JPH054806A - 酸化物超電導薄膜の成膜方法 - Google Patents

酸化物超電導薄膜の成膜方法

Info

Publication number
JPH054806A
JPH054806A JP3181910A JP18191091A JPH054806A JP H054806 A JPH054806 A JP H054806A JP 3181910 A JP3181910 A JP 3181910A JP 18191091 A JP18191091 A JP 18191091A JP H054806 A JPH054806 A JP H054806A
Authority
JP
Japan
Prior art keywords
thin film
underlayer
single crystal
substrate
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3181910A
Other languages
English (en)
Inventor
Takashi Matsuura
尚 松浦
Kenjiro Higaki
賢次郎 桧垣
Hideo Itozaki
秀夫 糸▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3181910A priority Critical patent/JPH054806A/ja
Publication of JPH054806A publication Critical patent/JPH054806A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】 【目的】 物理蒸着法によって酸化物超電導材料の薄膜
を半導体単結晶基板上に成膜する方法。 【構成】 先ず、500 ℃以下の基板温度で厚さ50〜200
Åの酸化物材料の下地層を上記基板上に形成し、次い
で、この下地層上に 600℃以上の基板温度で酸化物超電
導材料の上層を成膜する。 【効果】 一様な酸化物超電導薄膜が成膜できる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は物理蒸着法によって酸化
物超電導材料の薄膜を半導体単結晶基板上に成膜する方
法に関するものである。
【0002】
【従来の技術】Y−Ba−Cu−O系、Bi−Sr−Ca−Cu−O
系およびTl−Ba−Ca−Cu−O系の各酸化物超電導体は臨
界温度Tcが高く、ジョセフソン素子、超電導トランジ
スタ等の電子デバイスへの応用が期待されている。これ
らの応用では、これら酸化物材料を薄膜化することが必
須であるが、現在では、スパッタリング法、蒸着法、レ
ーザアブレーション法等の物理蒸着法や化学的蒸着法を
用いることによって、MgO、SrTiO3 等の単結晶基板上
に良質な酸化物超電導材料の単結晶薄膜を成膜すること
が可能になっている。ところが、酸化物超電導材料と半
導体とを組み合わせた電子デバイスである超電導トラン
ジスタの場合には、半導体単結晶基板上に単結晶の酸化
物超電導材料の薄膜を成膜する必要があるが、シリコン
(Si)のような半導体単結晶基板上に酸化物超電導材料を
薄膜化しようとすると、半導体基板上に 200Å程度に膜
厚になるまでに酸化物超電導材料が島状に分離してしま
うために、結晶性の良い酸化物超電導材料の薄膜にはな
らず、その後さらに成膜操作を続けても、薄膜は凹凸に
なるだけである。また、半導体基板の基板温度を低くす
れば、基板上に一様に薄膜を形成することができるが、
薄膜の結晶性が悪くなって実用的な酸化物超電導材料の
薄膜は得られなかった。
【0003】
【発明が解決しようとする課題】本発明の目的は上記問
題点を解決して、シリコン等の半導体単結晶基板上に高
品質な単結晶の酸化物超電導材料の薄膜を成膜するため
の方法を提供することにある。
【0004】
【課題を解決するための手段】本発明は、物理蒸着法に
よって酸化物超電導材料の薄膜を半導体単結晶基板上に
成膜する方法において、先ず500 ℃以下の基板温度で厚
