JPH0536314A - Formation of transparent conductive film - Google Patents

Formation of transparent conductive film

Info

Publication number
JPH0536314A
JPH0536314A JP3191910A JP19191091A JPH0536314A JP H0536314 A JPH0536314 A JP H0536314A JP 3191910 A JP3191910 A JP 3191910A JP 19191091 A JP19191091 A JP 19191091A JP H0536314 A JPH0536314 A JP H0536314A
Authority
JP
Japan
Prior art keywords
electron beam
conductive film
ito
ink
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3191910A
Other languages
Japanese (ja)
Other versions
JP3072862B2 (en
Inventor
Masaya Yukinobu
雅也 行延
Yasuo Chikui
泰夫 筑井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Tohoku Chemical Industries Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Tohoku Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Tohoku Chemical Industries Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP19191091A priority Critical patent/JP3072862B2/en
Publication of JPH0536314A publication Critical patent/JPH0536314A/en
Application granted granted Critical
Publication of JP3072862B2 publication Critical patent/JP3072862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To improve the optical characteristics and electric characteristics by printing electron beam-setting ink including indium-tin oxide fine grains on a resin film, and applying a solvent eliminating process, a rolling process, and an electron beam setting process to it. CONSTITUTION:Ink formed of ultra-fine grains of indium-tin oxide(ITO) to be paste is rolled by a roll to increase the density of the ITO fine grains, so generation of voides in a conductive film formed of these can be restricted. The surface of the conductive film is formed flat, so both the optical characteristics and the electric characteristics of the transparent conductive film can be improved. In addition, by using the electron beam-setting ink, the density of the ITO fine grains can be increased effectively if a linear pressure of the roll at the time of a rolling process is set relatively low in the rolling process before the ink is hardened by an electron beam. By setting a volume inclusion factor of the ITO fine grains in solid components in the electron beam-setting ink at 50-80%, the electric characteristics and the optical characteristics can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種のディスプレイ装
置等において透明電極や帯電防止フィルムなどに用いら
れる特にインジウム錫酸化物(以下、ITOという)透
明導電膜を形成するための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a transparent conductive film of indium tin oxide (hereinafter referred to as ITO) which is used as a transparent electrode or an antistatic film in various display devices.

【0002】[0002]

【従来の技術】近年、情報表示機器において液晶ディス
プレイやエレクトロ・ルミネッセンスディスプレイ等の
フラット型ディスプレイ装置が広く用いられている。そ
してこの種のディスプレイでは、表示素子の電極又は回
路電極に透明導電膜が使用されるが、かかる透明導電膜
には、抵抗値が小さく且つ透明性が良好であることから
特にITO透明導電膜が好適である。
2. Description of the Related Art In recent years, flat display devices such as liquid crystal displays and electroluminescence displays have been widely used in information display equipment. In this type of display, a transparent conductive film is used for an electrode of a display element or a circuit electrode, and an ITO transparent conductive film is particularly preferable for such a transparent conductive film because of its low resistance and good transparency. It is suitable.

【0003】ITO透明導電膜を形成する場合、ITO
粒子をターゲットとしてスパッタリングを行うことによ
り基板上に透明導電膜を蒸着する方法があるが、この方
法で使用する装置は高価であり、大きな蒸着面積の成膜
加工には適していない。又、成膜後更にエッチングによ
ってパターン成形加工を行う必要がある等の問題があっ
た。そこでITO微粒子粉を用いたインクを塗布又は印
刷することによりITO透明導電膜を形成する方法が開
発されてきている。そしてこの方法はITO微粒子粉を
樹脂と溶剤とに混ぜ合わせて均一に分散せしめることに
よりペーストを形成し、該ペーストを基板に印刷してか
ら乾燥するという成膜方法である(以下、単に塗布法と
いう)。
When forming an ITO transparent conductive film, ITO is used.
There is a method of vapor-depositing a transparent conductive film on a substrate by performing sputtering with particles as a target, but the apparatus used in this method is expensive and is not suitable for forming a large vapor deposition area. Further, there is a problem that it is necessary to perform pattern forming processing by etching after the film formation. Therefore, a method of forming an ITO transparent conductive film by applying or printing ink using ITO fine particle powder has been developed. This method is a film forming method in which ITO fine particle powder is mixed with a resin and a solvent and uniformly dispersed to form a paste, and the paste is printed on a substrate and then dried (hereinafter, simply referred to as a coating method. That).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記塗
布法により形成される導電膜の導電原理はITO微粒子
相互の接近作用によって行われるものであるため、前記
蒸着による方法に比べて導電膜の電気的抵抗値が大きく
なってしまうので問題になっていた。又、導電膜の膜厚
が厚くなる(1〜3μm)上、導電膜表面の凹凸や導電
膜内部のボイド(空隙)等の原因で光の散乱が発生して
導電膜の全光線透過率やヘーズ値(曇の程度を表す数
値)が悪化するという問題があった。このためかかる塗
布法により形成された導電膜は帯電防止用等の比較的グ
レードが低い用途以外では実用化されていない。
However, since the conductive principle of the conductive film formed by the above-mentioned coating method is performed by the approaching action of ITO fine particles, the electrical conductivity of the conductive film is higher than that by the vapor deposition method. There was a problem because the resistance value increased. In addition, the conductive film becomes thick (1 to 3 μm), and light scattering occurs due to irregularities on the conductive film surface, voids (voids) inside the conductive film, and the total light transmittance of the conductive film. There was a problem that the haze value (numerical value indicating the degree of clouding) deteriorates. For this reason, the conductive film formed by such a coating method has not been put into practical use except for applications of relatively low grade such as for antistatic purposes.

