JPH05335270A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05335270A
JPH05335270A JP4163778A JP16377892A JPH05335270A JP H05335270 A JPH05335270 A JP H05335270A JP 4163778 A JP4163778 A JP 4163778A JP 16377892 A JP16377892 A JP 16377892A JP H05335270 A JPH05335270 A JP H05335270A
Authority
JP
Japan
Prior art keywords
type
electrode material
region
type region
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4163778A
Other languages
Japanese (ja)
Inventor
Toru Tomikawa
徹 富川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP4163778A priority Critical patent/JPH05335270A/en
Publication of JPH05335270A publication Critical patent/JPH05335270A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for manufacturing a semiconductor device with a wiring structure which is brought into contact with both P and N regions simultaneously at a low resistance. CONSTITUTION:(A): A gate oxide film 3 is formed all over an Si substrate 1 and a gate electrode of polysilicon 5 and high melting point silicide 6 is provided on a gate region of each MOSFET. A layer insulating film 4 is laminated all over, contact holes 10, 11 are formed in the layer insulating film 4 on an N-type drain region 12 and a P-type source region 13, and an electrode material 14 of good ohmic property with an N-type semiconductor is formed to a film on the contact holes 10, 11 and the layer insulating film 4. (B): Then, the electrode material 14 at the part of the contact hole 10 on the N-type drain region 12 is annealed. (C): The electrode material 14 excepting the part which is annealed is etched and a barrier metal 7is formed. (D): Lastly, a wiring 8 is formed of an electrode material 16 of good ohmic property with a P-type semiconductor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に係り、特に、同一基板上に形成されたp型領域とn型
領域とを接続する電極・配線を同時に形成するのに好適
な配線形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly, it is suitable for simultaneously forming electrodes / wirings for connecting a p-type region and an n-type region formed on the same substrate. The present invention relates to a wiring forming method.

【0002】[0002]

【従来の技術】一般に、半導体装置の電極材料として、
抵抗が小さく、加工性に富む等の多くのメリットを持
ち、安価で入手が容易なAl(アルミニウム)またはA
l合金が用いられている。Si(シリコン)基板を用い
た半導体装置のp,n型領域とAl電極とのコンタクト
を考えると、p型領域とはオーミックコンタクトがとれ
るが、n型領域とはpn接合を形成してしまい高抵抗と
なってしまう。そして、微細加工するほどこの現象が顕
著になる。また、Al電極とSi基板とのコンタクトに
おいては、Alスパイクの防止のためにAl中にSiが
1〜2%含有されているが、このSiがAl膜堆積後の
熱処理(450℃程度)及びその後の冷却中にコンタク
ト面に析出して抵抗を増大させるという問題があり、こ
の問題点もコンタクト寸法の微細化に伴なって大きな障
害になりつつある。このために、最近ではAl電極とS
i基板との間にバリヤメタルと呼ばれる金属を介挿させ
る構造が採用されている。
2. Description of the Related Art Generally, as an electrode material of a semiconductor device,
Al (Aluminum) or A, which has many advantages such as low resistance and excellent workability, is cheap and easily available.
1 alloy is used. Considering the contact between the p-type and n-type regions of a semiconductor device using a Si (silicon) substrate and the Al electrode, ohmic contact can be made with the p-type region, but a pn junction is formed with the n-type region, which is high. It becomes resistance. This phenomenon becomes more remarkable as the fine processing is performed. Further, in the contact between the Al electrode and the Si substrate, Si is contained in the Al in an amount of 1 to 2% in order to prevent Al spikes. This Si is subjected to heat treatment (about 450 ° C.) after deposition of the Al film and During the subsequent cooling, there is a problem that it precipitates on the contact surface to increase the resistance, and this problem is becoming a major obstacle as the contact size becomes finer. For this reason, recently, Al electrodes and S
A structure in which a metal called a barrier metal is inserted between the i substrate and the i substrate is adopted.

