JPS61133948A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS61133948A
JPS61133948A JP25682484A JP25682484A JPS61133948A JP S61133948 A JPS61133948 A JP S61133948A JP 25682484 A JP25682484 A JP 25682484A JP 25682484 A JP25682484 A JP 25682484A JP S61133948 A JPS61133948 A JP S61133948A
Authority
JP
Japan
Prior art keywords
surface layer
layer
optical band
photoconductive layer
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25682484A
Other languages
Japanese (ja)
Inventor
Akira Miki
明 三城
Wataru Mitani
渉 三谷
Tatsuya Ikesue
龍哉 池末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Intelligent Technology Co Ltd
Original Assignee
Toshiba Corp
Toshiba Automation Equipment Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Automation Equipment Engineering Ltd filed Critical Toshiba Corp
Priority to JP25682484A priority Critical patent/JPS61133948A/en
Publication of JPS61133948A publication Critical patent/JPS61133948A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08235Silicon-based comprising three or four silicon-based layers

Abstract

PURPOSE:To prevent uneven density of an image due to light interference by laminating the first and the second amorphous surface layers each having a specified optical band gap and contg. carbon as a constituent element on an amorphous silicon photoconductive layer. CONSTITUTION:The photoconductive layer 15 made of amorphous Si is formed on an Al conductive substrate 4, and it has an optical band gap of about 1.62-1.70eV. The first and the second amorphous surface layers 16, 17 each having an optical band gap of 1.65-2.00, and 1.85-2.80eV, respectively, and each made of Si contg. carbon are laminated on the layer 15, thus permitting the reflected lights of irradiated laser beams with the interlayers between each layer 17, 16, 15 to be lowered, and electrophotographic characteristics to be enhanced without increasing manufacturing steps, by laminating only the first and second surface layers made of amorphous Si cong. carbon.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、たとえばレーデプリンタ等釦用いられる電子
写真感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an electrophotographic photoreceptor used, for example, in a button such as a radar printer.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

電子写真用感光体としては、従来では、セレン、セレン
・ヒ素、セレン・テルル、硫化カドミクム樹脂分散系、
有機光導電性材料等が用いられてきたが、近年では、非
晶質シリコン(以下1−81と書く)が注目されてお〕
、これを用いたa−81電子写真感光体は、無害であシ
、公害の心配のないこと、高い使用温度に耐え、表面硬
度が高く取扱いが容易であること、さらに、可視領域に
高い分光感度を有していること等の理由から、急速に製
品化への要求が高まってきている。
Conventionally, electrophotographic photoreceptors include selenium, selenium/arsenic, selenium/tellurium, cadmium sulfide resin dispersion,
Organic photoconductive materials have been used, but in recent years, amorphous silicon (hereinafter referred to as 1-81) has attracted attention.
The A-81 electrophotographic photoreceptor using this material is harmless, has no concern about pollution, can withstand high operating temperatures, has a high surface hardness, and is easy to handle. Due to its sensitivity, demand for commercialization is rapidly increasing.

一方、近年、ファクシミリ、ワードプロセ。On the other hand, in recent years, fax machines and word processors have become popular.

サー、コンビ為−夕等の端末に、感光体を用いた電子写
真方式のプリンターが開発されてきてお〕、とのプリン
ターでは光源として種々のものが使用されている。その
中でも光源としてレーデ−を用いた電子写真方式のレー
ザープリンターは、そのレーデ−光源としてHe−Ne
tレーデ−等のガスレーデ−が用いられていたが、最近
では、プリンターの小型化、低コスト化、変調の行い易
さ等の点から、半導体レーデ−が主に用いられるように
なってきた。
Electrophotographic printers using photoreceptors have been developed for terminals such as computers, combinations, etc., and various types of light sources are used in these printers. Among them, an electrophotographic laser printer that uses a radar as a light source uses He-Ne as the laser light source.
Gas radars such as t-rays have been used, but recently semiconductor radars have come to be mainly used because of the smaller size of printers, lower costs, and ease of modulation.