【0005】本発明はかかる実情に鑑み、この種透明導
電膜の光学的特性及び電気的特性を向上させることがで
きるようにした透明導電膜の成膜方法を提供することを
目的とする。
In view of the above situation, it is an object of the present invention to provide a transparent conductive film forming method capable of improving the optical and electrical characteristics of this kind of transparent conductive film.

【0006】[0006]

【課題を解決するための手段】本発明による透明導電膜
の成膜方法は、ITO微粒子を含む電子線硬化型インク
を樹脂フィルム上に印刷後、乾燥によって脱溶剤化処理
を施し、更にスチールロールによる圧延処理後、電子線
硬化処理を施すことにより行われる。
The method for forming a transparent conductive film according to the present invention comprises a method in which an electron beam-curable ink containing ITO fine particles is printed on a resin film, dried to remove the solvent, and further subjected to a steel roll. After the rolling process according to (1), the electron beam hardening process is performed.

【0007】更に、本発明方法において、上記電子線硬
化型インクの固形成分中の上記ITO微粒子の体積含有
率が50〜80%である。
Further, in the method of the present invention, the volume content of the ITO fine particles in the solid component of the electron beam curable ink is 50 to 80%.

【0008】[0008]

【作用】本発明によれば、先ず透明導電膜を形成すべき
ITOの超微粒子粉を用いてペースト状に形成したイン
クをロールによって圧延することにより、ITO微粒子
を緻密化し、これにより形成された導電膜内のボイドの
発生を抑制することができる。又、かかるロールによる
圧延処理を行うことにより導電膜表面を平滑にし、この
結果、透明導電膜の光学的特性及び電気的特性の双方を
向上させることができる。電子線硬化型インクを使用す
ることにより、該インクを電子線によって硬化せしめる
前に行われる上記圧延処理においてはかかる電子線硬化
型インクが未だ硬化していない状態にあるため、圧延処
理時のロールの線圧力を比較的低く設定しても有効にI
TO微粒子の緻密化を図ることができる。
According to the present invention, first, the ITO fine particles are densified by rolling the ink formed into a paste using the ultrafine particles of ITO for forming the transparent conductive film, thereby densifying the ITO fine particles. Generation of voids in the conductive film can be suppressed. Further, the rolling treatment with such a roll smoothes the surface of the conductive film, and as a result, it is possible to improve both the optical characteristics and the electrical characteristics of the transparent conductive film. By using the electron beam curable ink, the electron beam curable ink is not yet cured in the rolling process performed before the ink is cured by the electron beam. Is effective even if the line pressure of is set relatively low.
The TO fine particles can be densified.

