムラも大きかった。
When the characteristics of this electrophotographic photoreceptor were evaluated, the spectral sensitivity on the long wavelength side of 600 nm or more was found to be 1 in this example.
However, compared to the photoreceptor of this example, the dark decay of the surface potential was about 20% faster, the charging was lower, and the potential unevenness was larger.

(例2) (例1)と同様の電子写真感光体を作製するに当たり、
82H@ガス流量を変化させ、第1のa−3iC層2の
B元素含有量を変えて、第2表に示すA〜Jの10種類
の感光体を作製し、各々の感光体の暗減衰、光感度及び
残留電位を評価した。なお、表中の暗減衰、光感度及び
残留電位で、◎は最も優れた結果か得られた場合であり
、Oは幾分優れた結果が得られた場合であり、△はやや
劣る結果が得られた場合である。
(Example 2) In producing an electrophotographic photoreceptor similar to (Example 1),
82H@ By changing the gas flow rate and changing the B element content of the first a-3iC layer 2, ten types of photoreceptors A to J shown in Table 2 were manufactured, and the dark decay of each photoreceptor was , photosensitivity and residual potential were evaluated. In addition, in the dark decay, photosensitivity, and residual potential in the table, ◎ indicates the case where the best results were obtained, O indicates the case where somewhat excellent results were obtained, and △ indicates the case where slightly inferior results were obtained. This is the case when it is obtained.

第2表 *印は本発明の範囲外である。Table 2 *marks are outside the scope of the present invention.

第2表に示す結果より明らかな通り、感光体B〜Iは暗
減衰、光感度及び残留電位のいずれにおいても優れてい
ることが判る。
As is clear from the results shown in Table 2, it can be seen that photoreceptors B to I are excellent in all of dark decay, photosensitivity, and residual potential.

(例3) 電子写真感光体作製用の容量結合型グロー放電分解装置
を用いて第3表の成膜条件によりAj7基板上に第1の
a−SiC層2、a−S i層3及び第2のaSiCS
iC層4積層した。
(Example 3) The first a-SiC layer 2, the a-Si layer 3, and the 2 aSiCS
Four iC layers were laminated.

次に有機光半導体層5を(例1)と同様に厚み15μm
で形成した。
Next, the organic optical semiconductor layer 5 was formed to a thickness of 15 μm in the same manner as in (Example 1).
It was formed with

〔以下余白〕[Margin below]

かくして得られた電子写真感光体において、第1のa−
3iC層のB元素含有量及びO,N各元素の合計含有量
を二次イオン質量分析計により測定したところ、それぞ
れ1.000ppn+、4原子%であった。
In the electrophotographic photoreceptor thus obtained, the first a-
When the B element content and the total content of O and N elements in the 3iC layer were measured using a secondary ion mass spectrometer, they were 1.000 ppn+ and 4 atomic %, respectively.

また本例の電子写真感光体を作製するに当たり、第1の
a−3iC層とa−3i層を形成せず、第2のa−3i
C層のみを形成し、その他を本例と同様に形成して比較
例Cとした。
Further, in producing the electrophotographic photoreceptor of this example, the first a-3iC layer and the a-3i layer were not formed, and the second a-3iC layer was not formed.
Comparative Example C was obtained by forming only the C layer and forming the rest in the same manner as in this example.

更にまた本例の電子写真感光体を作製するに当たり、第
1のa−3iC層を形成せず、a−Si層と第2のa−
3iC層を同様に形成し、その他も本例と同様に形成し
て比較例りとした。
Furthermore, in producing the electrophotographic photoreceptor of this example, the first a-3iC layer was not formed, and the a-Si layer and the second a-3iC layer were formed.
A 3iC layer was formed in the same manner, and the others were formed in the same manner as in this example to provide a comparative example.

上記本発明電子写真感光体と比較例Cの分光感度を測定
したところ、第4図と同様の結果が得られた。
When the spectral sensitivities of the electrophotographic photoreceptor of the present invention and Comparative Example C were measured, the same results as shown in FIG. 4 were obtained.

また比較例りの光感度は本例と同様な分光感度特性が得
られたが、その反面、帯電後の暗中での表面電位の経過
を追ったところ、本例の感光体に比べて表面電位の暗減
衰が速く、帯電も低く、電位ムラも大きいことが判る。
In addition, the photosensitivity of the comparative example was similar to that of this example, but on the other hand, when we followed the progress of the surface potential in the dark after charging, the surface potential was higher than that of the photoreceptor of this example. It can be seen that the dark decay is fast, the charging is low, and the potential unevenness is large.

