JPH054766B2 - - Google Patents
Info
- Publication number
- JPH054766B2 JPH054766B2 JP61114457A JP11445786A JPH054766B2 JP H054766 B2 JPH054766 B2 JP H054766B2 JP 61114457 A JP61114457 A JP 61114457A JP 11445786 A JP11445786 A JP 11445786A JP H054766 B2 JPH054766 B2 JP H054766B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- superconducting
- barrier layer
- diffusion barrier
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims description 40
- 238000009792 diffusion process Methods 0.000 claims description 25
- 230000004888 barrier function Effects 0.000 claims description 22
- 230000000087 stabilizing effect Effects 0.000 claims description 19
- 229910045601 alloy Inorganic materials 0.000 claims description 18
- 239000000956 alloy Substances 0.000 claims description 18
- 150000001875 compounds Chemical class 0.000 claims description 17
- 239000011159 matrix material Substances 0.000 claims description 13
- 229910017060 Fe Cr Inorganic materials 0.000 claims description 10
- 229910002544 Fe-Cr Inorganic materials 0.000 claims description 10
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052718 tin Inorganic materials 0.000 description 7
- 229910052758 niobium Inorganic materials 0.000 description 6
- 239000002131 composite material Substances 0.000 description 5
- 229910000599 Cr alloy Inorganic materials 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 229910000807 Ga alloy Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 229910017755 Cu-Sn Inorganic materials 0.000 description 2
- 229910017927 Cu—Sn Inorganic materials 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005491 wire drawing Methods 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/20—Permanent superconducting devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/9265—Special properties
- Y10S428/93—Electric superconducting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S505/00—Superconductor technology: apparatus, material, process
- Y10S505/825—Apparatus per se, device per se, or process of making or operating same
- Y10S505/884—Conductor
- Y10S505/887—Conductor structure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49014—Superconductor
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、多芯線部のまわりに安定化材部を
設けた安定化超電導線に関するものであり、特に
合金マトリツクス中の元素が安定化材部に拡散し