【0009】更に本発明によれば、基板に塗布される電
子線硬化型インクの固形成分中のITO粒子の体積含有
率を特に50〜80%に設定したことにより、導電膜の
電気的特性及び光学的特性を有効且つ大幅に向上させる
ことができる。即ち上記圧延処理を行う際に緻密化され
るITO粒子間の空隙を埋め尽くすだけの樹脂を必要と
するが、この場合、ITO粒子の量が多過ぎると樹脂が
かかる空隙を完全に埋めることができず、従ってボイド
が発生して光線透過率及びヘーズ値が悪くなる上に、所
謂、ポーラスな導電膜になってしまいその強度が低下す
る。一方、ITO粒子の量が少な過ぎるとかかるITO
粒子よりも過剰に存在する樹脂によってITO粒子同士
の相互接近が妨げられ、この場合には導電膜の光学的特
性は良好であっても電気的特性を向上させることはでき
ない。従って、インクの固形成分中の樹脂とITO粒子
との含有割合を最適にする必要があるが、本発明方法に
おいては、ITO粒子の体積含有率が上記のように50
〜80%に設定されている。
Further, according to the present invention, the volumetric content of the ITO particles in the solid component of the electron beam curable ink applied to the substrate is set to 50% to 80%, whereby the electrical characteristics of the conductive film and The optical characteristics can be effectively and significantly improved. That is, a resin is needed to completely fill the voids between the ITO particles that are densified during the rolling treatment, but in this case, if the amount of the ITO particles is too large, the resin may completely fill the voids. Therefore, voids are generated and the light transmittance and the haze value are deteriorated, and moreover, a so-called porous conductive film is formed and its strength is lowered. On the other hand, if the amount of ITO particles is too small,
The resin existing in excess of the particles prevents the ITO particles from approaching each other, and in this case, the electrical characteristics cannot be improved even if the optical characteristics of the conductive film are good. Therefore, it is necessary to optimize the content ratio of the resin and the ITO particles in the solid component of the ink, but in the method of the present invention, the volume content of the ITO particles is 50 as described above.
It is set to ~ 80%.

【0010】[0010]

【実施例】以下、本発明による透明導電膜の成膜方法の
一実施例を詳細に説明する。先ず基板である樹脂フィル
ム上に塗布すべき電子線硬化型インクの構成成分である
ITOの超微粒子粉は、その平均粒径0.03μmのも
のを用いる。そしてかかるITO超微粒子粉を、オリゴ
マー及びモノマーから成る電子線硬化型樹脂と混ぜ合わ
せ、これら双方を合わせた重量に対して20%の溶剤を
添加して分散処理を行うことにより、電子線硬化型イン
クが形成される。
EXAMPLES An example of the method for forming a transparent conductive film according to the present invention will be described in detail below. First, as the ultrafine particle powder of ITO, which is a constituent component of the electron beam curable ink to be applied on the resin film which is the substrate, an average particle diameter of 0.03 μm is used. Then, the ITO ultrafine particle powder is mixed with an electron beam curable resin composed of an oligomer and a monomer, and 20% of a solvent is added to the combined weight of both of them to perform a dispersion treatment to obtain an electron beam curable resin. Ink is formed.

【0011】上記オリゴマーとしての2官能基ウレタン
アクリレートもしくは2官能基エポキシアクリレートと
上記モノマーとしての3官能基アクリレート(例えばト
リメチロールプロパントリアクリレート)との重量比は
60:40程度に設定される。かかる電子線硬化型イン
クの固形成分(樹脂成分,ITO粒子,添加剤等)中の
ITO粒子の体積含有率50〜80%程度であることが
好ましいが、ここではウレタンアクリレート系インクに
ついては50%,60%及び75%、また、エポキシア
クリレート系については60%となるように合計4種類
のインクを形成した。
The weight ratio of the bifunctional urethane acrylate or the bifunctional epoxy acrylate as the oligomer to the trifunctional acrylate (for example, trimethylolpropane triacrylate) as the monomer is set to about 60:40. The volume content of the ITO particles in the solid components (resin component, ITO particles, additives, etc.) of the electron beam curable ink is preferably about 50 to 80%, but here the urethane acrylate ink is 50%. , 60% and 75%, and 60% for the epoxy acrylate type, and a total of four types of ink were formed.

【0012】次に、上記4種類の電子線硬化型インクの
それぞれをスクリーン印刷法により基板樹脂フィルムの
PETフィルム(厚さ100μmで、密着性を良好にす
るためにプライマー処理が施されている)上に印刷し、
この後、赤外線加熱により80°Cの温度で30分間乾
燥せしめられる。そしてこの乾燥によって、電子線硬化
型インク中に含まれている上記溶剤は揮発せしめられる
が、この時点では電子線硬化型インクの他の成分である
オリゴマー及びモノマーが液状であるためPETフィル
ム上に膜は未だ硬化してはいない。尚、上記4種類の電
子線硬化型インクのいずれの場合も12cm×15cm
程度の広さの印刷領域を形成して行ったが、塗膜の厚さ
はウレタンアクリレート系インクではおよそ3μm、ま
たエポキシアクリレート系インクではおよそ5μmであ
った。尚、これらの塗膜厚さの違いは、使用するインク
の粘度の相違に起因している。
Next, each of the four types of electron beam curable inks described above was subjected to screen printing to form a PET film as a substrate resin film (having a thickness of 100 μm, which was subjected to a primer treatment for good adhesion). Print on,
Then, it is dried by infrared heating at a temperature of 80 ° C. for 30 minutes. Then, by this drying, the solvent contained in the electron beam curable ink is volatilized. At this point, however, the other components of the electron beam curable ink, namely, the oligomer and the monomer, are in liquid form, so that the PET film is not covered. The film is not yet cured. 12 cm × 15 cm in any of the above four types of electron beam curable inks
The print area was formed to have a large size, and the thickness of the coating film was about 3 μm for the urethane acrylate ink and about 5 μm for the epoxy acrylate ink. The difference in the coating film thickness is due to the difference in the viscosity of the ink used.