また、本例の感光体と比較例りを35℃95%RHの環
境下に24時間放置したところ、本例の感光体では何ら
変化が認められなかったのに対し、比較例りでは基板と
a−3i層との間で膜の剥離が生じ、膜の密着性に問題
があることも確かめられた。
Furthermore, when the photoconductor of this example and the comparative example were left in an environment of 35°C and 95% RH for 24 hours, no change was observed in the photoconductor of this example, while the comparison example It was also confirmed that the film peeled off from the a-3i layer, and there was a problem in the adhesion of the film.

更にまた本例の電子写真感光体を作製するに当たり、第
1のa−SiC層の形成時にB、H,ガス及びNOガス
を導入せず、その他は全く同じ成膜条件に設定し、これ
により、B元素、0元素及びN元素を合作しない第1の
a−3iC層を備えた正帯電型の電子写真感光体を作製
した。
Furthermore, in producing the electrophotographic photoreceptor of this example, B, H, gas, and NO gas were not introduced during the formation of the first a-SiC layer, and the other conditions were set to be exactly the same. A positively charged electrophotographic photoreceptor was manufactured, which included a first a-3iC layer in which elements B, B, O, and N were not combined.

この電子写真感光体の特性評価を行ったところ、分光感
度において600nm以上の長波長側での感度が本例の
感光体とほぼ同等であったが、その反面、本例の感光体
に比べて表面電位の暗減衰が約25%速く、帯電も低く
、電位ムラも大きかった。
When the characteristics of this electrophotographic photoreceptor were evaluated, the spectral sensitivity on the long wavelength side of 600 nm or more was almost the same as the photoreceptor of this example, but on the other hand, compared to the photoreceptor of this example, The dark decay of the surface potential was about 25% faster, the charging was low, and the potential unevenness was large.

(例4) (例2)と同様の電子写真感光体を作製するに当たり、
B2H,ガス流量とNOガス流量を変化させ、第1のa
−3iC層のB元素含有量並びに0元素及びN元素の合
計含有量を変えて第4表に示すに−Rの8種類の感光体
を作製し、各々の感光体の暗減衰、光感度および残留電
位を評価した。
(Example 4) In producing an electrophotographic photoreceptor similar to (Example 2),
B2H, by changing the gas flow rate and NO gas flow rate, the first a
Eight types of photoreceptors of -R as shown in Table 4 were prepared by changing the B element content and the total content of 0 element and N element in the -3iC layer, and the dark decay, photosensitivity, and The residual potential was evaluated.

〔以下余白〕[Margin below]

第4表に示す結果より明らかな通り、感光体L〜Qは暗
減衰、光感度及び残留電位のいずれにおいても優れてい
ることが判る。
As is clear from the results shown in Table 4, it can be seen that photoreceptors L to Q are excellent in all of dark decay, photosensitivity, and residual potential.

(例5) 電子写真感光体作製用の容量結合型グロー放電分解装置
を用いて第5表の成膜条件によりl基板上に第1のa−
SiC層2、a−3i層3及び第2のa−Si0層4を
順次積層した。
(Example 5) A first a-
A SiC layer 2, an a-3i layer 3, and a second a-Si0 layer 4 were sequentially laminated.

次に有機半導体層5を厚み15μmで形成した。Next, an organic semiconductor layer 5 was formed to a thickness of 15 μm.

その形成によれば、ヒドラゾンを1.4−ジオキサンの
溶剤に入れて溶かし、更にポリエステル樹脂(レフサン
−LS2−11)をヒドラゾンと同重量加え、そして、
超音波分散を40分間行い、これによって得られる溶液
をバー・コーターを用いて塗布し、次いで80℃にて熱
風乾燥を行った。
According to its formation, hydrazone is dissolved in a solvent of 1,4-dioxane, and then polyester resin (Refsan-LS2-11) is added in the same weight as hydrazone, and
Ultrasonic dispersion was performed for 40 minutes, and the resulting solution was applied using a bar coater, followed by hot air drying at 80°C.

〔以下余白〕[Margin below]

第 表 *印は本発明の範囲外である。 No. table *marks are outside the scope of the present invention.

かくして得られた正帯電型の電子写真感光体において、
第1のa−3iC層のP元素含有量及び第2のa−3i
C層のB元素含有量を二次イオン質量分析計により測定
したところ、それぞれ2.000ppm及び1100p
pであった。
In the positively charged electrophotographic photoreceptor thus obtained,
P element content of first a-3iC layer and second a-3i
When the B element content of the C layer was measured using a secondary ion mass spectrometer, it was found to be 2.000 ppm and 1100 ppm, respectively.
It was p.

また本例の電子写真感光体を作製するに当たり、第1の
a−3iC層とa−3i層を形成せず、第2のaSiC
層のみを形成し、その他を本例と同様に形成して比較例
Eとした。
Further, in producing the electrophotographic photoreceptor of this example, the first a-3iC layer and the a-3i layer were not formed, and the second aSiC layer was not formed.
Comparative Example E was prepared by forming only the layer and forming the rest in the same manner as in this example.

更にまた本例の電子写真感光体を作製するに当たり、第
1のa−3iC層を形成せず、a−3i層と第2のa−
3iC層のみを形成し、その他を本例と同様に形成して
比較例Fとした。
Furthermore, in producing the electrophotographic photoreceptor of this example, the first a-3iC layer was not formed, and the a-3i layer and the second a-3iC layer were formed.
Comparative Example F was obtained by forming only the 3iC layer and forming the others in the same manner as in this example.

上記本発明電子写真感光体と比較例Eの分光感度を測定
したところ、第4図に示す通りの結果が得られた。
When the spectral sensitivities of the electrophotographic photoreceptor of the present invention and Comparative Example E were measured, the results shown in FIG. 4 were obtained.

第4図に示す結果より明らかな通り、本発明は比較例E
に比べて600nm以上の長波長側での光感度が高いこ
とか判る。
As is clear from the results shown in FIG.
It can be seen that the photosensitivity is higher on the long wavelength side of 600 nm or more compared to the above.

また比較例Fの光感度は本例と同様な分光感度特性が得
られたが、その反面、帯電後の暗中での表面電位の経過
を追ったところ、本例の感光体に比べて表面電位の暗減
衰か速く、帯電も低く、電位ムラも大きいことが判る。
In addition, the photosensitivity of Comparative Example F was similar to that of this example, but on the other hand, when we followed the progress of the surface potential in the dark after charging, we found that the surface potential was higher than that of the photoreceptor of this example. It can be seen that the dark decay is fast, the charging is low, and the potential unevenness is large.

また、本例の感光体と比較例Fを35°C95%RF(
の環境下に24時間放置したところ、本例の感光体では
何等変化が認められなかったのに対し、比較例Fでは基
板とa−3i層との間で膜の剥離が生じ、膜の密着性に
問題があることも確かめられた。
In addition, the photoreceptor of this example and Comparative Example F were tested at 35°C, 95% RF (
When the photoreceptor of this example was left for 24 hours in an environment of It was also confirmed that he had a sexual problem.

更にまた本例の感光体を作製するに当たり、第1のa−
3iC層の形成時にPH,ガスを導入せず、その他は全
く同じ成膜条件に設定し、これによりB元素を含有しな
い第10a−3iC層を備えた負帯電型の電子写真感光
体を作製した。
Furthermore, in producing the photoreceptor of this example, the first a-
During the formation of the 3iC layer, PH and gas were not introduced, and the other conditions were set to be exactly the same, thereby producing a negatively charged electrophotographic photoreceptor having the 10a-3iC layer containing no B element. .

この電子写真感光体の特性評価を行ったところ、分光感
度において600nm以上の長波長側での感度が本例の
感光体とほぼ同等であったが、その反面、本例の感光体
に比べて表面電位の暗減衰が約20%速く、帯電も低く
、電位ムラも大きかった。
When the characteristics of this electrophotographic photoreceptor were evaluated, the spectral sensitivity on the long wavelength side of 600 nm or more was almost the same as the photoreceptor of this example, but on the other hand, compared to the photoreceptor of this example, The dark decay of the surface potential was about 20% faster, the charging was low, and the potential unevenness was large.

(例5)と同様の電子写真感光体を作製するに当たり、
Pitガス流量を変化させ、第1のa−3iC層2のP
元素含有量を変えて、第6表に示すアルコの10種類の
感光体を作製し、各々の感光体の暗減衰、光感度及び残
量電位を評価した。
In producing an electrophotographic photoreceptor similar to (Example 5),
By changing the Pit gas flow rate, P of the first a-3iC layer 2 is
Ten types of Alco photoreceptors shown in Table 6 were prepared with different element contents, and the dark decay, photosensitivity, and residual potential of each photoreceptor were evaluated.

〔以下余白〕[Margin below]

第6表 *印は本発明の範囲外である。 Table 6 *marks are outside the scope of the present invention.

第6表に示す結果より明らかな通り、感光体ア〜りは暗
減衰、光感度及び残留電位のいずれにおいても優れてい
ることが判る。
As is clear from the results shown in Table 6, it can be seen that photoreceptors A to A are excellent in all of dark decay, photosensitivity, and residual potential.

(例6) 電子写真感光体作製用の容量結合型グロー放電分解装置
を用いて第7表の成膜条件により、l基板上に第1のa
−3iC層2、a−3i層3及び第2のa−3iC層4
を順次積層した。
(Example 6) Using a capacitively coupled glow discharge decomposition apparatus for producing an electrophotographic photoreceptor, the first a
-3iC layer 2, a-3i layer 3 and second a-3iC layer 4
were sequentially stacked.

次に有機光半導体層5を(例4)と同様に厚み15μm
で形成した。
Next, the organic optical semiconductor layer 5 was formed to a thickness of 15 μm in the same manner as in (Example 4).
It was formed with.

〔以下余白〕[Margin below]

かくして得られた負帯電型の電子写真感光体において、
第1のa−3iC層のP元素含有量及び0゜N各元素の
合計含有量を測定したところ、それぞれ2.000pp
m 4原子%であった。
In the negatively charged electrophotographic photoreceptor thus obtained,
When the P element content and the total content of each 0°N element in the first a-3iC layer were measured, they were each 2.000 ppp.
m was 4 at%.

また本例の電子写真感光体を作製するに当たり、第1の
a−3iC層とa−3i層を形成せず、第2のaSiC
層のみを形成し、その他を本例と同様に形成して比較例
Gとした。
Further, in producing the electrophotographic photoreceptor of this example, the first a-3iC layer and the a-3i layer were not formed, and the second aSiC layer was not formed.
Comparative Example G was prepared by forming only the layer and forming the others in the same manner as in this example.

更にまた本例の電子写真感光体を作製するに当たり、第
1のa−3iC層を形成せず、a−3i層と第2のa−
SiC層を同様に形成し、その他も本例と同様に形成し
て比較例Hとした。
Furthermore, in producing the electrophotographic photoreceptor of this example, the first a-3iC layer was not formed, and the a-3i layer and the second a-3iC layer were formed.
Comparative Example H was prepared by forming the SiC layer in the same manner as in this example, and forming the others in the same manner as in this example.

上記本発明電子写真感光体と比較例Gの分光感度を測定
したところ、第4図と同様の結果が得られた。
When the spectral sensitivities of the electrophotographic photoreceptor of the present invention and Comparative Example G were measured, the same results as shown in FIG. 4 were obtained.

また比較例Hの光感度は本例と同様な分光感度特性が得
られたが、その反面、帯電後の暗中での表面電位の経過
を追ったところ、本例の感光体に比べて表面電位の暗減
衰が速く、帯電も低く、電位ムラも大きいことが判る。
In addition, the photosensitivity of Comparative Example H was similar to that of this example, but on the other hand, when we followed the progress of the surface potential in the dark after charging, we found that the surface potential was higher than that of the photoreceptor of this example. It can be seen that the dark decay is fast, the charging is low, and the potential unevenness is large.

また、本例の感光体と比較例Hを35℃95%RHのと
a−3i層との間で膜の剥離が生じ、膜の密着性に問題
があることも確かめられた。
It was also confirmed that film peeling occurred between the photoreceptor of this example and the a-3i layer of Comparative Example H at 35° C. and 95% RH, and that there was a problem in film adhesion.

更にまた本例の電子写真感光体を作製するに当たり、第
1のa−3iC層の形成時にPH2ガス及びNOガスを
導入せず、その他は全く同じ成膜条件に設定し、これに
よりP元素、0元素及びN元素を含有しない第1のa−
3iCNを備えた正帯電型の電子写真感光体を作製した
Furthermore, in producing the electrophotographic photoreceptor of this example, PH2 gas and NO gas were not introduced during the formation of the first a-3iC layer, and the other conditions were set to be exactly the same, whereby P element, The first a- which does not contain 0 element and N element
A positively charged electrophotographic photoreceptor including 3iCN was produced.

この電子写真感光体の特性評価を行ったところ、分光感
度において600nm以上の長波長側での感度が本例の
感光体とほぼ同等であったか、その反面、本例の感光体
に比べて表面電位の暗減衰か約20%速く、帯電も低く
、電位ムラも大きかった。
When the characteristics of this electrophotographic photoreceptor were evaluated, it was found that the spectral sensitivity on the long wavelength side of 600 nm or more was almost the same as the photoreceptor of this example, but on the other hand, the surface potential was higher than that of the photoreceptor of this example. The dark decay was about 20% faster, the charge was low, and the potential unevenness was large.

(例7) (例5)と同様の電子写真感光体を作製するに当たり、
PH,ガス流量とNOガス流量を変化させ、第1のa−
3iC層のP元素含有量並びに0元素及びN元素の合計
含有量を変えて第8表に示すす〜すの11種類の感光体
を作製し、各々の感光体の暗減衰、光感度および残留電
位を評価した。
(Example 7) In producing an electrophotographic photoreceptor similar to (Example 5),
By changing the PH, gas flow rate and NO gas flow rate, the first a-
Eleven types of photoreceptors shown in Table 8 were prepared by changing the P element content and the total content of 0 element and N element in the 3iC layer, and the dark decay, photosensitivity, and residual content of each photoreceptor were measured. The potential was evaluated.

〔以下余白〕[Margin below]

第 表 *印は本発明の範囲外である。 No. table *marks are outside the scope of the present invention.

第8表に示す結果より明らかな通り、感光体ス〜テは暗
減衰、光感度及び残留電位のいずれにおいても優れてい
ることが判る。
As is clear from the results shown in Table 8, it can be seen that the photoreceptor ST is excellent in all of dark decay, photosensitivity and residual potential.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、可視光の全域に亘って高
い光感度が得られ、また、残留電位が小さくなり、しか
も、画像の濃度ムラが少なく、これによって良好な画像
が安定して得られる高性能且つ高信頼性の電子写真感光
体を提供できた。
As described above, according to the present invention, high photosensitivity can be obtained over the entire visible light range, the residual potential is small, and there is little density unevenness in the image, which makes it possible to stably produce good images. A high-performance and highly reliable electrophotographic photoreceptor could be provided.

また本発明の電子写真感光体においては、基板に対する
膜の密着力に優れており、その点でも信頼性を高めてい
る。
Furthermore, in the electrophotographic photoreceptor of the present invention, the film has excellent adhesion to the substrate, and reliability is also improved in this respect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明電子写真感光体の層構成を表
す断面図、第3図は表面電位の減衰を説明する線図、第
4図は波長に対する光感度を表す線図である。 2:第1のアモルファスシリコンカーバイド層3:アモ
ルファスシリコン層 4:第1のアモルファスシリコンカーバイド層5:有機
光半導体層 6:保護層
1 and 2 are cross-sectional views showing the layer structure of the electrophotographic photoreceptor of the present invention, FIG. 3 is a diagram illustrating attenuation of surface potential, and FIG. 4 is a diagram illustrating photosensitivity with respect to wavelength. . 2: First amorphous silicon carbide layer 3: Amorphous silicon layer 4: First amorphous silicon carbide layer 5: Organic optical semiconductor layer 6: Protective layer

Claims (3)

【特許請求の範囲】[Claims] (1)基板上に原子組成比がSi_1−_xC_xのx
値で0.2<x<0.5の範囲にあるとともに周期律表
第IIIa族元素を1〜10,000ppm含有する第1
のアモルファスシリコンカーバイド層を形成し、該第1
のアモルファスシリコンカーバイド層の上にアモルファ
スシリコン層、原子組成比がSi_1_−_yC_yの
y値で0<y<0.5の範囲にある第2のアモルファス
シリコンカーバイド層及び有機光半導体層を順次積層し
たことを特徴とする電子写真感光体。
(1) x with an atomic composition ratio of Si_1-_xC_x on the substrate
The first element has a value in the range of 0.2<x<0.5 and contains 1 to 10,000 ppm of Group IIIa elements of the periodic table.
forming an amorphous silicon carbide layer of the first
An amorphous silicon layer, a second amorphous silicon carbide layer having an atomic composition ratio in the range of 0<y<0.5 as a y value of Si_1_-_yC_y, and an organic optical semiconductor layer were sequentially laminated on the amorphous silicon carbide layer of An electrophotographic photoreceptor characterized by:
(2)基板上に原子組成比がSi_1_−_xC_xの
x値で0.2<x<0.5の範囲にあるとともに周期律
表第Va族元素を5,000ppm以下含有する第1の
アモルファスシリコンカーバイド層を形成し、該第1の
アモルファスシリコンカーバイド層の上にアモルファス
シリコン層、原子組成比がSi_1_−_yC_yのy
値で0<y<0.5の範囲にある第2のアモルファスシ
リコンカーバイド層及び有機光半導体層を順次積層した
ことを特徴とする電子写真感光体。
(2) First amorphous silicon having an atomic composition ratio in the range of 0.2<x<0.5 in the x value of Si_1_-_xC_x and containing 5,000 ppm or less of Group Va elements of the periodic table on the substrate. A carbide layer is formed on the first amorphous silicon carbide layer, and an amorphous silicon layer with an atomic composition ratio of Si_1_-_yC_y is formed on the first amorphous silicon carbide layer.
An electrophotographic photoreceptor characterized in that a second amorphous silicon carbide layer and an organic optical semiconductor layer having values in the range of 0<y<0.5 are sequentially laminated.
(3)前記第1のアモルファスシリコンカーバイド層に
酸素及び/又は窒素を0.01〜30原子%含有せしめ
ることを特徴とする請求項(1)または請求項(2)記
載の電子写真感光体。
(3) The electrophotographic photoreceptor according to claim 1 or claim 2, wherein the first amorphous silicon carbide layer contains 0.01 to 30 atomic percent of oxygen and/or nitrogen.
JP20447890A 1990-07-31 1990-07-31 Electrophotographic sensitive body Pending JPH0488352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20447890A JPH0488352A (en) 1990-07-31 1990-07-31 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20447890A JPH0488352A (en) 1990-07-31 1990-07-31 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH0488352A true JPH0488352A (en) 1992-03-23

Family

ID=16491193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20447890A Pending JPH0488352A (en) 1990-07-31 1990-07-31 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH0488352A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006067778A (en) * 2004-07-27 2006-03-09 Nippon Densan Corp Armature for motor and motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006067778A (en) * 2004-07-27 2006-03-09 Nippon Densan Corp Armature for motor and motor

Similar Documents

Publication Publication Date Title
JPS60119567A (en) Electrophotographic sensitive body
JPH0488352A (en) Electrophotographic sensitive body
US4882252A (en) Electrophotographic sensitive member with amorphous silicon carbide
JPH0488351A (en) Electrophotographic sensitive body
JPH0495965A (en) Electrophotographic sensitive body
JPH0495966A (en) Electrophotographic sensitive body
US5945241A (en) Light receiving member for electrophotography and fabrication process thereof
JPS6125154A (en) Electrophotographic sensitive body
JP2668242B2 (en) Electrophotographic photoreceptor
JP2789100B2 (en) Electrophotographic photoreceptor
JP2722074B2 (en) Electrophotographic photoreceptor
JPH0549108B2 (en)
JP2668241B2 (en) Electrophotographic photoreceptor
JP2668240B2 (en) Electrophotographic photoreceptor
JPS59212843A (en) Photosensitive body
JP2562583B2 (en) Electrophotographic photoreceptor
JP2756570B2 (en) Electrophotographic photoreceptor
JP2756569B2 (en) Electrophotographic photoreceptor
JP3113453B2 (en) Manufacturing method of electrophotographic photoreceptor
US5143808A (en) Printing member for electrostatic photocopying
JP2678449B2 (en) Electrophotographic photoreceptor
JPH03231254A (en) Electrophotographic sensitive body
JPH01315761A (en) Electrophotographic sensitive body
JPH02144548A (en) Electrophotographic sensitive body
JPH03126040A (en) Electrophotographic sensitive body