て汚染するのを防止するためのバリア層(以下、
拡散バリア層という)の改良された安定化超電導
線に関するものである。
設けた安定化超電導線に関するものであり、特に
合金マトリツクス中の元素が安定化材部に拡散し
て汚染するのを防止するためのバリア層(以下、
拡散バリア層という)の改良された安定化超電導
線に関するものである。
[従来の技術]
核融合、エネルギ貯蔵、分析用NMRマグネツ
ト等のへの超電導の応用においては、高磁界での
性能の良好な超電導線が要望されている。高磁界
用の実用超電導線としては、Nb3SnやV3Gaなど
の化合物系超電導線が用いられている。これらの
化合物系超電導線は、通常いわゆる“ブロンズ
法”によつて作製されている。Nb3Snの場合に
は、Cu−Sn合金マトリツクスのNb多芯線を熱処
理しNbとマトリツクス中のSnとの拡散反応によ
りNb3Snを形成させている。また、V3Gaの場合
には、Cu−Ga合金マトリツクス中のV多芯線を
熱処理しVとマトリツクス中のGaとの拡散反応
によりV3Gaを形成させている。
ト等のへの超電導の応用においては、高磁界での
性能の良好な超電導線が要望されている。高磁界
用の実用超電導線としては、Nb3SnやV3Gaなど
の化合物系超電導線が用いられている。これらの
化合物系超電導線は、通常いわゆる“ブロンズ
法”によつて作製されている。Nb3Snの場合に
は、Cu−Sn合金マトリツクスのNb多芯線を熱処
理しNbとマトリツクス中のSnとの拡散反応によ
りNb3Snを形成させている。また、V3Gaの場合
には、Cu−Ga合金マトリツクス中のV多芯線を
熱処理しVとマトリツクス中のGaとの拡散反応
によりV3Gaを形成させている。
第4図に、化合物系超電導材を用いた従来の安
定化超電導線の斜視図を示す。第4図において、
化合物系超電導材からなる多数のフイラメントを
合金マトリツクス中に配置した多芯線部1のまわ
りには、安定化材部4が位置している。該安定化
材部4と多芯線部1との間には、拡散バリア層6
が設けられている。安定化材部4の材質として
は、一般にCuが用いられている。また、拡散バ
リア層を構成する材質としては、伸縮加工の際に
破断等の欠陥を生じないよう良好な塑性加工性を
有し、かつ安定化材部中に拡散しにくい材質であ
ることが望ましい。従来、これらの要求を満足す
る物質としてNbまたはTa等の金属が用いられて
いる。
定化超電導線の斜視図を示す。第4図において、
化合物系超電導材からなる多数のフイラメントを
合金マトリツクス中に配置した多芯線部1のまわ
りには、安定化材部4が位置している。該安定化
材部4と多芯線部1との間には、拡散バリア層6
が設けられている。安定化材部4の材質として
は、一般にCuが用いられている。また、拡散バ
リア層を構成する材質としては、伸縮加工の際に
破断等の欠陥を生じないよう良好な塑性加工性を
有し、かつ安定化材部中に拡散しにくい材質であ
ることが望ましい。従来、これらの要求を満足す
る物質としてNbまたはTa等の金属が用いられて
いる。
[発明が解決しようとする問題点]
しかしながら、Nb、Taは高価であるため、こ
れらの金属を拡散バリア層として用いると超電導
線の価格が高くなるという問題があり、従来より
安価な拡散バリア層の材質が望まれていた。
れらの金属を拡散バリア層として用いると超電導
線の価格が高くなるという問題があり、従来より
安価な拡散バリア層の材質が望まれていた。
また、拡散バリア層としてNbを用い、化合物
系超電導材としてNb3Snを用いた場合には、多芯
線部内に大きな結合損が発生するという問題があ
つた。これは、熱処理の際に、合金マトリツクス
中のSnが拡散バリア層のNbまで拡散し、Nbと
反応して拡散バリア層との境界面に形成される円
筒状のNb3Sn超電導層が原因となつている。この
Nb3Sn超電導層は変動磁界に晒されると、大きな
ヒステリシス損失を発生し、また多芯線部内に大
きな結合損を発生して、結果として超電導線の効
率を著しく低下させる。
系超電導材としてNb3Snを用いた場合には、多芯
線部内に大きな結合損が発生するという問題があ
つた。これは、熱処理の際に、合金マトリツクス
中のSnが拡散バリア層のNbまで拡散し、Nbと
反応して拡散バリア層との境界面に形成される円
筒状のNb3Sn超電導層が原因となつている。この
Nb3Sn超電導層は変動磁界に晒されると、大きな
ヒステリシス損失を発生し、また多芯線部内に大
きな結合損を発生して、結果として超電導線の効
率を著しく低下させる。
それゆえに、この発明の目的は、安定化材部の
合金マトリツクス中の元素の拡散を有効に防止
し、かつ変動磁界中においても大きなヒステリシ
ス損失を発生しない拡散バリア層を設けた安定化
超電導線を提供することにある。
合金マトリツクス中の元素の拡散を有効に防止
し、かつ変動磁界中においても大きなヒステリシ
ス損失を発生しない拡散バリア層を設けた安定化
超電導線を提供することにある。
[問題点を解決するための手段]
この発明の安定化超電導線は、化合物系超電導
材からなる多数のフイラメントを合金マトリツク
ス中に配置した多芯線部と、該多芯線部のまわり
に位置する安定化材部と、該安定化材部と多芯線
部との間に設けられる拡散バリア層とを備えてお
り、該拡散バリア層が5重量%以上25重量%以下
のCrを含むFe−Cr合金からなることを特徴とし
ている。
材からなる多数のフイラメントを合金マトリツク
ス中に配置した多芯線部と、該多芯線部のまわり
に位置する安定化材部と、該安定化材部と多芯線
部との間に設けられる拡散バリア層とを備えてお
り、該拡散バリア層が5重量%以上25重量%以下
のCrを含むFe−Cr合金からなることを特徴とし
ている。
[作用]
この発明で拡散バリア層として用いられるFe
−Cr合金は、良好な塑性加工性を有しており、
伸線加工の際に破断等の欠陥を生じることはな
い。また、Fe−Cr合金はたとえばCuからなる安
定化材部中に拡散しにくい材質である。
−Cr合金は、良好な塑性加工性を有しており、
伸線加工の際に破断等の欠陥を生じることはな
い。また、Fe−Cr合金はたとえばCuからなる安
定化材部中に拡散しにくい材質である。
Fe−Cr合金のCr濃度を5重量%以上25重量%
以下としたのは、この範囲内で塑性加工性が優れ
ているからである。すなわち、5重量%未満で
は、マルテンサイト層の増加とフエライト結晶粒
の粗大化大により、25重量%を越えるとγ相の発
生により塑性加工性が低下するためである。
以下としたのは、この範囲内で塑性加工性が優れ
ているからである。すなわち、5重量%未満で
は、マルテンサイト層の増加とフエライト結晶粒
の粗大化大により、25重量%を越えるとγ相の発
生により塑性加工性が低下するためである。
[実施例]
第1図は、この発明の一実施例を示す断面図で
ある。第1図において、多芯線部1のまわりに
は、拡散バリア層としてのFe−Cr合金層5が設
けられており、該Fe−Cr合金層5のまわりには
安定化材部4が位置している。多芯線部1の化合
物系超電導材としては、Nb3SnまたはV3Ga等が
用いられ、この場合の合金マトリツクスとしては
Cu−Sn合金またはCu−Ga合金等が用いられる。
また、安定化材部4の材質としては、一般にCu
などが用いられる。
ある。第1図において、多芯線部1のまわりに
は、拡散バリア層としてのFe−Cr合金層5が設
けられており、該Fe−Cr合金層5のまわりには
安定化材部4が位置している。多芯線部1の化合
物系超電導材としては、Nb3SnまたはV3Ga等が
用いられ、この場合の合金マトリツクスとしては
Cu−Sn合金またはCu−Ga合金等が用いられる。
また、安定化材部4の材質としては、一般にCu
などが用いられる。
第2図は、この発明の他の実施例を示す断面図
であり、複数の多芯線部1を備えた安定化超電導
線を示している。第2図においても、第1図と同
様に多芯線部1と安定化材部4との間には、拡散
バリア層としてFe−Cr合金層5が設けられてい
る。
であり、複数の多芯線部1を備えた安定化超電導
線を示している。第2図においても、第1図と同
様に多芯線部1と安定化材部4との間には、拡散
バリア層としてFe−Cr合金層5が設けられてい
る。
この発明の安定化超電導線を作製する方法とし
ては、複合ビレツトの押出しによる作製方法があ
る。以下、この作製方法について説明する。
ては、複合ビレツトの押出しによる作製方法があ
る。以下、この作製方法について説明する。
第3図に、化合物系超電導材としてNb3Snを用
い、安定化材としてCuを用いた場合の複合ビレ
ツトの分解斜視図を示す。安定化材部としての
Cuパイプ8の内側にFe−13重量%Cr合金パイプ
9を挿入し、Cu−13重量%SnマトリツクスNb多
芯線(Nb芯55本)の六角棒10を151本稠密に充
填して、複合ビレツト7を組立てた。真空チヤン
バ中で内部を真空引きした後、上下に電子ビーム
で蓋を溶接した。
い、安定化材としてCuを用いた場合の複合ビレ
ツトの分解斜視図を示す。安定化材部としての
Cuパイプ8の内側にFe−13重量%Cr合金パイプ
9を挿入し、Cu−13重量%SnマトリツクスNb多
芯線(Nb芯55本)の六角棒10を151本稠密に充
填して、複合ビレツト7を組立てた。真空チヤン
バ中で内部を真空引きした後、上下に電子ビーム
で蓋を溶接した。
次に、複合ビレツト7を30mm径に押出した後、
中間軟化を繰返しながら伸線加工し、1.2mm径の
線材とした。この線材において、Fe−13重量%
Cr合金パイプ8からなる拡散バリア層の厚みは、
約10μmであつた。
中間軟化を繰返しながら伸線加工し、1.2mm径の
線材とした。この線材において、Fe−13重量%
Cr合金パイプ8からなる拡散バリア層の厚みは、
約10μmであつた。
さらに、Nb3Sn超電導化合物層を形成させるた
め、700℃、100時間の熱処理を行なつた。その
後、金属顕微鏡による線材の断面観察と、X線マ
イクロアナライザによる組成分析を行なつたとこ
ろ、Cu−13重量%Snマトリツクス中のNb多芯線
は、SnとNbの反応よりNb3Snの化合物系超電導
材になつていることが確認された。また、安定化
材部にはSnがほとんど存在せず、拡散バリア層
によつてSnの拡散が防止させていることが確認
された。さらに、Fe−Cr合金自体が安定化材部
へ拡散していないことも確認された。また、拡散
バリア層は、均一に組成変形しており、局所的な
破断等の欠陥は認められなかつた。
め、700℃、100時間の熱処理を行なつた。その
後、金属顕微鏡による線材の断面観察と、X線マ
イクロアナライザによる組成分析を行なつたとこ
ろ、Cu−13重量%Snマトリツクス中のNb多芯線
は、SnとNbの反応よりNb3Snの化合物系超電導
材になつていることが確認された。また、安定化
材部にはSnがほとんど存在せず、拡散バリア層
によつてSnの拡散が防止させていることが確認
された。さらに、Fe−Cr合金自体が安定化材部
へ拡散していないことも確認された。また、拡散
バリア層は、均一に組成変形しており、局所的な
破断等の欠陥は認められなかつた。
以上の実施例では、化合物系超電導材として
Nb3Snを形成させた場合について説明したが、こ
れに代えてV3Gaを化合物系超電導材として形成
させた場合には同様の結果が得られた。すなわ
ち、この場合にも、Cu−Ga合金マトリツクス中
のGaが安定化材部中へ拡散することはなかつた。
また、Nb3Alについても同様の結果が得られた。
Nb3Snを形成させた場合について説明したが、こ
れに代えてV3Gaを化合物系超電導材として形成
させた場合には同様の結果が得られた。すなわ
ち、この場合にも、Cu−Ga合金マトリツクス中
のGaが安定化材部中へ拡散することはなかつた。
また、Nb3Alについても同様の結果が得られた。
[発明の効果]
この発明の安定化超電導線では、拡散バリア層
の材質としてFe−Cr合金が用いられている。し
たがつて、従来のように高価なNbやTaなどの金
属を用いる必要がなく、安価に製造することがで
きる。また、拡散バリア層としてNbを用い、化
合物系超電導材としてNb3Snを用いた場合に、従
来問題となつていたヒステリシス損失の増大が解
消される。さらに、この発明で拡散バリア層とし
て用いられるFe−Cr合金は、塑性加工性が優れ
ており、伸線加工等の際に破断などの欠陥を生じ
ることもない。
の材質としてFe−Cr合金が用いられている。し
たがつて、従来のように高価なNbやTaなどの金
属を用いる必要がなく、安価に製造することがで
きる。また、拡散バリア層としてNbを用い、化
合物系超電導材としてNb3Snを用いた場合に、従
来問題となつていたヒステリシス損失の増大が解
消される。さらに、この発明で拡散バリア層とし
て用いられるFe−Cr合金は、塑性加工性が優れ
ており、伸線加工等の際に破断などの欠陥を生じ
ることもない。
この発明の安定化超電導線は、高磁界用超電導
導体を始め、その他の超電導の応用分野に広く利
用され得るものである。
導体を始め、その他の超電導の応用分野に広く利
用され得るものである。
第1図は、この発明の一実施例を示す断面図で
ある。第2図は、この発明の他の実施例を示す断
面図である。第3図は、複合ビレツトの分解斜視
図である。第4図は、従来の安定化超電導線を示
す斜視図である。 図において、1は多芯線部、4は安定化材部、
5はFe−Cr合金層を示す。
ある。第2図は、この発明の他の実施例を示す断
面図である。第3図は、複合ビレツトの分解斜視
図である。第4図は、従来の安定化超電導線を示
す斜視図である。 図において、1は多芯線部、4は安定化材部、
5はFe−Cr合金層を示す。
Claims (1)
- 【特許請求の範囲】 1 化合物系超電導材からなる多数のフイラメン
トを合金マトリツクス中に配置した多芯線部と、
該多芯線部のまわりに位置する安定化材部と、該
安定化材部と多芯線部との間に設けられる拡散バ
リア層とを備える安定化超電導線において、 前記拡散バリア層が5重量%以上25重量%以下
のCrを含むFe−Cr合金からなることを特徴とす
る、安定化超電導線。 2 前記化合物系超電導材がNb3Snであることを
特徴とする、特許請求の範囲第1項記載の安定化
超電導線。 3 前記化合物系超電導材がV3Gaであることを
特徴とする、特許請求の範囲第1項記載の安定化
超電導線。 4 前記化合物系超電導材がNb3Alであることを
特徴とする、特許請求の範囲第1項記載の安定化
超電導線。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61114457A JPS62271307A (ja) | 1986-05-19 | 1986-05-19 | 安定化超電導線 |
US07/051,400 US4791241A (en) | 1986-05-19 | 1987-05-19 | Stabilized superconducting wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61114457A JPS62271307A (ja) | 1986-05-19 | 1986-05-19 | 安定化超電導線 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62271307A JPS62271307A (ja) | 1987-11-25 |
JPH054766B2 true JPH054766B2 (ja) | 1993-01-20 |
Family
ID=14638207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61114457A Granted JPS62271307A (ja) | 1986-05-19 | 1986-05-19 | 安定化超電導線 |
Country Status (2)
Country | Link |
---|---|
US (1) | US4791241A (ja) |
JP (1) | JPS62271307A (ja) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1322118C (en) * | 1987-03-05 | 1993-09-14 | Kazuo Sawada | Electricity-light transmitting composite wire |
US4917965A (en) * | 1987-08-25 | 1990-04-17 | National Research Institute For Metals | Multifilament Nb3 Al superconducting linear composite articles |
US4927985A (en) * | 1988-08-12 | 1990-05-22 | Westinghouse Electric Corp. | Cryogenic conductor |
US5229358A (en) * | 1989-06-15 | 1993-07-20 | Microelectronics And Computer Technology Corporation | Method and apparatus for fabricating superconducting wire |
FR2649530B1 (fr) * | 1989-07-06 | 1994-04-29 | Alsthom Gec | Brin supraconducteur multifilamentaire |
US5182176A (en) * | 1990-05-17 | 1993-01-26 | Composite Materials Technology, Inc. | Extruded wires having layers of superconducting alloy and refractory meal encased in a normal metal sheath |
US5116429A (en) * | 1990-05-17 | 1992-05-26 | Composite Materials Technology, Inc. | Superconducting wire |
JPH06251645A (ja) * | 1993-02-22 | 1994-09-09 | Sumitomo Electric Ind Ltd | Nb3X系超電導線用線材 |
US5410286A (en) * | 1994-02-25 | 1995-04-25 | General Electric Company | Quench-protected, refrigerated superconducting magnet |
US6247225B1 (en) * | 1995-11-07 | 2001-06-19 | American Superconductor Corporation | Method for making cabled conductors containing anisotropic superconducting compounds |
FR2963851B1 (fr) * | 2010-08-11 | 2017-04-21 | Soc De Tech Michelin | Procede de fabrication d'une antenne pour un dispositif electronique d'un pneumatique |
FR2963852B1 (fr) | 2010-08-11 | 2013-10-11 | Soc Tech Michelin | Antenne pour un dispositif electronique d'un pneumatique |
US10099267B2 (en) | 2016-03-03 | 2018-10-16 | H.C. Starck Inc. | High-density, crack-free metallic parts |
KR102473163B1 (ko) * | 2016-09-06 | 2022-12-02 | 한국전기연구원 | 낮은 안정화 모재 비율을 갖는 저온 초전도 선재, 이를 포함하는 초전도 코일 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1394724A (en) * | 1972-08-04 | 1975-05-21 | Atomic Energy Authority Uk | Superconducting members and methods of mahufacture thereof |
US3958327A (en) * | 1974-05-01 | 1976-05-25 | Airco, Inc. | Stabilized high-field superconductor |
US4205119A (en) * | 1978-06-29 | 1980-05-27 | Airco, Inc. | Wrapped tantalum diffusion barrier |
US4330347A (en) * | 1980-01-28 | 1982-05-18 | The United States Of America As Represented By The United States Department Of Energy | Resistive coating for current conductors in cryogenic applications |
US4391657A (en) * | 1981-07-17 | 1983-07-05 | Bell Telephone Laboratories, Incorporated | Manufacture of niobium-aluminum superconducting material |
JPS6039705A (ja) * | 1983-08-15 | 1985-03-01 | 日本原子力研究所 | アルミニウム安定化超電導導体 |
JPS60178676A (ja) * | 1984-02-25 | 1985-09-12 | Nippon Telegr & Teleph Corp <Ntt> | トンネル型ジヨセフソン素子及びその製法 |
-
1986
- 1986-05-19 JP JP61114457A patent/JPS62271307A/ja active Granted
-
1987
- 1987-05-19 US US07/051,400 patent/US4791241A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US4791241A (en) | 1988-12-13 |
JPS62271307A (ja) | 1987-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101097714B1 (ko) | Ti 소스 로드를 사용한 (Nb,Ti)₃Sn 와이어의제조방법 | |
JPH054766B2 (ja) | ||
US4973365A (en) | Process for producing monocore precursor Nb3 Sn superconductor wire | |
EP0234071A1 (en) | Method of fabricating superconductive electrical conductor | |
JPS6150136B2 (ja) | ||
US4419145A (en) | Process for producing Nb3 Sn superconductor | |
US4153986A (en) | Method for producing composite superconductors | |
US5891585A (en) | Nb3 Al multi-filamentary superconducting wire | |
JPH054765B2 (ja) | ||
Pyon et al. | Some effects of matrix additions to internal tin processed multifilamentary Nb/sub 3/Sn superconductors | |
JP2519035B2 (ja) | Nb▲下3▼Sn超電導線の製造方法 | |
JPS62211358A (ja) | Nb3Sn超電導線の製造方法 | |
JPH087681A (ja) | A3 b型化合物超電導線およびその製造方法 | |
RU96116402A (ru) | Способ изготовления композитного сверхпроводника на основе соединения nb3sn | |
JP2519034B2 (ja) | Nb▲下3▼Sn超電導線の製造方法 | |
JP2742421B2 (ja) | 超電導線およびその製造方法 | |
Tachikawa et al. | Process for producing Nb 3 Sn superconductor | |
JPS63103054A (ja) | Nb↓3Sn系超電導線の製造方法 | |
JPS62229720A (ja) | Nb3 Sn超電導線の製造方法 | |
JPH0570887B2 (ja) | ||
JPS6251112A (ja) | Al安定化Nb−Ti超電導線 | |
JPH06223653A (ja) | Nb▲3▼Sn化合物超電導線の製造方法 | |
JPS6313286B2 (ja) | ||
JPS58189908A (ja) | 繊維分散型Nb↓3Sn超電導線材の製造法 | |
RU94023625A (ru) | СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОГО СВЕРХПРОВОДНИКА НА ОСНОВЕ СОЕДИНЕНИЯ Nb3Sn |