【0013】更に、基板樹脂フィルム上に上記スクリー
ン印刷法によって塗布されたインクはスチールロールに
よって圧延処理されるが、この圧延処理においてはその
表面がハードクロムメッキされた直径150mmの2本
のスチールロールを使用し、その処理スピードが略10
cm/秒となるように該スチールロールの回転速度を設
定した。又、このスチールロールによる圧延処理を行う
場合、スチールロールの線圧力は200kgf/cm以
上であれば、必要且つ十分である。ここで、かかる線圧
力が高過ぎると基板樹脂フィルムに機械的歪みを生じて
しまうが、本発明ではかかる歪みが生じないように設定
されている。これは使用される基板樹脂フィルムの種
類,材質及び厚さ等により、本実施例では上記設定値が
好ましい。そして線圧力の上限は1000kgf/cm
以下が好ましい。
Further, the ink applied on the resin film of the substrate by the screen printing method is rolled by a steel roll. In this rolling treatment, two steel rolls having a diameter of 150 mm, the surfaces of which are hard chrome plated. , And the processing speed is about 10
The rotation speed of the steel roll was set to be cm / sec. Further, when the rolling treatment with the steel roll is performed, it is necessary and sufficient if the linear pressure of the steel roll is 200 kgf / cm or more. Here, if the linear pressure is too high, mechanical strain will be generated in the substrate resin film, but in the present invention, the strain is set so as not to occur. This is preferably the above set value in this embodiment depending on the type, material and thickness of the substrate resin film used. And the upper limit of the linear pressure is 1000 kgf / cm
The following are preferred.

【0014】上記スチールロールによる圧延処理後、本
実施例のインクに対してはアルゴン等の不活性ガス雰囲
気中で電子線硬化処理が行われる。即ち、基板樹脂フィ
ルム上に塗布されている電子線硬化型インクに対して、
電子線の加速電圧175kVで照射線量10〜40Mr
adの電子線が照射される。ここで上記のように不活性
ガスを用いるのは、例えば空気中で電子線処理を行った
場合には空気中の酸素が、生じたラジカルを消費してし
まう所謂、酸素禁止作用により重合反応が阻害されてし
まうのを防ぐためである。
After the rolling treatment with the steel roll, the ink of this embodiment is subjected to an electron beam curing treatment in an atmosphere of an inert gas such as argon. That is, for the electron beam curable ink coated on the substrate resin film,
Electron beam acceleration voltage 175 kV and irradiation dose 10-40 Mr
The ad electron beam is irradiated. Here, the use of an inert gas as described above means that when the electron beam treatment is carried out in the air, oxygen in the air consumes the generated radicals, that is, the polymerization reaction is caused by the oxygen inhibition effect. This is to prevent it from being hindered.

【0015】本発明による透明導電膜の成膜方法は上記
のように構成されているから、先ず上記スチールロール
による圧延処理を行うことにより、形成されたITO透
明導電膜の光学的特性を著しく向上させることができ
る。即ち、この圧延処理を施す前の状態の塗膜の全光線
透過率は高々60%程度に過ぎなかったが圧延処理後は
80%程度にまで達し、又、導電膜のヘーズ値は20%
程度であったものが10%程度に向上した。この圧延処
理におけるスチールロールの線圧力は大きい程かかる効
果も大きくなる。
Since the method for forming a transparent conductive film according to the present invention is configured as described above, the optical characteristic of the formed ITO transparent conductive film is remarkably improved by first performing the rolling treatment with the steel roll. Can be made. That is, the total light transmittance of the coating film before the rolling treatment was only about 60% at most, but after the rolling treatment, it reached about 80%, and the haze value of the conductive film was 20%.
What was around was improved to around 10%. The greater the linear pressure of the steel roll in this rolling treatment, the greater the effect.