さ50〜200 Åの酸化物材料の下地層を上記基板上に形成
し、次いで、この下地層上に 600℃以上の基板温度で酸
化物超電導体の上層を成膜することを特徴とする方法を
提供する。
【0005】
【作用】本発明では、下地層は任意の酸化物にすること
ができる。一般には、上層と同じ酸化物超電導材料を用
いるが、結晶構造および/または格子定数が上層と同じ
酸化物超電導材料に類似した酸化物、例えばMgO、SrTi
3 等を用いることもできる。上層を構成する酸化物超
電導材料としては公知の任意の材料が適用できるが、Y
−Ba−Cu−O系酸化物超電導材料と、Bi−Sr−Ca−Cu−
O酸化物超電導材料が特に好ましい。上記の下地層を形
成する際の基板温度は500 ℃以下、好ましくは 400〜50
0 ℃にする。この基板温度で半導体単結晶基板上に酸化
物薄膜を形成した場合には、薄膜が島状に分離せずに一
様な薄膜となる。この下地層の結晶性は単結晶にはなら
ないが、本発明では下地層の結晶性は問題にならない。
なぜならば、この下地層は次の工程で単結晶に変えるこ
とができるからである。すなわち、本発明で下地層を形
成する目的は島状に分離していない一様な薄膜を形成す
ることにある。一様な薄膜を形成し易くするためには、
結晶性薄膜にするよりも、むしろアモルファス薄膜にす
るのが好ましい。このアモルファス薄膜は次の工程で単
結晶にすることができる。従って、この下地層の厚さは
重要であり、この下地層は50〜200 Åの厚さにする。下
地層の厚さが50Å未満では、上層を積層した際に上層が
島状に分離してしまう。逆に、下地層が 200Åより厚く
なると、次の工程で下地層を完全な単結晶にすることが
できない。従って、下地層の厚さは50〜200 Å、好まし
くは約 100Åにする。
【0006】次に、下地層の上に600 ℃以上の基板温度
で酸化物超電導材料の上層を成膜する。この工程で単結
晶半導体基板は600 ℃以上に加熱されるため、結晶性の
よくない、例えばアモルファス状態の下地層の酸化物材
料の薄膜でも、この加熱下で再結晶して単結晶となる。
また、この下地層の単結晶上に成膜した酸化物超電導材
料の薄膜も単結晶薄膜となる。従って、上層を形成する
際の基板温度は、下地層の酸化物薄膜を単結晶化するこ
とができると同時に、単結晶半導体基板にダメージを与
えないような温度にしなければならない。この時の基板
温度は、成膜される酸化物超電導材料の種類によって若
干異なるが、一般には 600℃以上にする必要がある。具
体的には、Y−Ba−Cu−O系の複合酸化物の場合には 6
40℃程度、Bi−Sr−Ca−Cu−O系複合酸化物の場合には
700℃程度にする。成膜方法は物理的蒸着法が好まし
く、特にスパッタリング法が好ましいが、真空蒸着法を
用いることもできる。単結晶半導体基板はシリコン単結
晶の他に、GaAs単結晶、InP単結晶等の化合物半導体の
単結晶基板を用いることができる。
【0007】
【実施例】以下、本発明の実施例を説明するが、本発明
が以下の実施例に限定されるものではない。以下の実施
例では、本発明方法により、RFスパッタリング法を用
いて半導体単結晶基板上に酸化物材料の薄膜を成膜し
た。
【0008】実施例1 ターゲットはY:Ba:Cuの原子比が1:2:2.6 の焼結
体を使用した。基板はシリコン単結晶を使用し、その
(100)面上にY−Ba−Cu−O酸化物超電導薄膜を成膜し
た。すなわち、本発明方法により、同一チャンバー中
で、先ず下地層を形成し、次いで、この下地層上に上層
を連続して成膜した。各成膜条件は表1にまとめて示し
てある。
【0009】
【表1】 成膜条件 下地層 上層 基板温度(℃) 420 640 圧力 (Torr) 0.1 0.1 スパッタリングガス Ar+O22/Ar+O2 (%) 20 20 RF出力(W/cm2) 2 2 成膜速度 (Å/秒) 0.3 0.3 膜厚 (Å) 100 4000 比較のために、下地層および上層の成膜時の基板温度を
同じ 640℃にし、他の条件は上記と同じにして、下地層
+上層の総膜厚が上記と同じ(4100Å) となるように成