ところで、光源に半導体レーザーを用いた電子写真方式
のレーザープリンターの感光体にa−81を利用しよう
とする場合、半導体レーデ−はその発光波長が、現在の
ところ、780nm程度であり、a−81感光体はこの
半導体レーデ−の発光波長領域では、光感度がやや低く
、鮮明な画像が得られないことがある。そこで、半導体
レーザーの発光波長でも光感度を充分持たせられるよう
にするために、a−81感光体中にG。
By the way, when trying to use A-81 as a photoreceptor in an electrophotographic laser printer that uses a semiconductor laser as a light source, the emission wavelength of semiconductor lasers is currently about 780 nm, and A-81 The photoreceptor has a rather low photosensitivity in the emission wavelength range of this semiconductor radar, and a clear image may not be obtained. Therefore, in order to have sufficient photosensitivity even at the emission wavelength of a semiconductor laser, G was added to the A-81 photoreceptor.

(rルマニウム)を入れ、光学的バンド・ギヤ、プを小
さくすることがよく行なわれている。
(rumanium) is often used to reduce the size of the optical band gear.

また、a−8t悪感光中の光導電層の水素の含有量な、
下げることによシ、光学的バンドギヤ、グを下げ、長波
長感度を増すことも行なわれている。
In addition, the hydrogen content of the photoconductive layer during a-8t exposure,
By lowering the optical band gear, it is also possible to lower the optical band gear and increase the long wavelength sensitivity.

しかしながら、以上のようなa−81感光体を用いて、
半導体レーデ−を光源としたレーデ−プリンターでレー
デ−光をラインスキャンし、画像を形成させてみると、
文字画像と重なって、干渉縞状の濃度むらが現われるこ
とがある。また、この濃度むらは、レーデ−の露光量を
上げれば消すことができるが、その場合でも文字画像が
所々白すじ状にぬけてしまい、良好な画像を得ることが
できない。さらに、文字画像では現われなくても、ハー
フトーンをとってみると、やはシハーフトーンに干渉縞
による濃度むらが現われる場合がある。
However, using the above a-81 photoreceptor,
When we line-scan the radar light with a radar printer using a semiconductor radar as the light source and form an image,
Density unevenness like interference fringes may appear overlapping the character image. Further, this density unevenness can be eliminated by increasing the exposure amount of the radar, but even in that case, the character image will be left blank in places in the form of white streaks, making it impossible to obtain a good image. Furthermore, even if it does not appear in a character image, density unevenness due to interference fringes may appear in halftones when halftones are taken.

この原因はa−81感光体の表面で反射したレーザー光
と、a−8t悪感光内部を透過し、導電性基板、具体的
に・はアルミニウム素管表面で反射し、再び表面から射
出していく反射レーザー光との間で干渉が生じるためで
ある。a−81感光体の場合、AA素管上に成膜された
光導電層は、多少の膜の厚みむらを持っておシ、これが
干渉の原因となるドラム上の光路長の差となってあられ
れる。そして、a−81感光体表面の反射光と、At素
管表面で反射し、再び表面から射出してくる反射光との
間の干渉効果は、実際にはa−81感光体内部に入射し
、実質的に発生するキャリアの量を制限することになシ
、前述したように、膜の厚みむらに対応して濃度むらが
現われることになる。したがって、その対策としては、
どちらかの反射光強度゛を下げてやれば良く、一般には
At素管表面を適当に荒らすか、あるいは表面に反射防
止膜を設けることなどがよく行われる。
The reason for this is that the laser beam reflected on the surface of the A-81 photoreceptor, transmitted through the inside of the A-8T photoreceptor, reflected on the conductive substrate, specifically the surface of the aluminum tube, and then emitted from the surface again. This is because interference occurs between the reflected laser beam and the reflected laser beam. In the case of the A-81 photoreceptor, the photoconductive layer formed on the AA tube has some unevenness in film thickness, and this causes a difference in optical path length on the drum that causes interference. Hail. The interference effect between the reflected light from the surface of the A-81 photoconductor and the reflected light that is reflected from the surface of the At blank tube and then emitted from the surface is actually incident on the inside of the A-81 photoconductor. However, if the amount of carriers generated is not substantially limited, concentration unevenness will appear corresponding to the unevenness of the film thickness, as described above. Therefore, as a countermeasure,
It is sufficient to reduce the intensity of either of the reflected lights, and generally the surface of the At element tube is appropriately roughened or an antireflection film is provided on the surface.