【0003】このバリヤメタルを用いた従来の半導体装
置の例としてMOSFETの一部拡大図を図2に示す。
同図に示す半導体装置は、Si基板1内には不純物拡散
層(ドレイン領域)2が設けられており、Si基板1表
面にはゲート酸化膜3が設けられている。ゲート領域上
にはポリシリコン5、高融点シリサイド6からなるゲー
ト電極が設けられ、全体には、層間絶縁膜4が積層され
ている。そして、不純物拡散層2上と高融点シリサイド
6上の層間絶縁膜4にはコンタクトホール9がそれぞれ
形成されており、これらのコンタクトホール9にはバリ
ヤメタル7を介してアルミニウム金属の配線8が設けら
れている。この時、バリヤメタル7の材料を適宜選択す
ることにより、n型領域とオーミックコンタクトをとる
ことができるが、この場合は、同時にp型領域とオーミ
ックコンタクトを取ることはできない。そこで、図2に
示した場合も含めて多くの場合には、電極・配線材料と
して、p,n両領域ともある程度の抵抗値でコンタクト
のとれる材料を選択して使用していた。
FIG. 2 shows a partially enlarged view of a MOSFET as an example of a conventional semiconductor device using this barrier metal.
In the semiconductor device shown in the figure, an impurity diffusion layer (drain region) 2 is provided in a Si substrate 1, and a gate oxide film 3 is provided on the surface of the Si substrate 1. A gate electrode made of polysilicon 5 and high melting point silicide 6 is provided on the gate region, and an interlayer insulating film 4 is laminated on the entire surface. Contact holes 9 are formed in the interlayer insulating film 4 on the impurity diffusion layer 2 and the refractory silicide 6, respectively, and wirings 8 made of aluminum metal are provided in the contact holes 9 via the barrier metal 7. ing. At this time, by appropriately selecting the material of the barrier metal 7, it is possible to make ohmic contact with the n-type region, but in this case, it is not possible to make ohmic contact with the p-type region at the same time. Therefore, in many cases including the case shown in FIG. 2, as the electrode / wiring material, a material that can make contact with a certain resistance value in both p and n regions is selected and used.

【0004】[0004]

【発明が解決しようとする課題】CMOSの製造等、p
型領域とn型領域の両方に同時に電極を形成しようとす
る場合、一方の領域に対して低抵抗の材料を選ぶと他方
の領域に対して高抵抗となってしまい、両領域同時に低
抵抗とすることができなかった。また、バリヤメタルを
使用した場合、Al電極のSi析出による高抵抗化は防
止することができるが、p,n両領域に対して同時に低
抵抗のオーミックコンタクトをとることができなかっ
た。
SUMMARY OF THE INVENTION When manufacturing CMOS, etc.
When an electrode is to be formed in both the type region and the n-type region at the same time, if a material having a low resistance is selected for one of the regions, the resistance becomes high for the other region, resulting in a low resistance at the same time for both regions. I couldn't. Further, when the barrier metal is used, it is possible to prevent the resistance increase of the Al electrode due to the precipitation of Si, but it is not possible to simultaneously make a low resistance ohmic contact to both the p and n regions.

【0005】そして、これらの問題点は特に微細加工し
た場合に顕著であり、半導体装置の高速化の妨げになる
という課題があった。そこで本発明は、両領域同時に低
抵抗のコンタクト構造を有する半導体装置の製造方法を
提供することを目的とする。
These problems are remarkable especially when fine processing is performed, and there is a problem that it hinders the speeding up of the semiconductor device. Therefore, it is an object of the present invention to provide a method of manufacturing a semiconductor device having a contact structure with low resistance in both regions at the same time.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の手段として、同一基板上に形成されたp型領域及びn
型領域上に電極を形成する半導体装置の製造方法におい
て、前記基板上の少なくとも前記p型領域及び前記n型
領域上に絶縁膜を形成する工程と、この絶縁膜の前記p
型領域及び前記n型領域上のそれぞれの位置にコンタク
トホールを形成する工程と、前記絶縁膜上及びそれぞれ
のコンタクトホールにn型半導体とオーミック性の良い
第1の電極材料を成膜する工程と、前記n型領域上の前
記コンタクトホールに成膜された前記第1の電極材料を
アニール処理する工程と、このアニール処理された部分
以外の前記第1の電極材料をエッチングしてn型領域上
にのみバリヤメタルとして残す工程と、p型半導体とオ
ーミック性の良い第2の電極材料を成膜して前記バリヤ
メタル上及び前記p型領域上の前記コンタクトホール上
を含む領域に配線を形成する工程とよりなることを特徴
とする半導体装置の製造方法を提供しようとするもので
ある。
As means for achieving the above object, a p-type region and an n-type region formed on the same substrate are used.
In a method of manufacturing a semiconductor device in which an electrode is formed on a mold region, a step of forming an insulating film on at least the p-type region and the n-type region on the substrate;
Forming contact holes at respective positions on the mold region and the n-type region, and forming a first electrode material having a good ohmic property with the n-type semiconductor on the insulating film and each contact hole. A step of annealing the first electrode material formed in the contact hole on the n-type region, and etching the first electrode material other than the annealed portion on the n-type region. Only as a barrier metal, and a step of forming a second electrode material having a good ohmic property with a p-type semiconductor to form a wiring on the barrier metal and on a region including the contact hole on the p-type region. An object of the present invention is to provide a method for manufacturing a semiconductor device, which comprises:

【0007】[0007]

【実施例】本発明の半導体装置の製造方法の一実施例を
図1(A)〜(D)と共に説明する。なお、図1はCM
OSの製造方法の一実施例を示す一部拡大断面図であ
り、各図とも左側はn型MOSFETのドレイン領域を
示し、右側はp型MOSFETのソース領域を示す一部
拡大図である。まず、Si基板1内の所定の部分にはn
型及びp型の不純物を拡散して、n型MOSFETのn
型ドレイン領域12及び図示しないn型ソース領域(以
下、n型ドレイン領域12のみ代表して記載する)、p
型MOSFETのp型ソース領域13及び図示しないp
型ドレイン領域(以下、p型ソース領域13のみ代表し
て記載する)を形成する。そして、Si基板1上全面に
ゲート酸化膜3を形成し、各MOSFETのゲート領域
となる部分の上にポリシリコン5、高融点シリサイド6
からなるゲート電極をそれぞれ設ける。さらに、全面に
層間絶縁膜4をCVD法により積層して、n型ドレイン
領域12及びp型ソース領域13上の層間絶縁膜4にフ
ォトリソを使用したドライエッチングによりコンタクト
ホール10,11を形成し、このコンタクトホール1
0,11と層間絶縁膜4上にWSi2(タングステンシ
リサイド)等のn型半導体とオーミック性の良い電極材
料(第1の電極材料)14をスパッタ法やCVD法によ
り成膜すると、同図(A)のようになる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method of manufacturing a semiconductor device of the present invention will be described with reference to FIGS. In addition, FIG. 1 shows CM
FIG. 3 is a partially enlarged cross-sectional view showing an embodiment of a method for manufacturing an OS, in each of which the left side is a drain region of an n-type MOSFET and the right side is a partially enlarged view showing a source region of a p-type MOSFET. First, a predetermined portion in the Si substrate 1 has n
N-type MOSFET by diffusing p-type and p-type impurities
Type drain region 12, an n-type source region (not shown) (hereinafter, only the n-type drain region 12 is representatively described), p
P-type source region 13 of p-type MOSFET and p (not shown)
A type drain region (hereinafter, only the p type source region 13 will be described as a representative) is formed. Then, the gate oxide film 3 is formed on the entire surface of the Si substrate 1, and the polysilicon 5 and the refractory silicide 6 are formed on the portions to be the gate regions of each MOSFET.
Gate electrodes made of Further, an interlayer insulating film 4 is laminated on the entire surface by a CVD method, and contact holes 10 and 11 are formed in the interlayer insulating film 4 on the n-type drain region 12 and the p-type source region 13 by dry etching using photolithography. This contact hole 1
When an n-type semiconductor such as WSi 2 (tungsten silicide) and an electrode material (first electrode material) 14 having a good ohmic property are formed on 0 and 11 and the interlayer insulating film 4 by a sputtering method or a CVD method, the same figure ( It becomes like A).

【0008】次に、同図(B)のように、n型ドレイン
領域12上のコンタクトホール10の部分だけ窓を開け
たマスク15を使用してランプアニールまたはレーザア
ニールを行って、n型ドレイン領域12上のコンタクト
ホール10の部分の電極材料14をアニール処理する。
そして、適当な出力とガス圧のCF4 系のガスを用いて
等方性プラズマエッチングを行うと、先にアニール処理
した部分以外の電極材料14がエッチングされ、同図
(C)のようにn型ドレイン領域12上にバリヤメタル
7が形成される。最後にバリヤメタル7及びp型半導体
とオーミック性の良いAl等の金属や金属シリサイドか
らなる電極材料(第2の電極材料)16をスパッタ法等
により形成し、エッチングして配線8を形成すると同図
(D)のような半導体装置を得ることができる。
Next, as shown in FIG. 1B, lamp annealing or laser annealing is performed using a mask 15 having a window opened only at the contact hole 10 on the n-type drain region 12 to perform the n-type drain. The electrode material 14 in the portion of the contact hole 10 on the region 12 is annealed.
Then, when isotropic plasma etching is performed using a CF 4 -based gas having an appropriate output and gas pressure, the electrode material 14 other than the previously annealed portion is etched, and as shown in FIG. A barrier metal 7 is formed on the mold drain region 12. Finally, an electrode material (second electrode material) 16 composed of a barrier metal 7 and a metal such as Al having a good ohmic property with a p-type semiconductor or metal silicide (second electrode material) 16 is formed by a sputtering method or the like, and the wiring 8 is formed by etching. A semiconductor device as shown in (D) can be obtained.

【0009】このとき配線8は、バリヤメタル7及びp
型半導体とオーミック性の良い電極材料16を使用して
いるので、バリヤメタル7及びp型ソース領域13共に
オーミックコンタクトを取ることができ、バリヤメタル
7は、n型ドレイン領域12とオーミックコンタクトし
ていることから、この半導体装置は、p,n両領域にお
いて低抵抗のコンタクト構造を有している。
At this time, the wiring 8 includes the barrier metal 7 and p.
Since the electrode material 16 having a good ohmic property is used with the n-type semiconductor, both the barrier metal 7 and the p-type source region 13 can be in ohmic contact, and the barrier metal 7 is in ohmic contact with the n-type drain region 12. Therefore, this semiconductor device has a low resistance contact structure in both the p and n regions.

【0010】以上、CMOSを例に挙げて説明したが、
同一基板上にp型領域とn型領域を有する半導体装置で
あれば、使用可能であり、バイポーラトランジスタやB
iCMOS等幅広い種類の半導体装置に適用することが
できる。
Although the CMOS has been described as an example,
Any semiconductor device having a p-type region and an n-type region on the same substrate can be used, such as a bipolar transistor or B
It can be applied to a wide variety of semiconductor devices such as iCMOS.

【0011】[0011]

【発明の効果】本発明の半導体装置の製造方法によれ
ば、同一基板上に形成されたp型領域とn型領域とを同
時に低抵抗のコンタクトで配線することができる。この
結果、低電圧で半導体装置の駆動が可能となり、LSI
の高速化、信頼性の向上等が可能となるという効果があ
る。
According to the method of manufacturing a semiconductor device of the present invention, the p-type region and the n-type region formed on the same substrate can be simultaneously wired with low resistance contacts. As a result, the semiconductor device can be driven at a low voltage, and the LSI
There is an effect that it is possible to increase the speed and improve the reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)〜(D)は本発明の半導体装置の製造方
法の一実施例を示す一部拡大断面図である。
1A to 1D are partially enlarged cross-sectional views showing an embodiment of a method for manufacturing a semiconductor device of the present invention.

【図2】従来例を示す構成図である。FIG. 2 is a configuration diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 Si基板 2 不純物拡散層 3 ゲート酸化膜 4 層間絶縁膜 5 ポリシリコン 6 高融点シリサイド 7 バリヤメタル 8 配線 9,10,11 コンタクトホール 12 n型ドレイン領域 13 p型ソース領域 14 電極材料(第1の電極材料) 15 マスク 16 電極材料(第2の電極材料) DESCRIPTION OF SYMBOLS 1 Si substrate 2 Impurity diffusion layer 3 Gate oxide film 4 Interlayer insulating film 5 Polysilicon 6 High melting point silicide 7 Barrier metal 8 Wiring 9, 10, 11 Contact hole 12 n-type drain region 13 p-type source region 14 Electrode material (first Electrode material) 15 Mask 16 Electrode material (second electrode material)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】同一基板上に形成されたp型領域及びn型
領域上に電極を形成する半導体装置の製造方法におい
て、 前記基板上の少なくとも前記p型領域及び前記n型領域
上に絶縁膜を形成する工程と、 この絶縁膜の前記p型領域及び前記n型領域上のそれぞ
れの位置にコンタクトホールを形成する工程と、 前記絶縁膜上及びそれぞれのコンタクトホールにn型半
導体とオーミック性の良い第1の電極材料を成膜する工
程と、 前記n型領域上の前記コンタクトホールに成膜された前
記第1の電極材料をアニール処理する工程と、 このアニール処理された部分以外の前記第1の電極材料
をエッチングしてn型領域上にのみバリヤメタルとして
残す工程と、 p型半導体とオーミック性の良い第2の電極材料を成膜
して前記バリヤメタル上及び前記p型領域上の前記コン
タクトホール上を含む領域に配線を形成する工程とより
なることを特徴とする半導体装置の製造方法。
1. A method of manufacturing a semiconductor device in which electrodes are formed on a p-type region and an n-type region formed on the same substrate, wherein an insulating film is formed on at least the p-type region and the n-type region on the substrate. A step of forming a contact hole at each position on the p-type region and the n-type region of the insulating film, and a step of forming an ohmic contact with the n-type semiconductor on the insulating film and each contact hole. Forming a good first electrode material, annealing the first electrode material formed in the contact hole on the n-type region, and forming the first electrode material other than the annealed portion. A step of etching the first electrode material to leave it as a barrier metal only on the n-type region; and forming a second electrode material having a good ohmic property with the p-type semiconductor on the barrier metal and before. The method of manufacturing a semiconductor device comprising more becomes that the step of forming a wiring in a region including the contact on holes on the p-type region.
JP4163778A 1992-05-29 1992-05-29 Manufacture of semiconductor device Pending JPH05335270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4163778A JPH05335270A (en) 1992-05-29 1992-05-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4163778A JPH05335270A (en) 1992-05-29 1992-05-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05335270A true JPH05335270A (en) 1993-12-17

Family

ID=15780542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4163778A Pending JPH05335270A (en) 1992-05-29 1992-05-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05335270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9608166B2 (en) 2003-08-14 2017-03-28 Cree, Inc. Localized annealing of metal-silicon carbide ohmic contacts and devices so formed

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9608166B2 (en) 2003-08-14 2017-03-28 Cree, Inc. Localized annealing of metal-silicon carbide ohmic contacts and devices so formed

Similar Documents

Publication Publication Date Title
JPS62113421A (en) Manufacture of semiconductor device
JPH05335270A (en) Manufacture of semiconductor device
JP2910839B2 (en) Semiconductor device and manufacturing method thereof
JPH0831931A (en) Semiconductor device and its manufacture
JPH0645614A (en) Manufacture of read-only semiconductor memory
JPS63241965A (en) Insulated-gate field-effect transistor and manufacture thereof
JP3350170B2 (en) Power MOS type semiconductor device and method of manufacturing the same
JPS61267365A (en) Semiconductor device
JP2509173B2 (en) Method of manufacturing semiconductor integrated circuit device having complementary MISFET
JP3238804B2 (en) Method for manufacturing semiconductor device
JPH05235288A (en) Manufacture of bimos semiconductor device
JPS59112641A (en) Semiconductor device and manufacture thereof
JP3353696B2 (en) Method for manufacturing semiconductor device
JPH06104259A (en) Semiconductor device
JP3095912B2 (en) Semiconductor integrated circuit device
JPH056345B2 (en)
JP2753849B2 (en) Semiconductor device
JPH01204473A (en) Thin film transistor
JPS5916377A (en) Manufacture of semiconductor device
JPH02277254A (en) Semiconductor device
JPS62115776A (en) Manufacture of semiconductor device
JPH0441510B2 (en)
JPS61166171A (en) Semiconductor integrated circuit device
JPH07115194A (en) Manufacture of semiconductor integrated circuit device
JPH03145729A (en) Manufacture of semiconductor device