膜した比較例のサンプルを作った。。成膜後に得られた
各サンプルの超電導薄膜の表面状態を走査型電子顕微鏡
で観察し、常法に従って臨界温度Tc と臨界電流密度J
c とを測定した。結果は表2にまとめて示してある。
【0010】
【表2】 結果 サンプル 臨界温度 臨界電流 (77K) 薄膜の状態 Tc(K) Jc (A/cm2) 本発明 82 1×105 一様で平滑 比較例 40 ─ 凹凸あり
【0011】実施例2 実施例1を繰り返したが、シリコン単結晶基板の代わり
にGaAs化合物半導体の単結晶基板を用い、その(100) 面
上にY−Ba−Cu−O酸化物超電導薄膜を成膜した。成膜
条件は表3にまとめて示してある。
【0012】
【表3】 成膜条件 下地層 上層 基板温度(℃) 380 630 圧力 (Torr) 0.1 0.1 スパッタリングガス Ar+O2 2/Ar+O2 (%) 20 20 RF出力(W/cm2) 2 2 成膜速度 (Å/秒) 0.3 0.3 膜厚 (Å) 100 4000 比較のために、下地層および上層の成膜時の基板温度を
同じ 630℃にし、他の条件は上記と同じにして、下地層
+上層の総膜厚が上記と同じ(4100Å) となるように成
膜した比較例のサンプルを作った。成膜後に得られた各
サンプルの超電導薄膜の表面状態を走査型電子顕微鏡で
観察し、常法に従って臨界温度Tc と臨界電流密度Jc
とを測定した。結果は表4にまとめて示してある。
【0013】
【表4】 結果 サンプル 臨界温度 臨界電流 (77K) 薄膜の状態 Tc(K) Jc (A/cm2) 本発明 85 3×105 一様で平滑 比較例 45 ─ 凹凸あり
【0014】実施例3 実施例1を繰り返したが、シリコン単結晶基板の代わり
にInP化合物半導体の単結晶基板を用い、その(100) 面
上にY−Ba−Cu−O酸化物超電導薄膜を成膜した。成膜
条件は表5にまとめて示してある。
【0015】
【表5】 成膜条件 下地層 上層 基板温度(℃) 390 710 圧力 (Torr) 0.1 0.1 スパッタリングガス Ar+O2 2/Ar+O2 (%) 20 20 RF出力(W/cm2) 2 2 成膜速度 (Å/秒) 0.3 0.3 膜厚 (Å) 100 4000 比較のために、下地層および上層の成膜時の基板温度を
同じ 710℃にし、他の条件は上記と同じにして、下地層
+上層の総膜厚が上記と同じ(4100Å) となるように成
膜した比較例のサンプルを作った。成膜後に得られた各
サンプルの超電導薄膜の表面状態を走査型電子顕微鏡で
観察し、常法に従って臨界温度Tc と臨界電流密度Jc
とを測定した。結果は表6にまとめて示してある。
【0016】
【表6】 結果 サンプル 臨界温度 臨界電流 (77K) 薄膜の状態 Tc(K) Jc (A/cm2) 本発明 87 5×105 一様で平滑 比較例 50 ─ 凹凸あり
【0017】実施例4 ターゲットとしてBi:Sr:Ca:Cuの原子比が2:2:
2:2.5 の焼結体を使用した。基板はシリコン単結晶を
使用し、その(100)面上にBi−Sr−Ca−Cu−O酸化物超
電導薄膜を成膜した。すなわち、本発明方法により同一
チャンバー中で、先ず下地層を形成し、次いで、この下
地層上に上層を連続して成膜した。各成膜条件は表7に
まとめて示してある。
【0018】
【表7】 成膜条件 下地層 上層 基板温度(℃) 360 680 圧力 (Torr) 0.1 0.1 スパッタリングガス Ar+O2 2/Ar+O2 (%) 20 20 RF出力(W/cm2) 2 2 成膜速度 (Å/秒) 0.3 0.3 膜厚 (Å) 100 4000 比較のために、下地層および上層の成膜時の基板温度を
同じ 680℃にし、他の条件は上記と同じにして、下地層
+上層の総膜厚が上記と同じ(4100Å) となるように成
膜した比較例のサンプルを作った。成膜後に得られた各
サンプルの超電導薄膜の表面状態を走査型電子顕微鏡で
観察し、常法に従って臨界温度Tc と臨界電流密度Jc
とを測定した。結果は表8にまとめて示してある。
【0019】