【0016】一方、圧延処理を施される電子線硬化型イ
ンクは通常、0〜20%の溶剤を含んでいるが、基板樹
脂フィルム上に印刷・乾燥後に脱溶剤化処理が行われた
後でも液状のオリゴマー及びモノマーが存在しているた
めに硬化していない。従ってこのような状態で圧延処理
が行われるので、スチールロールの線圧力を比較的低く
設定しても塗膜は容易且つ有効に圧延せしめられITO
粒子を容易に緻密化することができる。そしてこれによ
り導電膜表面が平滑化され、この点でも光学的特性を向
上させることができるが、一般の熱可塑性樹脂を用いて
インクを形成した場合には塗膜の圧延処理時に500k
gf/cm以上の高い線圧力が必要になるのに比べて線
圧力を低く設定することができるという利点がある。こ
のように線圧力を低くすることにより基板樹脂フィルム
の歪みの発生をなくすることができる。
On the other hand, the electron beam-curable ink which is subjected to the rolling treatment usually contains 0 to 20% of solvent, but even after the solvent removal treatment is carried out after printing and drying on the substrate resin film. Not cured due to the presence of liquid oligomers and monomers. Therefore, since the rolling treatment is performed in such a state, the coating film can be rolled easily and effectively even if the linear pressure of the steel roll is set relatively low.
The particles can be easily densified. The surface of the conductive film is smoothed by this, and the optical characteristics can be improved also in this respect. However, when the ink is formed by using a general thermoplastic resin, it is 500 k during the rolling treatment of the coating film.
There is an advantage that the linear pressure can be set lower than the need for a high linear pressure of gf / cm or more. By lowering the linear pressure in this way, it is possible to eliminate the occurrence of distortion of the substrate resin film.

【0017】又、かかるスチールロールによる圧延処理
によりITO透明導電膜の電気的特性も向上させること
できる。即ち、この圧延処理を施さずに電子線硬化させ
ると塗膜の表面抵抗は10〜20kオーム/□にまで達
するが、圧延処理後に電子線硬化させると200〜60
0オーム/□に低下する。
Further, the electrical characteristics of the ITO transparent conductive film can be improved by the rolling treatment with the steel roll. That is, the surface resistance of the coating film reaches 10 to 20 k ohms / square when electron beam curing is performed without this rolling treatment, but 200 to 60 when electron beam curing is performed after the rolling treatment.
It drops to 0 ohm / □.

【0018】次に本発明により形成されたITO透明導
電膜の光学的特性及び電気的特性についての測定結果を
図1乃至図5を参照して説明する。尚、これらの測定を
行うに際してITO粒子の平均粒径は米国カウンターク
ローム社製のQuantasorb QS−10によ
り、又、透明導電膜の全光線透過率及びヘーズ値は基板
であるPETフィルムと一緒にスガ試験機株式会社製の
直読ヘーズコンピュータHGM−ZDPにより、更に表
面抵抗は上記PETフィルムを50mm×50mmの寸
法に切り出した後三菱油化製のローレスタMCP−T4
00によりそれぞれ測定した。
Next, measurement results of optical characteristics and electrical characteristics of the ITO transparent conductive film formed according to the present invention will be described with reference to FIGS. 1 to 5. In performing these measurements, the average particle size of the ITO particles was Quantasorb QS-10 manufactured by US Counterchrome Co., Ltd. Using a direct-reading haze computer HGM-ZDP manufactured by Tester Co., Ltd., the PET film was cut into a size of 50 mm × 50 mm, and then the surface resistance was cut out, and then Loresta MCP-T4 manufactured by Mitsubishi Petrochemical Co., Ltd.
00 for each measurement.

【0019】図1は、ITO粒子の体積含有率を60%
にしたウレタンアクリレート系の電子線硬化型インクを
用いて、スチールロールによるロール線圧力を変化させ
て形成された電子線硬化処理後のITO透明導電膜の表
面抵抗値及び光学的特性(全光線透過率,ヘーズ値)に
ついての測定結果を示している。この測定結果によれ
ば、ロール線圧力が200kgf/cm以上で500オ
ーム/□以下の表面抵抗と良好な光学特性とが得られ
た。
FIG. 1 shows that the volume content of ITO particles is 60%.
The surface resistance value and optical characteristics (total light transmission) of the ITO transparent conductive film after the electron beam curing treatment formed by changing the roll line pressure by the steel roll using the urethane acrylate-based electron beam curing type ink Rate, haze value). According to this measurement result, a surface resistance of 500 ohm / □ or less and a good optical characteristic were obtained when the roll line pressure was 200 kgf / cm or more.