ここで、1−81を電子写真感光体に使用しようとする
場合、a−81自体の暗抵抗は約lOΩ・画程度である
ため表面電荷保持能を高めるために、一般に、導電性基
板上に1導電性基板からの電荷の注入を阻止するブロッ
キング層を設け、さらに光導電層の上部に電荷保持のた
めの表面層を設けるいわゆる積層構造がとられている。
When using 1-81 in an electrophotographic photoreceptor, the dark resistance of a-81 itself is approximately 10Ω·cm, so in order to increase the surface charge retention ability, it is generally used on a conductive substrate. A so-called laminated structure is adopted in which a blocking layer is provided to prevent charge injection from a conductive substrate, and a surface layer for charge retention is further provided on top of the photoconductive layer.

そこで、このような積層構造のa−8i悪感光について
、前述の干渉縞対策として、At素管表面を荒らしてみ
ると、光導電層の厚みむらに対応した狭い間隔の干渉縞
は消えるが、ハーフトーン画像に間隔の広い干渉縞が現
われることがある。これは、表面層の厚みむらに対応し
た干渉効果によるものである。
Therefore, when the surface of the At base tube is roughened as a countermeasure against the interference fringes described above for the a-8i photosensitive light of such a laminated structure, the narrowly spaced interference fringes corresponding to the uneven thickness of the photoconductive layer disappear, but Widely spaced interference fringes may appear in halftone images. This is due to the interference effect corresponding to the thickness unevenness of the surface layer.

したがって、この間隔の広い干渉縞を消すためには、反
射防止条件を満たすような膜厚で均一に表面層を成膜す
ればよい。しかし、表面層が非常に薄く均一成膜が不可
能な場合は、表面層の上部に反射防止膜を設ければ干渉
効果は防止できることになる。
Therefore, in order to eliminate these widely spaced interference fringes, it is sufficient to uniformly form a surface layer with a thickness that satisfies the anti-reflection conditions. However, if the surface layer is so thin that uniform film formation is impossible, the interference effect can be prevented by providing an antireflection film on top of the surface layer.

以上のように、レーデ−プリンターに現われる干渉縞は
種々の方法によシ解決が可能であるが、a−81感光体
の製造プロセスの簡素化、省力化および生産性を考慮し
た場合、できるだけ成膜装置のみでa−81感光体を最
終的に製造し、別の製造プロセスを増やさないようにす
る方がよい。したがって、a−81と適合する屈折率を
有する物質によシ反射防止膜を成膜することは不利であ
る。
As mentioned above, the interference fringes that appear in radar printers can be solved by various methods, but when considering the simplification, labor saving, and productivity of the manufacturing process of the A-81 photoreceptor, it is possible to solve them as much as possible. It is better to finally manufacture the A-81 photoreceptor only with the membrane device and not add another manufacturing process. Therefore, it is disadvantageous to form an antireflection coating using a material having a refractive index compatible with A-81.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情にもとづいてなされたもので、その目
的とするところは、製造プロセスを増やすことなく、干
渉効果による画像の濃度むらの発生を防止することがで
きるようにした電子写真感光体を提供することにある。
The present invention has been made based on the above circumstances, and an object of the present invention is to provide an electrophotographic photoreceptor that can prevent the occurrence of image density unevenness due to interference effects without increasing the number of manufacturing processes. It is about providing.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するために、導電性基体上に
、シリコン原子を母体として含む非晶質材料から成る光
導電層を設けた電子写真感光体にかいて、上記光導電層
上に、光学的バンドギヤ、ゾが1.65〜2.00 m
Vの範囲にあって、炭素を構成元素として含む非晶質材
料から成る第1の表面層を設け、この第1の表面層上に
、光学的バンドギャップが1.85〜2゜80 eV 
の範囲にあって、炭素を構成元素として含む非晶質材料
から成る第2の表面層を設けたことを特徴とするもので
ある。
In order to achieve the above object, the present invention provides an electrophotographic photoreceptor in which a photoconductive layer made of an amorphous material containing silicon atoms as a matrix is provided on a conductive substrate. , optical band gear, 1.65 to 2.00 m
A first surface layer made of an amorphous material containing carbon as a constituent element and having an optical band gap of 1.85 to 2.80 eV is provided on the first surface layer.
The invention is characterized in that it has a second surface layer made of an amorphous material containing carbon as a constituent element.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面を参照しながら説明する
。第3図は本発明に係る電子写真感光体を成膜する成膜
装置を示すもので、図中1は反応容器である。この内部
には、高周波電力印加用電極2、これに対向して設けら
れ、かつアースされた支持台3、この支持台3の上部に
設けられた成膜用導電性基板(導電性基体)4、および
、上記支持台3の下部に設けられたヒーター5等が収容
されている。上記電極2は、反応容器1とはテアoン等
の絶縁材6で絶縁され、反応容器1の外部で、高周波電
力のマツチングのためのLC回路から成るマツチング♂
ツク゛ス1を介してプラズマ放電分解を行うための周波
数を有する電力を供給するための高周波電源8に接続さ
れている。また、9は厘料fス、たとえば5IH4,5
12H6ガス等を導入するためのfス導入管であシ、1
0は拡散ポンプによシ反応容器1の内部を排気する第1
の排気系、11は成膜中メカニカル・ブースター4/f
によシ排気を行う第2の排気系、12,13.14はパ
ルプである。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 3 shows a film forming apparatus for forming a film on an electrophotographic photoreceptor according to the present invention, and numeral 1 in the figure is a reaction vessel. Inside this, there is an electrode 2 for applying high frequency power, a support stand 3 provided opposite to this and grounded, and a conductive substrate for film formation (conductive substrate) 4 provided on the upper part of this support stand 3. , and a heater 5 provided at the bottom of the support stand 3. The electrode 2 is insulated from the reaction vessel 1 with an insulating material 6 such as a thermal conductor, and a matching ♂ consisting of an LC circuit for matching high frequency power is installed outside the reaction vessel 1.
It is connected via the network 1 to a high frequency power source 8 for supplying power having a frequency for performing plasma discharge decomposition. In addition, 9 is a fee fs, for example, 5IH4,5
An f-s introduction pipe for introducing 12H6 gas, etc., 1
0 is the first pump which evacuates the inside of the reaction vessel 1 by a diffusion pump.
11 is a mechanical booster 4/f during film formation.
The second exhaust system, 12, 13, and 14, is pulp.

次に、上記成膜装置で製造した本発明に係る電子写真感
光体を第1図および第2図に模式的に示す。
Next, an electrophotographic photoreceptor according to the present invention manufactured using the film forming apparatus described above is schematically shown in FIGS. 1 and 2.

第1図に示す電子写真感光体は、円筒型のAtからなる
導電性基板4の上部にシリコン原子を母体として含む非
晶質材料から成る光導電層15が設けられている。この
光導電層15は、5tH4,St□H6等のガスを用い
てプラズマ放電分解によって成膜されるが、との成膜時
には、上記シリコンを含むガスに加えて、膜の比抵抗を
高める目的で、周期律表mA族の元素を含むガスを混合
して成膜することもよく行なわれる。
In the electrophotographic photoreceptor shown in FIG. 1, a photoconductive layer 15 made of an amorphous material containing silicon atoms as a matrix is provided on top of a cylindrical conductive substrate 4 made of At. This photoconductive layer 15 is formed by plasma discharge decomposition using a gas such as 5tH4, St□H6, etc. When forming the film, in addition to the above-mentioned silicon-containing gas, the purpose is to increase the resistivity of the film. It is also common to form a film by mixing a gas containing an element of group mA of the periodic table.

なお、この光導電層15は、光学的バンドギャップが1
.62〜1.70 eVであ〕、また、膜厚が10〜7
0μ謂い好ましくは15〜40μmの場合に良好な電子
写真特性のものが得られる。
Note that this photoconductive layer 15 has an optical band gap of 1.
.. 62 to 1.70 eV], and the film thickness was 10 to 7
Good electrophotographic properties can be obtained when the thickness is 0 μm, preferably 15 to 40 μm.

また、上記光導電層15の上部には、第1の表面層16
と第2の表面層12がこの順に積層されている。第1の
表面層16は、シリコン原子を母体として含むがス、た
とえば5tH4zS i 2H6等のガスと、炭素を含
むガス、たとえばCH4,C2f(4等を混合してプラ
ズマ放電分解法によって形成され、光学的バンドギャッ
プが1.65〜2. OOeVの範囲にあるものである
。また、第2の表面層17は、上記第1の表面層16と
同様の方法によって形成され、光学的バンドプヤツデが
1.85〜2.80・Vの範囲にあるものである。なお
、第1の表面層16は、膜厚が100X〜5μm、好ま
しくは5001〜3μmである。
Further, on the top of the photoconductive layer 15, a first surface layer 16 is formed.
and second surface layer 12 are laminated in this order. The first surface layer 16 is formed by a plasma discharge decomposition method by mixing a gas containing silicon atoms as a matrix, such as 5tH4zS i 2H6, and a gas containing carbon, such as CH4, C2f (4, etc.), The second surface layer 17 is formed by the same method as the first surface layer 16, and has an optical band gap of 1.65 to 2.00eV. The first surface layer 16 has a thickness of 100X to 5 μm, preferably 5001 to 3 μm.

また、第2の表面層17は、膜厚が100X〜3μm1
好ましくは500X〜2μmである。
Further, the second surface layer 17 has a film thickness of 100X to 3 μm1.
Preferably it is 500X to 2 μm.

以上の構成によれば、光導電層15の上部に第1の表面
層16と第2表面層17とを設けることにより、電子写
真感光体表面に入射してきたレーデ−光は、第2の表面
層17で一部分反射して内部に入る際、第2の表面層1
7の光学的バンドギャップと膜厚を上記のような値にす
ることによって、第2の表面層17でのレーデ−光の反
射を低減することができる。さらに、第2の表面層11
の内部に入射したレーデ−光は、第1の表面層16に到
達するが、ここでも上記のように、第1の表面層16の
光学的パ/ドギャップと膜厚を設定するととくよって、
第1の表面層16でのレーザー光の反射を低減すること
かできる。次に、第1表面層16を透過したレーデ−光
は、光導電層150表面に到達するが、ここでは、光導
電層15の光学的バンドギヤ、fと第1の表面層16の
光学的バンドイヤ、fとが大きく変化しないように、光
導電層15の光学的バンドギヤ、fを設定することによ
)、光導電層15表面での反射も低減することができる
According to the above structure, by providing the first surface layer 16 and the second surface layer 17 on the top of the photoconductive layer 15, the radar light incident on the surface of the electrophotographic photoreceptor is transmitted to the second surface. When partially reflected by layer 17 and entering the interior, second surface layer 1
By setting the optical bandgap and film thickness of layer 7 to the above values, reflection of radar light at second surface layer 17 can be reduced. Furthermore, the second surface layer 11
The radar light incident on the inside reaches the first surface layer 16, but here too, by setting the optical pad gap and film thickness of the first surface layer 16, as described above,
Reflection of laser light on the first surface layer 16 can also be reduced. Next, the radar light transmitted through the first surface layer 16 reaches the surface of the photoconductive layer 150, but here, the optical band gear f of the photoconductive layer 15 and the optical band ear of the first surface layer 16 are By setting the optical band gear, f, of the photoconductive layer 15 so that , f do not change significantly, reflection on the surface of the photoconductive layer 15 can also be reduced.

すなわち、入射するレーデ−光に対して第2の表面層1
7でレーデ−光の反射を低くおさえ、さらに、第2の表
面層17と第1の表面層16との界面、第1の表面層1
6と光導電層15との界面でのレーデ−光の反射を低く
おさえるととくよって、反射レーデ−光同志の干渉効果
を防止することができる。また、第1の表面層16と第
2の表面層12を積層することによって、帯電能に優れ
、かつ耐コロナイオン性、耐オゾン性、耐環境性に優れ
た電子写真感光体を提供することができる。
That is, the second surface layer 1
7 suppresses the reflection of radar light, and furthermore, the interface between the second surface layer 17 and the first surface layer 16, the first surface layer 1
By suppressing the reflection of the radar light at the interface between the photoconductive layer 6 and the photoconductive layer 15, interference effects between the reflected radar lights can be prevented. Further, by laminating the first surface layer 16 and the second surface layer 12, it is possible to provide an electrophotographic photoreceptor having excellent charging ability, and excellent corona ion resistance, ozone resistance, and environment resistance. Can be done.

また、第2図に示す電子写真感光体では、光導電層15
、第1の表面層16、第2の表面層17は、第1図に示
す電子写真感光体と同様であるが、帯電能を始めとする
電子写真特性の向上を目的として、導電性基板4と光導
電層15との間にブロッキング層18が設けられている
Further, in the electrophotographic photoreceptor shown in FIG. 2, the photoconductive layer 15
, the first surface layer 16, and the second surface layer 17 are similar to those of the electrophotographic photoreceptor shown in FIG. A blocking layer 18 is provided between the photoconductive layer 15 and the photoconductive layer 15 .

〔具体例〕〔Concrete example〕

充分に洗浄した後乾燥させた導電性基板4としてのAt
素管4を真空容器1内に設置し、メカニカル・グースタ
ーポンfKよシ真空容器1内を排気した。これと同時に
At素管4の加熱用ヒーター5の電源を入れ、設定温度
を300℃にし、加熱を行った。約1時間後、At素管
4の温度が300℃で安定した。また、真空容器1内の
真空度は1.2 X 10−5Torrであった。
At as the conductive substrate 4 which has been thoroughly cleaned and dried
The raw tube 4 was placed in the vacuum container 1, and the inside of the vacuum container 1 was evacuated using a mechanical gas pump fK. At the same time, the heater 5 for heating the At blank tube 4 was turned on, the set temperature was set to 300° C., and heating was performed. After about 1 hour, the temperature of the At blank tube 4 stabilized at 300°C. Further, the degree of vacuum in the vacuum container 1 was 1.2×10 −5 Torr.

次に、第一層の10ッキング層18の成膜を行うために
、SiH4の流量を300 maaM 。
Next, in order to form the first layer 18, the flow rate of SiH4 was set at 300 maaM.

B2H6のeta4に対する流量比を5xlO、CH4
の5in4に対する流量比を20チ、アルf 7 f!
スを200 @ear、  それぞれマス70−コント
ローラによシ調節して真空容器1内に導入し、約10分
間その状態に保った。約10分抜去ガスの流量が安定し
ているのを確認した後、周波数が13.56 MHzの
高周波電源8のスイッチを投入して高周波電力を200
W印加し、ブロー放電を行った。なお、この時の反応圧
力はQ、 3 Torrであった。また、この場合の成
膜時間は10分間とし、別途成膜したものの膜厚測定か
ら膜厚は1.5μmでちった。
The flow rate ratio of B2H6 to eta4 is 5xlO, CH4
The flow rate ratio for 5in4 is 20ch, Al f 7 f!
200@ear of gas were introduced into the vacuum vessel 1, each regulated by a mass 70 controller, and maintained in that state for about 10 minutes. After confirming that the flow rate of the removal gas is stable for about 10 minutes, turn on the high frequency power supply 8 with a frequency of 13.56 MHz and turn on the high frequency power to 200 MHz.
W was applied to perform blow discharge. Note that the reaction pressure at this time was Q, 3 Torr. Further, the film forming time in this case was 10 minutes, and the film thickness of a separately formed film was measured to be 1.5 μm.

第1層のブロッキング層18を成膜後、すべてのガスを
止め、真空容器1内のガスのノ々−ノを15分間行った
。その後、8*H4の流量を600sccM、アルコ中
ンブスの流量を500 secM 。
After forming the first blocking layer 18, all gases were stopped and the gas inside the vacuum container 1 was vented for 15 minutes. After that, the flow rate of 8*H4 was set to 600 sccM, and the flow rate of Alco medium bus was set to 500 secM.

B2H6のS iH4に対する流量比を1×10 とそ
レソレマスフローコントローラーによシ調整し、約10
分間その状態に保った。約10分抜去ガスの流量が安定
しているのを確認した後、高周波電力を400Wに設定
してグロー放電を行った。なお、この場合の反応圧力は
1.4 Torr  であった。これにより、第二層目
の光導電層15を2時間の成膜によって35μmの膜厚
で形成した。この光導電層15は、光学的バンドプヤツ
デが1.63・Vであった。
The flow rate ratio of B2H6 to SiH4 was adjusted to 1×10 using a mass flow controller, and the flow rate was approximately 10
It was held in that state for a minute. After confirming that the flow rate of the removed gas was stable for about 10 minutes, the high frequency power was set to 400 W and glow discharge was performed. Note that the reaction pressure in this case was 1.4 Torr. As a result, the second photoconductive layer 15 was formed with a thickness of 35 μm by film formation for 2 hours. This photoconductive layer 15 had an optical band value of 1.63·V.

この光導電層15を成膜した後、すべてのガスを止め、
真空容器2内のガスのノ4−ジを15分間行った。その
後、第1の表面層16を成膜するために、5ta4の流
量を1008ead、 CH4の流量を300 sec
Mに調節した後、約10分間その状態に保った。各ガス
の流量が安定した後高周波電力を150Wに設定してグ
ロー放電を行った。なお、この場合の反応圧力は9.6
 Torrであった。成膜時間は、15分間とし、膜厚
は0.8μmであった。また、光学的パン−ギヤ、デは
1.77・Vでありた。
After forming this photoconductive layer 15, stop all gases,
The gas in the vacuum container 2 was flushed for 15 minutes. After that, in order to form the first surface layer 16, the flow rate of 5ta4 was set to 1008 ead, and the flow rate of CH4 was set to 300 sec.
After adjusting to M, the condition was maintained for about 10 minutes. After the flow rate of each gas was stabilized, the high frequency power was set to 150 W and glow discharge was performed. In addition, the reaction pressure in this case is 9.6
It was Torr. The film forming time was 15 minutes, and the film thickness was 0.8 μm. Further, the optical pan gear was 1.77·V.

上記第1の表面層16を成膜した後、CH4の流量を4
50 aeeMに上げ、その状態に約10分保ち、流量
が安定した後、高周波電力を150Wに設定して第2の
表面層11の成膜を行った。
After forming the first surface layer 16, the flow rate of CH4 was increased to 4
After increasing the flow rate to 50 aeeM and maintaining that state for about 10 minutes to stabilize the flow rate, the high frequency power was set to 150 W and the second surface layer 11 was formed.

この場合の反応圧力は0.68 Torrであった。ま
た、成膜時間は3分間で、膜厚は約6501であった。
The reaction pressure in this case was 0.68 Torr. Further, the film forming time was 3 minutes, and the film thickness was about 6,501 mm.

また、光学的バンドギャップは2.0eVであった。Further, the optical band gap was 2.0 eV.

上記第2の表面層17を成膜後、加熱用ヒーター5を切
り、すべてのガスを止め、ガスのノ4−ジを20分間行
い、さらに1その後、窒素ガスを真空容器lに導入し、
成膜したドラム(感光体)の冷却を行い、100℃以下
に温度が降下してから窒素ガスと装置を止めてドラム(
感光体)を取出した。
After forming the second surface layer 17, the heating heater 5 is turned off, all gases are stopped, and the gas is injected for 20 minutes.
The drum (photoreceptor) on which the film was formed is cooled, and after the temperature drops to below 100°C, the nitrogen gas and equipment are stopped, and the drum (photoreceptor) is cooled.
(Photoreceptor) was taken out.

このよ5にして得られた電子写真感光体を評価装置で評
価したところ、表面電位535 V。
When the electrophotographic photoreceptor obtained in step 5 was evaluated using an evaluation device, the surface potential was 535 V.

15秒後の保持率72チ、半減露光量0.51u4se
c 、残留電位12Vで良好な電子写真特性のものが得
られた。さらに、’790nmの発振波長の半導体レー
デ−を搭載したレーデ−プリンターで画像ナンデルを取
ってみたところ、文字画像にも、ハーフトーンにも、干
渉による濃度むらのない良好な画像が得られた。
Retention rate after 15 seconds: 72chi, half-decreased exposure: 0.51u4se
c, good electrophotographic properties were obtained with a residual potential of 12V. Furthermore, when an image was scanned using a radar printer equipped with a semiconductor radar with an oscillation wavelength of 790 nm, a good image with no density unevenness due to interference was obtained in both character images and halftones.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、導電性基体上に、
シリコン原子を母体として含む非晶質材料から成る光導
電層を設けた電子写真感光体において、上記光導電層上
に、光学的パンPギヤ、グが1.65〜200 mVの
範囲にあって、炭素を構成元素として含む非晶質材料か
ら成る第1の表面層と、光学的バンドギャップが1.8
5〜2.80・Vの範囲にあって、炭素を構成元素とし
て含む非晶質材料から成る第2の表面層とをこの順に積
層したから、a−81成膜デaセスのみで製造プロセス
を増やすことなく、かつ電子写真特性を悪化させること
なく、干渉効果による画像の゛濃度むらの発生を防止す
ることができる等の優れた効果を奏する。
As explained above, according to the present invention, on a conductive substrate,
In an electrophotographic photoreceptor provided with a photoconductive layer made of an amorphous material containing silicon atoms as a matrix, an optical pan P gear and a g are in the range of 1.65 to 200 mV on the photoconductive layer. , a first surface layer made of an amorphous material containing carbon as a constituent element, and an optical band gap of 1.8.
Since the second surface layer made of an amorphous material having a voltage in the range of 5 to 2.80 V and containing carbon as a constituent element was laminated in this order, the manufacturing process required only the A-81 film formation process. This provides excellent effects such as being able to prevent the occurrence of density unevenness in images due to interference effects without increasing the electrophotographic properties or deteriorating the electrophotographic characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ本発明に係る電子写真感
光体を示す模式的構成図、第3図は本発明に係る電子写
真感光体を成膜するための成膜装置を示す概略的構成図
である。 ・暮・・・導電性基板(導電性基体)、15・・・光導
電層、16・・・第1の表面層、17・・・第2の表面
層O
1 and 2 are schematic configuration diagrams showing an electrophotographic photoreceptor according to the present invention, and FIG. 3 is a schematic configuration diagram showing a film forming apparatus for forming a film on the electrophotographic photoreceptor according to the present invention. It is a diagram.・Breath... Conductive substrate (conductive base), 15... Photoconductive layer, 16... First surface layer, 17... Second surface layer O

Claims (1)

【特許請求の範囲】[Claims] 導電性基体上に、シリコン原子を母体として含む非晶質
材料から成る光導電層を設けた電子写真感光体において
、上記光導電層上に、光学的バンドギャップが1.65
〜2.00eVの範囲にあって、炭素を構成元素として
含む非晶質材料から成る第1の表面層と、光学的バンド
ギャップが1.85〜2.80eVの範囲にあって、炭
素を構成元素として含む非晶質材料から成る第2の表面
層とをこの順に積層したことを特徴とする電子写真感光
体。
In an electrophotographic photoreceptor in which a photoconductive layer made of an amorphous material containing silicon atoms as a matrix is provided on a conductive substrate, an optical band gap of 1.65 is provided on the photoconductive layer.
A first surface layer made of an amorphous material having an optical band gap of 1.85 to 2.80 eV and comprising carbon as a constituent element; An electrophotographic photoreceptor characterized in that a second surface layer made of an amorphous material containing as an element is laminated in this order.
JP25682484A 1984-12-05 1984-12-05 Electrophotographic sensitive body Pending JPS61133948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25682484A JPS61133948A (en) 1984-12-05 1984-12-05 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25682484A JPS61133948A (en) 1984-12-05 1984-12-05 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS61133948A true JPS61133948A (en) 1986-06-21

Family

ID=17297939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25682484A Pending JPS61133948A (en) 1984-12-05 1984-12-05 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS61133948A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138258A (en) * 1984-12-10 1986-06-25 Canon Inc Photoconductive laminate structure
JPS6432266A (en) * 1987-07-29 1989-02-02 Fujitsu Ltd Electrophotographic sensitive body
JP2003107766A (en) * 2001-09-28 2003-04-09 Canon Inc Method of manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138258A (en) * 1984-12-10 1986-06-25 Canon Inc Photoconductive laminate structure
JPH0549108B2 (en) * 1984-12-10 1993-07-23 Canon Kk
JPS6432266A (en) * 1987-07-29 1989-02-02 Fujitsu Ltd Electrophotographic sensitive body
JP2003107766A (en) * 2001-09-28 2003-04-09 Canon Inc Method of manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor

Similar Documents

Publication Publication Date Title
US6410102B1 (en) Plasma process method
JPH0459390B2 (en)
US6435130B1 (en) Plasma CVD apparatus and plasma processing method
KR100222807B1 (en) Deposited film forming apparatus and electrode for use in it
JPS61133948A (en) Electrophotographic sensitive body
US4882252A (en) Electrophotographic sensitive member with amorphous silicon carbide
JPS61133949A (en) Electrophotographic sensitive body
JPS61137158A (en) Electrophotographic sensitive body
US5106711A (en) Electrophotographic sensitive member
JPS61143767A (en) Electrophotographic sensitive body
JPS61143768A (en) Electrophotographic sensitive body
JPS61137159A (en) Electrophotographic sensitive body
JPS61133947A (en) Electrophotographic sensitive body
JPS61143766A (en) Electrophotographic sensitive body
JPS61137160A (en) Electrophotographic sensitive body
JPS6186757A (en) Electrophotographic sensitive body
JPS6186758A (en) Electrophotographic sensitive body
JPS61130953A (en) Photoconductive material
JPS6186756A (en) Electrophotographic sensitive body
US4666816A (en) Method of manufacturing an amorphous Si electrophotographic photoreceptor
JPS6163845A (en) Electrophotographic sensitive body
JPS61223749A (en) Electrophotographic sensitive body
JPS6129850A (en) Electrophotographic sensitive body
JPH05232728A (en) Amorphous silicon sensitive body
JPS6186759A (en) Electrophotographic sensitive body