【表8】 結果 サンプル 臨界温度 臨界電流 (77K) 薄膜の状態 Tc(K) Jc (A/cm2) 本発明 85 2×105 一様で平滑 比較例 60 ─ 凹凸あり
【0020】実施例5 実施例4を繰り返したが、シリコン単結晶基板の代わり
にGaAs化合物半導体の単結晶基板を用い、その(100) 面
上にBi−Sr−Ca−Cu−O酸化物超電導薄膜を成膜した。
成膜条件は表9にまとめて示してある。
【0021】
【表9】 成膜条件 下地層 上層 基板温度(℃) 380 690 圧力 (Torr) 0.1 0.1 スパッタリングガス Ar+O2 2/Ar+O2 (%) 20 20 RF出力(W/cm2) 2 2 成膜速度 (Å/秒) 0.3 0.3 膜厚 (Å) 100 4000 比較のために、下地層および上層の成膜時の基板温度を
同じ 690℃にし、他の条件は上記と同じにして、下地層
+上層の総膜厚が上記と同じ(4100Å) となるように成
膜した比較例のサンプルを作った。成膜後に得られた各
サンプルの超電導薄膜の表面状態を走査型電子顕微鏡で
観察し、常法に従って臨界温度Tc と臨界電流密度Jc
とを測定した。結果は表10にまとめて示してある。
【0022】
【表10】 結果 サンプル 臨界温度 臨界電流 (77K) 薄膜の状態 Tc(K) Jc (A/cm2) 本発明 90 3×105 一様で平滑 比較例 67 ─ 凹凸あり
【0023】実施例6 実施例4を繰り返したが、シリコン単結晶基板の代わり
にInP化合物半導体の単結晶基板を用い、その(100) 面
上にBi−Sr−Ca−Cu−O酸化物超電導薄膜を成膜した。
成膜条件は表11にまとめて示してある。
【0024】
【表11】 成膜条件 下地層 上層 基板温度(℃) 410 670 圧力 (Torr) 0.1 0.1 スパッタリングガス Ar+O2 2/Ar+O2 (%) 20 20 RF出力(W/cm2) 2 2 成膜速度 (Å/秒) 0.3 0.3 膜厚 (Å) 100 4000 比較のために、下地層および上層の成膜時の基板温度を
同じ 670℃にし、他の条件は上記と同じにして、下地層
+上層の総膜厚が上記と同じ(4100Å) となるように成
膜した比較例のサンプルを作った。成膜後に得られた各
サンプルの超電導薄膜の表面状態を走査型電子顕微鏡で
観察し、常法に従って臨界温度Tc と臨界電流密度Jc
とを測定した。結果は表12にまとめて示してある。
【0025】
【表12】 結果 サンプル 臨界温度 臨界電流 (77K) 薄膜の状態 Tc(K) Jc (A/cm2) 本発明 93 4×105 一様で平滑 比較例 70 ─ 凹凸あり
【0026】実施例7 実施例1を繰り返したが、下地層としてMgOを用い
て、シリコン単結晶基板の(100) 面上にY−Ba−Cu−O
酸化物超電導薄膜を成膜した。成膜条件は表13にまとめ
て示してある。
【0027】
【表13】 成膜条件 下地層 上層 基板温度(℃) 300 640 圧力 (Torr) 0.1 0.1 スパッタリングガス Ar+O2 2/Ar+O2 (%) 20 20 RF出力(W/cm2) 2 2 成膜速度 (Å/秒) 0.03 0.3 膜厚 (Å) 100 4000 比較のために、下地層および上層の成膜時の基板温度を
同じ 640℃にし、他の条件は上記と同じにして、下地層
+上層の総膜厚が上記と同じ(4100Å) となるように成
膜した比較例のサンプルを作った。実施例1と同じ測定
をした結果は表14にまとめて示してある。
【0028】
【表14】 結果 サンプル 臨界温度 臨界電流 (77K) 薄膜の状態 Tc(K) Jc (A/cm2) 本発明 82 3×105 一様で平滑 比較例 40 ─ 凹凸あり
【0029】
【発明の効果】本発明方法を用いることによって、単に
基板温度を制御するだけで、半導体単結晶基板上に結晶
性の優れた酸化物超電導材料を成膜することができる。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // H01B 12/06 ZAA 8936−5G

Claims (1)

  1. 【特許請求の範囲】 【請求項1】 物理蒸着法によって酸化物超電導材料の
    薄膜を半導体単結晶基板上に成膜する方法において、先
    ず、500 ℃以下の基板温度で厚さ50〜200 Åの酸化物材
    料の下地層を上記基板上に形成し、次いで、この下地層
    上に 600℃以上の基板温度で酸化物超電導材料の上層を
    成膜することを特徴とする方法。
JP3181910A 1990-06-28 1991-06-26 酸化物超電導薄膜の成膜方法 Withdrawn JPH054806A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3181910A JPH054806A (ja) 1990-06-28 1991-06-26 酸化物超電導薄膜の成膜方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-170993 1990-06-28
JP17099390 1990-06-28
JP3181910A JPH054806A (ja) 1990-06-28 1991-06-26 酸化物超電導薄膜の成膜方法

Publications (1)

Publication Number Publication Date
JPH054806A true JPH054806A (ja) 1993-01-14

Family

ID=26493837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3181910A Withdrawn JPH054806A (ja) 1990-06-28 1991-06-26 酸化物超電導薄膜の成膜方法

Country Status (1)

Country Link
JP (1) JPH054806A (ja)

Similar Documents

Publication Publication Date Title
US5241191A (en) Cubic perovskite crystal structure, a process of preparing the crystal structure, and articles constructed from the crystal structure
EP0430737B1 (en) A superconducting thin film
EP0446145B1 (en) Process for preparing high-temperature superconducting thin films
JP3188358B2 (ja) 酸化物超電導体薄膜の製造方法
JPH02177381A (ja) 超伝導体のトンネル接合素子
JPH0354116A (ja) 複合酸化物超電導薄膜および作製方法
JPH04300292A (ja) 複合酸化物超電導薄膜の成膜方法
JPH054806A (ja) 酸化物超電導薄膜の成膜方法
JP3096050B2 (ja) 半導体装置の製造方法
JPH0221676A (ja) 超伝導体のトンネル接合
EP0465325B1 (en) Process for preparing thin film of oxyde superconductor
EP0494830B1 (en) Method for manufacturing tunnel junction type josephson device composed of compound oxide superconductor material
EP0459906B1 (en) Process for preparing superconducting junction of oxide superconductor
JPH059100A (ja) 酸化物超電導薄膜合成方法
US5362709A (en) Superconducting device
JP2819743B2 (ja) 高温超電導薄膜の作製方法
JPH02252697A (ja) 超伝導セラミックス薄膜の製法
JP2821885B2 (ja) 超伝導薄膜の形成方法
JPH05279192A (ja) 酸化物超電導薄膜合成方法
JPH03275504A (ja) 酸化物超伝導体薄膜およびその製造方法
JP2545423B2 (ja) 複合酸化物超電導薄膜とその作製方法
JPH08139374A (ja) 超伝導素子
JP2698858B2 (ja) 酸化物超伝導体の成膜方法
JP2819871B2 (ja) 超電導装置の作製方法
JPH04342497A (ja) 複合酸化物超電導薄膜の成膜方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903