【0020】図2は圧延処理時の線圧力400kgf/
cmにおいてITO粒子の体積含有率50%,60%及
び75%の3種類のウレタンアクリレート系の電子線硬
化型インクを用いて形成した電子線硬化処理後のITO
透明導電膜の光学的特性及び電気的特性の測定結果を示
している。図から明らかなようにいずれの電子線硬化型
インクの場合にも良好な膜特性になっているが、この測
定結果よりITO粒子の体積含有率は50〜80%程度
の範囲が光学的特性及び電気的特性を向上させる上で特
に好ましい。
FIG. 2 shows a linear pressure of 400 kgf /
ITO after electron beam curing formed using three kinds of urethane acrylate-based electron beam curable inks having a volume content of ITO particles of 50%, 60% and 75% in cm.
The measurement result of the optical characteristic and electric characteristic of a transparent conductive film is shown. As is clear from the figure, all the electron beam curable inks have good film characteristics, but from the measurement results, the ITO particles have a volume content of about 50 to 80% in the optical characteristics and It is particularly preferable for improving the electrical characteristics.

【0021】図3及び図4は、電子線の照射線量を変え
た場合のITO透明導電膜の表面抵抗及び光学特性(全
光線透過率,ヘーズ値)についての測定結果を、ウレタ
ンアクリレート系インク及びエポキシアクリレート系イ
ンクのそれぞれについて示したものである。図3及び図
4から明らかなように、ITO膜の膜物性は電子線の照
射量には大きく影響を受けず、10Mrad以上あれば
充分である。そしてこの10Mrad以上の電子線によ
って硬化せしめた膜は塗膜をメチルエチルケトンを含ま
せた布で20回擦っても膜に剥離が生じなかった。ま
た、図3及び図4によれば、ウレタンアクリレート系イ
ンクは光学特性に優れており、一方、エポキシアクリレ
ート系インクは電気的特性に優れていることが分かる
が、このことからウレタンアクリレート系インク及びエ
ポキシアクリレート系インクの混合割合を適宜調整する
ことにより光学特性及び電気的特性について所望の特性
を有するように透明導電膜を成膜することができる。
3 and 4 show the measurement results of the surface resistance and the optical characteristics (total light transmittance, haze value) of the ITO transparent conductive film when the irradiation dose of the electron beam was changed, and the urethane acrylate ink and It is shown for each of the epoxy acrylate-based ink. As is clear from FIGS. 3 and 4, the film physical properties of the ITO film are not significantly affected by the electron beam irradiation amount, and 10 Mrad or more is sufficient. The film cured by an electron beam of 10 Mrad or more did not peel off even if the film was rubbed 20 times with a cloth containing methyl ethyl ketone. Further, according to FIGS. 3 and 4, it can be seen that the urethane acrylate-based ink has excellent optical characteristics, while the epoxy acrylate-based ink has excellent electrical characteristics. By appropriately adjusting the mixing ratio of the epoxy acrylate-based ink, the transparent conductive film can be formed so as to have desired optical and electrical characteristics.

【0022】更に図5は電子線硬化せしめられたウレタ
ンアクリレート系及びエポキシアクリレート系のITO
透明導電膜の経時変化の例を示しており、この例では2
0Mradの電子線量での硬化により、ウレタンアクリ
レート系の場合は表面抵抗が400オーム/□弱まで低
下するが、その後は次第に増加して十数日後にほぼ安定
し、また、エポキシアクリレート系の場合は硬化後、表
面抵抗の変化が殆どない。
Further, FIG. 5 shows a urethane acrylate-based and epoxy acrylate-based ITO cured by electron beam.
An example of the change over time of the transparent conductive film is shown. In this example, 2
By curing with an electron dose of 0 Mrad, the surface resistance of urethane acrylate type decreases to less than 400 ohm / □, but after that, it gradually increases and stabilizes after a dozen days. In the case of epoxy acrylate type, After curing, there is almost no change in surface resistance.

【0023】[0023]

【発明の効果】上述したように、本発明方法によれば電
子線硬化型樹脂の選択により、この種導電膜の電気的特
性及び光学的特性を適宜調整することができ、特に表面
抵抗500オーム/□以下、或いは全光線透過率約80
%及びヘーズ値10%以下である耐溶剤性に優れたIT
O透明導電膜を形成することができる。
As described above, according to the method of the present invention, it is possible to appropriately adjust the electric characteristics and the optical characteristics of the conductive film of this kind by selecting the electron beam curable resin, and particularly the surface resistance of 500 ohms. / □ or less, or total light transmittance of about 80
% And haze value less than 10% IT with excellent solvent resistance
An O transparent conductive film can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法により形成したウレタンアクリレー
ト系ITO透明導電膜の電気的特性及び光学特性とロー
ル線圧力との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between electrical characteristics and optical characteristics of a urethane acrylate-based ITO transparent conductive film formed by the method of the present invention and roll line pressure.

【図2】本発明方法により3種類のウレタンアクリレー
ト系電子線硬化型インクを用いて形成したITO透明導
電膜の光学的特性と電気的特性の測定結果を示すグラフ
である。
FIG. 2 is a graph showing measurement results of optical characteristics and electrical characteristics of an ITO transparent conductive film formed by using three kinds of urethane acrylate-based electron beam curable inks by the method of the present invention.

【図3】本発明方法により形成したウレタンアクリレー
ト系のITO透明導電膜の光学的特性及び電気的特性と
電子線照射量との関係を示すグラフである。
FIG. 3 is a graph showing a relationship between optical characteristics and electrical characteristics of a urethane acrylate-based ITO transparent conductive film formed by the method of the present invention and electron beam irradiation dose.

【図4】本発明方法により形成したエポキシアクリレー
ト系のITO透明導電膜の光学的特性及び電気的特性と
電子線照射量との関係を示すグラフである。
FIG. 4 is a graph showing a relationship between optical characteristics and electrical characteristics of an epoxy acrylate-based ITO transparent conductive film formed by the method of the present invention and electron beam irradiation dose.

【図5】本発明方法により形成したITO透明導電膜の
表面抵抗の経時変化の例を示したグラフである。
FIG. 5 is a graph showing an example of changes with time of surface resistance of an ITO transparent conductive film formed by the method of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 インジウム錫酸化物微粒子を含む電子線
硬化型インクを樹脂フィルム上に印刷後、乾燥によって
脱溶剤化処理を施し、更にスチールロールによる圧延処
理後、電子線硬化処理を施すことにより上記樹脂フィル
ム上に透明導電膜を形成する透明導電膜の成膜方法。
1. An electron beam curable ink containing fine particles of indium tin oxide is printed on a resin film, subjected to solvent removal treatment by drying, further rolled by a steel roll, and then subjected to electron beam curing treatment. A method for forming a transparent conductive film, which comprises forming a transparent conductive film on the resin film.
【請求項2】 上記電子線硬化型インクの固形成分中の
上記インジウム錫酸化物微粒子の体積含有率が50〜8
0パーセントであることを特徴とする請求項1に記載の
透明導電膜の成膜方法。
2. The volume content of the indium tin oxide fine particles in the solid component of the electron beam curable ink is 50 to 8.
It is 0%, The film-forming method of the transparent conductive film of Claim 1 characterized by the above-mentioned.
JP19191091A 1991-07-31 1991-07-31 Method for forming transparent conductive film Expired - Fee Related JP3072862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19191091A JP3072862B2 (en) 1991-07-31 1991-07-31 Method for forming transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19191091A JP3072862B2 (en) 1991-07-31 1991-07-31 Method for forming transparent conductive film

Publications (2)

Publication Number Publication Date
JPH0536314A true JPH0536314A (en) 1993-02-12
JP3072862B2 JP3072862B2 (en) 2000-08-07

Family

ID=16282485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19191091A Expired - Fee Related JP3072862B2 (en) 1991-07-31 1991-07-31 Method for forming transparent conductive film

Country Status (1)

Country Link
JP (1) JP3072862B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0947566A1 (en) * 1998-04-03 1999-10-06 Sumitomo Chemical Company Limited Conductive coating composition and antistatic plate
WO2000068330A1 (en) * 1999-05-10 2000-11-16 Shunichi Haruyama Inorganic-organic film and starting liquid composition therefor and method for preparation thereof, and applications and method for preparing them
JP2006202738A (en) * 2004-12-21 2006-08-03 Sumitomo Metal Mining Co Ltd Dispersed electroluminescence element and manufacturing method of the same
JP2006202739A (en) * 2004-12-21 2006-08-03 Sumitomo Metal Mining Co Ltd Dispersed electroluminescence element and manufacturing method of the same
WO2007039969A1 (en) * 2005-10-05 2007-04-12 Sumitomo Metal Mining Co., Ltd. Transparent conductive film, flexible dispersion-type electroluminescence element, process for producing the same, and electronic device making use thereof
WO2008001417A1 (en) * 2006-06-26 2008-01-03 Sumitomo Metal Mining Co., Ltd. Dispersive electroluminescent element and method for manufacturing the same
WO2008001418A1 (en) * 2006-06-26 2008-01-03 Sumitomo Metal Mining Co., Ltd. Dispersive electroluminescent element and method for manufacturing the same
JP2008004502A (en) * 2006-06-26 2008-01-10 Sumitomo Metal Mining Co Ltd Dispersed electroluminescence element and its manufacturing method
US20130187104A1 (en) * 2010-10-26 2013-07-25 Mitsubishi Materials Electronic Chemicals Co., Ltd. Indium tin oxide powder, method for producing same, dispersion, paint, and functional thin film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066711A (en) 2005-08-31 2007-03-15 Tdk Corp Transparent conductor and transparent conductive film using it

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0947566A1 (en) * 1998-04-03 1999-10-06 Sumitomo Chemical Company Limited Conductive coating composition and antistatic plate
WO2000068330A1 (en) * 1999-05-10 2000-11-16 Shunichi Haruyama Inorganic-organic film and starting liquid composition therefor and method for preparation thereof, and applications and method for preparing them
JP2006202738A (en) * 2004-12-21 2006-08-03 Sumitomo Metal Mining Co Ltd Dispersed electroluminescence element and manufacturing method of the same
JP2006202739A (en) * 2004-12-21 2006-08-03 Sumitomo Metal Mining Co Ltd Dispersed electroluminescence element and manufacturing method of the same
US8269416B2 (en) 2005-10-05 2012-09-18 Sumitomo Metal Mining Co., Ltd. Film with transparent conductive layer, flexible functional element and flexible dispersion-type electroluminescent element, and method for producing the same and electronic device by the use thereof
WO2007039969A1 (en) * 2005-10-05 2007-04-12 Sumitomo Metal Mining Co., Ltd. Transparent conductive film, flexible dispersion-type electroluminescence element, process for producing the same, and electronic device making use thereof
JP5190758B2 (en) * 2005-10-05 2013-04-24 住友金属鉱山株式会社 Film with transparent conductive layer, flexible functional element, flexible dispersive electroluminescent element, method for producing the same, and electronic device using the same
WO2008001418A1 (en) * 2006-06-26 2008-01-03 Sumitomo Metal Mining Co., Ltd. Dispersive electroluminescent element and method for manufacturing the same
US8110986B2 (en) 2006-06-26 2012-02-07 Sumitomo Metal Mining Co., Ltd. Dispersion-type electroluminescent element and method for manufacturing the same
US8167675B2 (en) 2006-06-26 2012-05-01 Sumitomo Metal Mining Co., Ltd Dispersion-type electroluminescent element and method for manufacturing the same
JP2008004502A (en) * 2006-06-26 2008-01-10 Sumitomo Metal Mining Co Ltd Dispersed electroluminescence element and its manufacturing method
WO2008001417A1 (en) * 2006-06-26 2008-01-03 Sumitomo Metal Mining Co., Ltd. Dispersive electroluminescent element and method for manufacturing the same
US20130187104A1 (en) * 2010-10-26 2013-07-25 Mitsubishi Materials Electronic Chemicals Co., Ltd. Indium tin oxide powder, method for producing same, dispersion, paint, and functional thin film

Also Published As

Publication number Publication date
JP3072862B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
KR101479811B1 (en) Substrate films for transparent electrode films
JP5093302B2 (en) Electromagnetic wave shielding material and manufacturing method thereof
JP4224227B2 (en) Antistatic hard coat film and method for producing the same
KR101414541B1 (en) Transparent conducting film and manufacturing method thereof
MX2008002344A (en) Conductive materials.
JP3072862B2 (en) Method for forming transparent conductive film
JP2007257963A (en) Conductive film for transfer and object endowed with transparent conductive layer using it
JP2994767B2 (en) Method for forming transparent conductive film
JP2023038265A (en) Transparent electroconductive film
WO2005022559A1 (en) Conductive film for transfer, method for forming transparent conductive film using same, and transparent conductive film
JP4666961B2 (en) Object provided with transparent conductive layer, and conductive film for transfer
WO2017018427A1 (en) Method for producing conductive film, and conductive film
TWI428064B (en) Membrane circuit board
JP3129140B2 (en) Composition and method for forming conductive film
JPH04237908A (en) Film forming method for transparent conductive film
WO2022049898A1 (en) Transparent conductive film
JP3230366B2 (en) Composition for forming conductive film
JP4958144B2 (en) Composition for forming transparent conductive film, transparent conductive film and display
JP4867418B2 (en) Conductive film for transfer and object provided with transparent conductive layer using the same
JP2006124572A (en) Active energy ray-curable electroconductive film-forming composition
JP4958142B2 (en) Composition for forming transparent conductive film, transparent conductive film and display
JP4783993B2 (en) Antistatic hard coat resin composition and molded article thereof
JPH0473809A (en) Transparent conductiv film
JP4097234B2 (en) Transparent conductive transfer material
JP2005259605A (en) Conductive sheet and its forming method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees