JP2756569B2 - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor

Info

Publication number
JP2756569B2
JP2756569B2 JP32084588A JP32084588A JP2756569B2 JP 2756569 B2 JP2756569 B2 JP 2756569B2 JP 32084588 A JP32084588 A JP 32084588A JP 32084588 A JP32084588 A JP 32084588A JP 2756569 B2 JP2756569 B2 JP 2756569B2
Authority
JP
Japan
Prior art keywords
layer
substrate
electrophotographic photoreceptor
layer region
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32084588A
Other languages
Japanese (ja)
Other versions
JPH02165159A (en
Inventor
孝夫 河村
直興 宮本
浩 伊藤
仁志 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP32084588A priority Critical patent/JP2756569B2/en
Publication of JPH02165159A publication Critical patent/JPH02165159A/en
Application granted granted Critical
Publication of JP2756569B2 publication Critical patent/JP2756569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers
    • G03G5/08228Silicon-based comprising one or two silicon based layers at least one with varying composition

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主たる光導電層がアモルファスシリコンカー
バイド層である電子写真感光体に関するものである。
Description: TECHNICAL FIELD The present invention relates to an electrophotographic photoreceptor in which a main photoconductive layer is an amorphous silicon carbide layer.

〔従来技術及びその問題点〕[Prior art and its problems]

近年、アモルファスシリコンカーバイド(以下、a−
SiCと略す)光導電層から成る電子写真感光体が提案さ
れ、この感光体はそのカーボン含有量を適当に変えるこ
とによって幅広い分光感度特性(ピーク600〜700nm)が
得られる点で、あるいは容易に高い暗抵抗率が得られる
点などで注目されている。
In recent years, amorphous silicon carbide (hereinafter, a-
An electrophotographic photoreceptor comprising a photoconductive layer (abbreviated as SiC) has been proposed. This photoreceptor is capable of obtaining a wide spectral sensitivity characteristic (peak 600 to 700 nm) by appropriately changing the carbon content thereof, or easily. Attention is paid to the fact that a high dark resistivity can be obtained.

上記電子写真感光体によれば、a−SiC光導電層をア
ルミニウム基板に形成するに当たって、該層内部の基板
側の層領域に酸素や窒素を含有させ、これにより、膜の
基板に対する密着力を高め、しかも、基板からのキャリ
アの注入を阻止する機能をもたすことが提案されてい
る。
According to the above electrophotographic photoreceptor, when forming the a-SiC photoconductive layer on the aluminum substrate, oxygen or nitrogen is contained in the layer region on the substrate side inside the layer, whereby the adhesion of the film to the substrate is reduced. It has been proposed to have a function to increase the injection and to prevent the injection of carriers from the substrate.

しかしながら、上記のように酸素や窒素(以下、NO元
素と略す)を多く含有させると膜の密着力が高められる
反面、その層領域でキャリアがトラップされ、残留電位
が高くなるという問題点がある。
However, as described above, when a large amount of oxygen or nitrogen (hereinafter, abbreviated as NO element) is contained, the adhesion of the film is increased, but carriers are trapped in the layer region and the residual potential is increased. .

そこで、残留電位を低下させるあめにNO元素含有量を
小さくすると膜の密着力が低下するという問題を招く。
Therefore, if the content of the NO element is decreased to lower the residual potential, a problem arises in that the adhesion of the film decreases.

従って本発明は叙上に鑑みて完成されたものであり、
その目的はa−SiC層の基板との密着力が高められると
ともに残留電位が低減した電子写真感光体を提供するこ
とにある。
Accordingly, the present invention has been completed in view of the above,
It is an object of the present invention to provide an electrophotographic photoreceptor in which the adhesion of an a-SiC layer to a substrate is increased and the residual potential is reduced.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明の電子写真感光体は、導電性基板上に周期律表
第Va続元素を500〜5000ppm含有する第1のa−SiC層並
びに光導電性を有する第2のa−SiC層が順次積層さ
れ、第1のa−SiC層にNO元素がその合計量として0.01
〜30原子%の範囲内で含有されるとともにNO元素が多く
含有された第1の層領域並びにNO元素が少なく含有され
た第2の層領域が順次形成されたことを特徴とする。
In the electrophotographic photoreceptor of the present invention, a first a-SiC layer containing 500 to 5000 ppm of a Va continuation element of the periodic table and a second a-SiC layer having photoconductivity are sequentially laminated on a conductive substrate. The NO element is contained in the first a-SiC layer in a total amount of 0.01%.
It is characterized in that a first layer region containing a large amount of NO element and a second layer region containing a small amount of NO element are sequentially formed in the range of up to 30 atomic%.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

第1図は本発明電子写真感光体の基本的層構成を示
し、第2図はその典型的層構成を示す。
FIG. 1 shows the basic layer structure of the electrophotographic photoreceptor of the present invention, and FIG. 2 shows the typical layer structure.

第1図においては、アルミニウムなどから成る導電性
基板(1)の上に第1のa−SiC層(2)及び第2のa
−SiC層(3)が順次積層され、第1のa−SiC層(2)
は基板側より第1の層領域(2a)及び第2の層領域(2
b)が順次形成されて成る。また、第2図によれば、第
2のa−SiC層(3)の上に表面保護層(4)が形成さ
れる。
In FIG. 1, a first a-SiC layer (2) and a second a-SiC layer (2) are formed on a conductive substrate (1) made of aluminum or the like.
-SiC layer (3) is sequentially laminated, and a first a-SiC layer (2)
Are the first layer region (2a) and the second layer region (2a) from the substrate side.
b) are sequentially formed. According to FIG. 2, a surface protective layer (4) is formed on the second a-SiC layer (3).

第2のa−SiC層(3)は光導電性を有する実質上の
光キャリア発生層であり、第1のa−SiC層(2)は基
板からのキャリアの注入を阻止するとともに基板に対す
る膜の密着力を高めている。そして、第1のa−SiC層
(2)には周期律表第Va族元素(以下、Va族元素と略
す)を所定の範囲内で含有させて上記キャリア注入阻止
機能を高め、しかも、感光体の帯電性を負帯電型として
いる。
The second a-SiC layer (3) is a substantial photocarrier generation layer having photoconductivity, and the first a-SiC layer (2) prevents carrier injection from the substrate and forms a film on the substrate. To increase the adhesion. The first a-SiC layer (2) contains a group Va element of the periodic table (hereinafter abbreviated as a group Va element) within a predetermined range to enhance the carrier injection blocking function, The body has a negative charge type.

本発明においては、第1のa−SiC層(2)をNO元素
含有量の差による2種類の層領域と成し、これにより、
キャリアの注入阻止機能を高めるとともに基板に対する
膜密着力を高めることが特徴である。
In the present invention, the first a-SiC layer (2) is formed as two types of layer regions depending on the difference in the content of the NO element.
It is characterized in that the function of preventing carrier injection is enhanced and the film adhesion to the substrate is enhanced.

先ず、第1のa−SiC層(2)には上記目的のためにN
O元素をその合計量として0.01〜30原子%、好適には0.1
〜20原子%の範囲内で含有させるとよく、その含有量が
0.01原子%未満の場合には密着力を高める効果がなく、
あるいは表面電位を高める効果もなく、一方、30原子%
を超えた場合には残留電位が高くなる。
First, the first a-SiC layer (2) contains N for the above purpose.
O element in a total amount of 0.01 to 30 atomic%, preferably 0.1 to 30 atomic%.
It is good to make it contain within the range of ~ 20 atomic%, and the content is
If it is less than 0.01 atomic%, there is no effect of increasing the adhesion,
Or it has no effect of increasing the surface potential, while 30 atom%
, The residual potential increases.

ただし、第1のa−SiC層(2)はVa族元素が所定量
含有されて厚みが決められる層であり、そして、上記NO
元素はその層厚範囲内で平均含有量として表わすもので
ある。
However, the first a-SiC layer (2) is a layer containing a predetermined amount of a Va group element and having a determined thickness.
The element is expressed as an average content within the layer thickness range.

かかる第1のa−SiC層(2)にはNO元素含有量の多
い第1の層領域(2a)並びに少ない第2の層領域(2b)
が順次形成されて成り、第1の層領域(2a)は主として
基板との密着力を高める作用があり、第2の層領域(2
b)は主としてキャリアの注入阻止機能を高める。
The first a-SiC layer (2) includes a first layer region (2a) having a high NO element content and a second layer region (2b) having a low NO element content.
Are formed successively, and the first layer region (2a) mainly has an action of increasing the adhesion to the substrate, and the second layer region (2a)
b) mainly enhances the function of preventing carrier injection.

このような二層領域(2a)(2b)には例えば第3図〜
第8図に示すようなNO元素含有分布がある。
In such two-layer regions (2a) and (2b), for example, FIG.
There is an NO element content distribution as shown in FIG.

これらの図において、横軸は層厚方向であり、縦軸は
NO元素合計含有量であり、sは基板(1)と第1の層領
域(2a)との界面であり、tは第1の層領域(2a)と第
2の層領域(2b)の境界であり、uは第2の層領域(2
b)と第2のa−SiC層(3)との界面である。
In these figures, the horizontal axis is the layer thickness direction, and the vertical axis is
S is the interface between the substrate (1) and the first layer region (2a), and t is the boundary between the first layer region (2a) and the second layer region (2b). And u is the second layer region (2
This is the interface between b) and the second a-SiC layer (3).

また、上記二層領域(2a)(2b)について、次の通り
に厚みを設定するとよい。
The thickness of the two-layer regions (2a) and (2b) may be set as follows.

第1の層領域(2a)の厚みは0.01〜1μm、好適には
0.05〜0.5μmの範囲内に設定するとよく、この範囲内
であれば、基板との密着力を高め、残留電位を低減させ
るという点でよい。
The thickness of the first layer region (2a) is 0.01 to 1 μm, preferably
The thickness may be set in the range of 0.05 to 0.5 μm, and within this range, the adhesion to the substrate is increased and the residual potential is reduced.

第2の層領域(2b)の厚みは0.5〜5μm、好適には
1〜4μmの範囲内に設定するとよく、この範囲内であ
れば、表面電位を高め、感光体の耐(電)圧を高めると
いう点でよい。
The thickness of the second layer region (2b) may be set in the range of 0.5 to 5 μm, preferably 1 to 4 μm. In this range, the surface potential is increased and the withstand (electric) pressure of the photoconductor is reduced. It is good in that it raises.

第1のa−SiC層(2)にはVa族元素を層厚方向に亘
る平均値として500〜5000ppm、好適には1000〜2000ppm
含有させる。この含有量が500ppm未満の場合には基板側
からの正電荷の注入に対する阻止能が不充分となり、50
00ppmを越える場合には膜中の欠陥が増加し、これによ
り、暗導電率が大きくなり、上記のようなキャリア注入
阻止能が低下する。
The first a-SiC layer (2) contains a group Va element in an average value of 500 to 5,000 ppm, preferably 1,000 to 2,000 ppm in the thickness direction.
To be included. If the content is less than 500 ppm, the ability to stop the injection of positive charges from the substrate side becomes insufficient,
When the content exceeds 00 ppm, the number of defects in the film increases, thereby increasing the dark conductivity and decreasing the above-described carrier injection stopping ability.

上記Va族元素にはN,P,As,Sb,Biがあるが、Pが共有結
合性に優れて半導体特性を敏感に変え得る点で、その
上、優れた帯電能や光感度が得られるという点で望まし
い。
The Va group elements include N, P, As, Sb, and Bi. However, P is excellent in covalent bonding and can change semiconductor characteristics sensitively. In addition, excellent charging ability and photosensitivity can be obtained. This is desirable.

前記第2のa−SiC層(3)は、組成式(Si1-xx
1-yy(Aは水素やハロゲンの元素を表わす)で示すと 0.05<x<0.5 好適には0.1<x<0.4 0.2<y<0.5 好適には0.25<y<0.45 の範囲内に設定するとよく、この範囲内であれば、高い
表面電位、可視光感度に近い分光感度並びに膜の内部応
力の低減化を最も有利に達成することができる。
The second a-SiC layer (3) has a composition formula (Si 1-x C x )
When expressed as 1-y A y (A represents an element of hydrogen or halogen), it is set in the range of 0.05 <x <0.5, preferably 0.1 <x <0.4 0.2 <y <0.5, preferably 0.25 <y <0.45. It is preferable that the content is within this range, whereby the high surface potential, the spectral sensitivity close to the visible light sensitivity, and the reduction of the internal stress of the film can be most advantageously achieved.

また、第1のa−SiC層(2)の組成比率について
は、0.05<x<0.7、好適には0.1<x<0.5、0.2<x<
0.5、好適には0.25<y<0.45の範囲内に設定するとよ
く、この範囲内であれば、残留電位が低減し、表面電位
が一層高められるという点でよい。
The composition ratio of the first a-SiC layer (2) is 0.05 <x <0.7, preferably 0.1 <x <0.5, 0.2 <x <
0.5, preferably 0.25 <y <0.45 is set, and within this range, the residual potential is reduced and the surface potential is further increased.

前記表面保護層(4)には高硬度な特性が要求され、
これによって耐久性に優れた電子写真感光体となる。ま
た、該層(4)の光学バンドギャップは2.0eV以上がよ
く、これによって高い光感度が維持できる。
The surface protective layer (4) is required to have high hardness properties,
This results in an electrophotographic photoreceptor having excellent durability. Further, the optical band gap of the layer (4) is preferably 2.0 eV or more, whereby high light sensitivity can be maintained.

このような条件を満たす表面材料には、第2のa−Si
C層(3)に比べてカーボンを多く含むa−SiCがあり、
その他にアモルファスシリコンオキサイド、アモルファ
スシリコンナイトライド、アモルファスカーボンなどが
ある。
The surface material satisfying such conditions includes the second a-Si
There is a-SiC containing more carbon than the C layer (3),
In addition, there are amorphous silicon oxide, amorphous silicon nitride, amorphous carbon, and the like.

かくして本発明の電子写真感光体は、NO元素含有量が
異なるa−SiC二層領域を有しているため、基板との密
着力が高められ、しかも、残留電位が小さくなる。
Thus, the electrophotographic photoreceptor of the present invention has the a-SiC two-layer regions having different NO element contents, so that the adhesion to the substrate is enhanced and the residual potential is reduced.

また、本発明の電子写真感光体は、負帯電型として供
される。
Further, the electrophotographic photosensitive member of the present invention is provided as a negative charging type.

次に本発明電子写真感光体の製法を述べる。 Next, a method for producing the electrophotographic photoreceptor of the present invention will be described.

a−SiC層を形成するにはグロー放電分解法、イオン
プレーティング法、反応性スパッタリング法、真空蒸着
法、CVD法などの薄膜形成方法がある。
For forming the a-SiC layer, there are a thin film forming method such as a glow discharge decomposition method, an ion plating method, a reactive sputtering method, a vacuum evaporation method, and a CVD method.

グロー放電分解法を用いる場合、Si元素含有ガスとC
元素含有ガスを組合せ、この混合ガスをプラズマ分解し
て成膜形成する。このSi元素含有ガスにはSiH4,Si26,
Si38,SiF4,SiCl4,SiHCl3等々があり、また、C元素含
有ガスにはCH4,C24,C22,C38等々があり、就中、
22は高速成膜性が得られるという点で望ましい。
When glow discharge decomposition is used, the gas containing Si element and C
Element-containing gases are combined, and this mixed gas is plasma-decomposed to form a film. The Si element-containing gas includes SiH 4 , Si 2 H 6 ,
There are Si 3 H 8 , SiF 4 , SiCl 4 , SiHCl 3, etc., and the C element containing gas includes CH 4 , C 2 H 4 , C 2 H 2 , C 3 H 8, etc.
C 2 H 2 is desirable in that high-speed film forming properties can be obtained.

本実施例に用いられるグロー放電分解装置を第9図に
より説明する。
The glow discharge decomposition apparatus used in this embodiment will be described with reference to FIG.

図中、第1タンク(5)、第2タンク(6)、第3タ
ンク(7)、第4タンク(8)、第5タンク(9)には
それぞれSiH4,C22,PH3(PH3が0.2%濃度で水素希釈さ
れている)、H2及びNOが密封され、これらのガスは各
々対応する第1調整弁(10)、第2調整弁(11)、第3
調整弁(12)、第4調整弁(13)及び第5調整弁(14)
の開放により放出する。その放出ガスの流量はそれぞれ
マスフローコントローラ(15)(16)(17)(18)(1
9)により制御され、各々のガスは混合されて主管(2
0)(21)へ送られる。尚、(22)(23)は止め弁であ
る。
In the figure, the first tank (5), the second tank (6), the third tank (7), the fourth tank (8), and the fifth tank (9) are respectively SiH 4 , C 2 H 2 , PH 3 (PH 3 is diluted with hydrogen at a concentration of 0.2%), H 2 and NO are sealed, and these gases are respectively corresponding to the first control valve (10), the second control valve (11), and the third control valve (11).
Regulating valve (12), fourth regulating valve (13) and fifth regulating valve (14)
Released by opening The flow rates of the released gas are the mass flow controllers (15) (16) (17) (18) (1
9), each gas is mixed and the main pipe (2
0) Sent to (21). Incidentally, (22) and (23) are stop valves.

主管(20)(21)を通じて流れるガスは反応管(24)
へ流入するが、この反応管(24)の内部には容量結合型
放電用電極(25)が設置され、また、筒状の成膜用基板
(26)が基板支持体(27)の上に載置され、基板支持体
(27)がモータ(28)により回転駆動され、これに伴っ
て基板(26)が回転する。そして、電極(25)に電力50
W〜3kW、周波数1〜50MHzの高周波電力が印加され、し
かも、基板(26)が適当な加熱手段により約200〜400
℃、好適は約200〜350℃の温度に加熱される。また、反
応管(24)は回転ポンプ(29)と拡散ポンプ(30)に連
結されており、これによってグロー放電による成膜形成
時に所要な減圧状態(放電時のガス圧0.01〜2.0Torr)
が設定できる。
The gas flowing through the main pipe (20) (21) is the reaction pipe (24)
A discharge electrode (25) is provided inside the reaction tube (24), and a cylindrical film-forming substrate (26) is placed on a substrate support (27). The substrate support (27) is mounted and rotated by a motor (28), and the substrate (26) rotates accordingly. Then, power 50 is applied to the electrode (25).
High frequency power of W to 3 kW and frequency of 1 to 50 MHz is applied, and the substrate (26) is heated to about 200 to 400
C., preferably at a temperature of about 200-350.degree. Further, the reaction tube (24) is connected to a rotary pump (29) and a diffusion pump (30), so that a reduced pressure required for forming a film by glow discharge (gas pressure at discharge: 0.01 to 2.0 Torr).
Can be set.

このような構成のグロー放電分解装置を用いて基板
(26)の上にa−SiC層を形成する場合、第1調整弁(1
0)、第2調整弁(11)、第3調整弁(12)、第4調整
弁(13)及び第5調整弁(14)を開いてSiH4,C22,P
H3,H2,NOの各々のガスを放出し、その放出量をマスフロ
ーコントローラ(15)(16)(17)(18)(19)により
制御し、各々のガスは混合されて主管(20)(21)を介
して反応管(24)へ流入する。そして、反応管内部の減
圧状態、基板温度、電極印加用高周波電力をそれぞれ所
定の条件に設定するとグロー放電が発生し、ガスの分解
に伴ってP,N,O各元素含有のa−SiC膜が基板上に高速に
形成する。
When the a-SiC layer is formed on the substrate (26) using the glow discharge decomposition apparatus having such a configuration, the first regulating valve (1
0), the second control valve (11), the third control valve (12), the fourth control valve (13), and the fifth control valve (14) are opened to open SiH 4 , C 2 H 2 , P
Each gas of H 3 , H 2 , and NO is released, and the amount of the released gas is controlled by mass flow controllers (15), (16), (17), (18), (19). ) Flows into the reaction tube (24) via (21). When the depressurized state inside the reaction tube, the substrate temperature, and the high-frequency power for electrode application are set to predetermined conditions, glow discharge occurs, and the P-, N-, and O-element-containing a-SiC film is generated with the decomposition of the gas. Are formed on the substrate at high speed.

〔実施例〕〔Example〕

次に本発明の実施例を述べる。 Next, examples of the present invention will be described.

(例1) 第9図のグロー放電分解装置を用いて第1表に示す成
膜条件により第1図の層構成の電子写真感光体を製作し
た。
Example 1 An electrophotographic photoreceptor having the layer configuration shown in FIG. 1 was manufactured using the glow discharge decomposition apparatus shown in FIG. 9 under the film forming conditions shown in Table 1.

上記電子写真感光体の各層におけるカーボン、P、NO
元素の含有量を測定したところ、第2表に示す通りの結
果が得られた。また、第1のa−SiC層のNO元素平均含
有量は7.3原子%であった。
Carbon, P, NO in each layer of the electrophotographic photosensitive member
When the contents of the elements were measured, the results as shown in Table 2 were obtained. Further, the average content of the NO element in the first a-SiC layer was 7.3 atomic%.

かくして得られた電子写真感光体の電子写真特性を測
定したところ、優れた帯電能(約750V)及び光感度(記
録露光量0.6lux・sec)が得られ、しかも、低い残留電
位(20V以下)が得られた。
When the electrophotographic characteristics of the electrophotographic photoreceptor thus obtained were measured, an excellent charging ability (about 750 V) and photosensitivity (recording exposure amount of 0.6 lux · sec) were obtained, and a low residual potential (20 V or less). was gotten.

また、感光体の膜に傷をつけ、そして、水浸するとい
う密着力テストを行ったところ、24時間経過しても傷の
付近からの剥離は生じなかった。
Further, when a film of the photoreceptor was scratched and subjected to an adhesion test in which the film was immersed in water, no peeling from the vicinity of the scratch occurred even after 24 hours.

(例2) 本例においては、(例1)の第1の層領域を形成せ
ず、その他は(例1)と全く同じ層構成とし、これによ
って得られた電子写真感光体の諸特性を測定したとこ
ろ、(例1)の感光体に較べて帯電能が約15%低下し、
また、膜の密着力試験を行ったところ、24時間経過後、
傷の付近から剥離が広がり、密着性が顕著に低下した。
(Example 2) In this example, the first layer region of (Example 1) was not formed, and the other layers had exactly the same layer configuration as (Example 1). As a result of measurement, the charging ability was reduced by about 15% as compared with the photoconductor of (Example 1).
In addition, when a film adhesion test was performed, 24 hours later,
Peeling spread from the vicinity of the scratch, and the adhesion was significantly reduced.

(例3) 次に(例1)の電子写真感光体において、両層領域
(2a)(2b)のNO元素含有量を幾通りにも変え、その他
の成膜条件を(例1)と同じに設定した種々の感光体を
製作し、そして、表面電位、耐圧及び残留電位並びに膜
の密着力を測ったところ、第3表に示す通りの結果が得
られた。
(Example 3) Next, in the electrophotographic photoreceptor of (Example 1), the content of the NO element in both layer regions (2a) and (2b) was changed in various ways, and other film forming conditions were the same as in (Example 1). Were prepared, and the surface potential, breakdown voltage and residual potential, and the adhesion of the film were measured. The results shown in Table 3 were obtained.

各々の測定結果は次の通りに評価した。 Each measurement result was evaluated as follows.

表面電位については、三区分の評価基準を定め、その
優位なものから順次◎印、○印及び△印とし、相対比較
を行った。
Regarding the surface potential, three categories of evaluation criteria were determined, and ◎, ○ and Δ were sequentially compared in order of superiority, and relative comparison was performed.

また、耐圧についても、同様に◎印、○印及び△印に
よる相対的な評価基準を定めた。
Also, with respect to the withstand voltage, relative evaluation criteria were similarly defined by the mark ◎, the mark △, and the mark △.

残留電位については、◎印は最も低減した場合であ
り、○印は若干高くなっているが、実用上支障がない場
合であり、△印は顕著に大きくなって実用上支障がでた
場合である。
Regarding the residual potential, the mark 最 も indicates the case where it was most reduced, the mark ○ is slightly higher, but there was no problem in practical use, and the mark △ was in the case where it was significantly increased and there was no problem in practical use. is there.

密着力については、前述した密着力テストを行い、そ
して24時間経過後に剥離が全く認められなかった場合を
◎印とし、剥離が若干認められたが、それ以上進行しな
かった場合を○印、そして、剥離が認められ、更にそれ
が進行し続けたものを△印とした。
Regarding the adhesion, the adhesion test was performed as described above, and the case where no peeling was observed after 24 hours was marked as ◎, and the peeling was slightly observed, but the case where no further progress was observed was marked with ○, Then, peeling was recognized, and further progressing of the peeling was marked with a triangle.

第3表より明らかな通り、本発明の感光体B〜Gはい
ずれの諸特性についても優れたものとなっていることが
判る。
As is evident from Table 3, the photoconductors B to G of the present invention are excellent in all of the various characteristics.

然るに感光体Aは優れた残留電位が得られているが、
表面電位、耐圧及び密着力に劣っている。また、感光体
Hは残留電位に劣っている。
Although the photosensitive member A has an excellent residual potential,
Poor surface potential, withstand voltage and adhesion. Further, the photosensitive member H is inferior in residual potential.

(例4) 次に本発明者等は第4表の成膜条件によって第2図に
示す層構成の電子写真感光体を製作した。
Example 4 Next, the present inventors manufactured an electrophotographic photosensitive member having a layer configuration shown in FIG. 2 under the film forming conditions shown in Table 4.

上記電子写真感光体の各層におけるカーボン、P,NO元
素の含有量を測定したところ、第5表に示す通りの結果
が得られた。
When the contents of the carbon, P, and NO elements in the respective layers of the electrophotographic photosensitive member were measured, the results shown in Table 5 were obtained.

かくして得られた電子写真感光体の電子写真特性を測
定したところ、優れた帯電能(780V)及び光感度(記録
露光量0.65lux・sec)が得られ、しかも、低い残留電位
(20V以下)が得られた。
When the electrophotographic characteristics of the electrophotographic photoreceptor thus obtained were measured, excellent charging ability (780 V) and photosensitivity (recording exposure amount 0.65 lux · sec) were obtained, and a low residual potential (20 V or less) was obtained. Obtained.

また、密着力テストを行ったところ、全く剥離が生じ
なかった。
When the adhesion test was performed, no peeling occurred.

本発明者等は上記実施例以外にNOガスに代えて酸素
(O2)ガス又は窒素(N2)ガスを用いても同様な結果
が得られることを確認した。
The present inventors have confirmed that similar results can be obtained by using oxygen (O 2 ) gas or nitrogen (N 2 ) gas instead of the NO gas in addition to the above examples.

〔発明の効果〕〔The invention's effect〕

以上の通り、本発明によれば、膜の密着力に優れ、か
つ、残留電位の低減化など種々の電子写真特性が改善で
きた電子写真感光体を提供することができた。
As described above, according to the present invention, it was possible to provide an electrophotographic photoreceptor which was excellent in film adhesion and in which various electrophotographic characteristics such as a reduction in residual potential were improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は本発明電子写真感光体の層構成を示
す断面図であり、第3図、第4図、第5図、第6図、第
7図及び第8図はNO元素含有分布を示す線図、第9図は
グロー放電分解装置の説明図である。 1……導電性基板 2……第1のアモルファスシリコンカーバイド層 2a……第1の層領域 2b……第2の層領域 3……第2のアモルファスシリコンカーバイド層
FIGS. 1 and 2 are cross-sectional views showing the layer structure of the electrophotographic photoreceptor of the present invention. FIGS. 3, 4, 5, 6, 7, and 8 show the NO element. FIG. 9 is a diagram showing a content distribution, and FIG. 9 is an explanatory diagram of a glow discharge decomposition device. DESCRIPTION OF SYMBOLS 1 ... Conductive substrate 2 ... 1st amorphous silicon carbide layer 2a ... 1st layer area 2b ... 2nd layer area 3 ... 2nd amorphous silicon carbide layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 浩 滋賀県八日市市蛇溝町長谷野1166番地の 6 京セラ株式会社滋賀八日市工場内 (72)発明者 竹村 仁志 滋賀県八日市市蛇溝町長谷野1166番地の 6 京セラ株式会社滋賀八日市工場内 (56)参考文献 特開 昭64−62659(JP,A) 特開 昭63−2068(JP,A) 特開 昭60−73628(JP,A) 特開 昭61−138958(JP,A) 特開 昭59−212840(JP,A) 特開 昭61−250653(JP,A) 特開 昭62−198866(JP,A) 特開 昭63−83725(JP,A) ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Hiroshi Ito 1166, Haseno, Hachimizo-cho, Yokaichi, Shiga Prefecture Inside the Shiga Yokaichi Plant, Kyocera Corporation (72) Inventor, Nishi Takemura 1166, Hanaeno, Hachimizo-cho, Yokaichi, Shiga Prefecture (6) References JP-A-64-62659 (JP, A) JP-A-63-2068 (JP, A) JP-A-60-73628 (JP, A) JP JP-A-59-212840 (JP, A) JP-A-61-250653 (JP, A) JP-A-62-198866 (JP, A) JP-A-63-83725 (JP, A) A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電性基板上に周期律表第Va族元素を500
〜5000ppm含有する第1のアモルファスシリコンカーバ
イド層並びに光導電性を有する第2のアモルファスシリ
コンカーバイド層が順次積層され、第1のアモルファス
シリコンカーバイド層に酸素及び窒素から選ばれた少な
くとも一種の添加元素がその合計量として0.01〜30原子
%の範囲内で含有されるとともに添加元素が多く含有さ
れた第1の層領域並びに添加元素が少なく含有された第
2の層領域が順次形成されたことを特徴とする電子写真
感光体。
1. A method according to claim 1, wherein a group Va element of the periodic table is provided on a conductive substrate.
A first amorphous silicon carbide layer containing about 5000 ppm and a second amorphous silicon carbide layer having photoconductivity are sequentially laminated, and at least one additional element selected from oxygen and nitrogen is added to the first amorphous silicon carbide layer. A first layer region containing a large amount of the additional element and a second layer region containing a small amount of the additional element are sequentially formed in the total amount in the range of 0.01 to 30 atomic%. Electrophotographic photoreceptor.
【請求項2】第1の層領域の厚みが0.01〜1μmの範囲
内である請求項(1)記載の電子写真感光体。
2. The electrophotographic photosensitive member according to claim 1, wherein the thickness of the first layer region is in the range of 0.01 to 1 μm.
【請求項3】第2の層領域の厚みが0.5〜5μmの範囲
内である請求項(1)記載の電子写真感光体。
3. The electrophotographic photosensitive member according to claim 1, wherein the thickness of the second layer region is in the range of 0.5 to 5 μm.
JP32084588A 1988-12-20 1988-12-20 Electrophotographic photoreceptor Expired - Fee Related JP2756569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32084588A JP2756569B2 (en) 1988-12-20 1988-12-20 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32084588A JP2756569B2 (en) 1988-12-20 1988-12-20 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH02165159A JPH02165159A (en) 1990-06-26
JP2756569B2 true JP2756569B2 (en) 1998-05-25

Family

ID=18125890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32084588A Expired - Fee Related JP2756569B2 (en) 1988-12-20 1988-12-20 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2756569B2 (en)

Also Published As

Publication number Publication date
JPH02165159A (en) 1990-06-26

Similar Documents

Publication Publication Date Title
JP2756569B2 (en) Electrophotographic photoreceptor
JP2756570B2 (en) Electrophotographic photoreceptor
JP2668242B2 (en) Electrophotographic photoreceptor
JP2657491B2 (en) Electrophotographic photoreceptor
JP2668241B2 (en) Electrophotographic photoreceptor
JP2761734B2 (en) Electrophotographic photoreceptor
JP2789100B2 (en) Electrophotographic photoreceptor
JP2761741B2 (en) Electrophotographic photoreceptor
JP2657490B2 (en) Electrophotographic photoreceptor
JP2722074B2 (en) Electrophotographic photoreceptor
JPH0789233B2 (en) Electrophotographic photoreceptor
JPH0789234B2 (en) Electrophotographic photoreceptor
JPS63165857A (en) Electrophotographic sensitive body
JPH01274155A (en) Electrophotographic sensitive body
JPS6382417A (en) Production of electrophotographic sensitive body
JPH0820744B2 (en) Electrophotographic photoreceptor
JPS6381440A (en) Electrophotographic sensitive body
JPS6382416A (en) Electrophotographic sensitive body
JPS6381439A (en) Electrophotographic sensitive body
JPS6382419A (en) Production of electrophotographic sensitive body
JPH01271761A (en) Electrophotographic sensitive body
JPS6382422A (en) Production of electrophotographic sensitive body
JPH01277247A (en) Electrophotographic sensitive body
JPH01315761A (en) Electrophotographic sensitive body
JPS63104062A (en) Electrophotographic sensitive body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees