JPH05335146A - Magnetic material film and magnetic head using the same - Google Patents

Magnetic material film and magnetic head using the same

Info

Publication number
JPH05335146A
JPH05335146A JP4195060A JP19506092A JPH05335146A JP H05335146 A JPH05335146 A JP H05335146A JP 4195060 A JP4195060 A JP 4195060A JP 19506092 A JP19506092 A JP 19506092A JP H05335146 A JPH05335146 A JP H05335146A
Authority
JP
Japan
Prior art keywords
magnetic
film
main
magnetic film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4195060A
Other languages
Japanese (ja)
Inventor
Takayuki Kumasaka
登行 熊坂
Hideo Fujiwara
英夫 藤原
Noritoshi Saitou
法利 斎藤
Moichi Otomo
茂一 大友
Takeo Yamashita
武夫 山下
Sanehiro Kudo
實弘 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP57118509A priority Critical patent/JPS599905A/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4195060A priority patent/JPH05335146A/en
Publication of JPH05335146A publication Critical patent/JPH05335146A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Abstract

PURPOSE:To provide a magnetic material film for magnetic head use to show superior recording production characteristics to a high-coercive force recording medium by a method wherein main magnetic material films, which respectively have a prescribed thickness, and intermediate magnetic material films, which respectively have a prescribed thickness, are laminated. CONSTITUTION:A magnetic material film has a high saturation flux density. Main magnetic material films 20 consisting of a magnetic alloy containing iron, for example, as its main component and intermediate magnetic material films 21 consisting of a magnetic alloy containing Co, Ni or the like other than the iron as its main component are respectively laminated on a non-magnetic substrate 23. These films 21 consist of a very thin layer of a thickness of 100Angstrom or thinner and the films 20 are formed in such a way that their film thicknesses become a film thickness of 0.5mum or thinner in an extent that a columnar crystallographic structure does not exert magnetically a large adverse effect. Thereby, a high permeability is obtained by a low coersive force and a laminated magnetic material film, which is superior in high-frequency characteristics and is thick in film thickness, is obtained. By using this laminated magnetic material film for a magnetic head, a head for high-density magnetic recording reproduction use to show specially superior recording reproduction characteristics to a high-coercive force recording medium can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁性体膜に係り、特に磁
気ヘッド用のコア材料として、高密度磁気記録に好適な
性能を発揮する磁性体膜およびそれを用いた磁気ヘッド
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic film, and more particularly, to a magnetic film that exhibits suitable performance for high density magnetic recording as a core material for a magnetic head and a magnetic head using the same.

【0002】[0002]

【従来の技術】磁気記録の高密度化の進歩はめざまし
く、メタルテープの出現によって従来の酸化物テープの
保磁力Hcが600〜700 Oe(エルステッド)に対
して1200〜1600 Oeのものが容易に得られるよ
うになった。このような高保磁力記録媒体に十分に記録
するためには、高飽和磁束密度を有する磁気ヘッド用の
磁性材料が要求される。高飽和磁束密度を有する磁性材
料はFe、Co、Niを主成分とした合金で、10000
ガウス以上のものを容易に得ることができる。従来、磁
気ヘッド等に金属磁性材料を用いる場合は高周波領域に
おける渦電流損を抑えるために磁性体膜を電気的に絶縁
して積層した構造がとられている。その製造方法はスパ
ッタリング、蒸着、イオンプレーティングやメッキ等
の、いわゆる薄膜形成技術によって行われる。図1は、
従来の積層磁性体膜の構造を示す図である。すなわち、
非磁性基板13上に磁性体層10と非磁性絶縁層11
を交互に順次形成し、積層体を得るものが公知である
(例えば、特開昭49−127195号公報)。ここ
で、各磁性体層10の厚さは数ミクロン、非磁性体層1
1はその1/10程度の厚さを有している。しかし、結
晶質の金属磁性体膜12(例えば、Feを主成分とし、
Si、Al、Ti等との合金膜、あるいはNi−Fe合金
膜)は、図1に示すような柱状構造を示すため、柱状構
造の境界で磁化を動き難くし、保磁力を大きくしている
ことがある。そのため、保磁力の大きい磁性体膜で磁気
ヘッドを作製した場合、外部から大きな磁界が与えられ
たときに磁気ヘッドコアが帯磁してしまうという問題が
あった。この問題を解決するために、サブミクロン厚さ
の磁性体層と100Å程度の厚さの非磁性体層とを交互
に積層することによって保磁力を低減させる方法がある
(例えば、特開昭52−112797号公報)。例え
ば、スパッタリングによって得られた約1μm厚さのF
e−6.5%Si合金の単層膜では数エルステッドの保磁
力を有するが、上記の方法によれば保磁力を1 Oe程度
にまで低減させることができる。しかし、最も低い保磁
力を示すものでも0.8 Oe程度が限度であった。その
ため、磁気ヘッド材料としては満足できるものではなか
った。
2. Description of the Related Art The progress of high density magnetic recording has been remarkable, and with the advent of metal tapes, coercive force Hc of conventional oxide tapes of 1200 to 1600 Oe can be easily obtained compared with 600 to 700 Oe (Oersted). I got it. In order to sufficiently record on such a high coercive force recording medium, a magnetic material for a magnetic head having a high saturation magnetic flux density is required. The magnetic material having a high saturation magnetic flux density is an alloy containing Fe, Co, and Ni as main components, and is 10,000.
You can easily get more than Gauss. Conventionally, when a metal magnetic material is used for a magnetic head or the like, a structure in which magnetic films are electrically insulated and laminated is used to suppress eddy current loss in a high frequency region. The manufacturing method is performed by a so-called thin film forming technique such as sputtering, vapor deposition, ion plating or plating. Figure 1
It is a figure which shows the structure of the conventional laminated magnetic film. That is,
The magnetic layer 10 and the nonmagnetic insulating layer 11 are formed on the nonmagnetic substrate 13.
It is publicly known that a laminate is obtained by alternately and sequentially forming (for example, JP-A-49-127195). Here, the thickness of each magnetic layer 10 is several microns, and the nonmagnetic layer 1
1 has a thickness of about 1/10 thereof. However, the crystalline metal magnetic film 12 (for example, Fe as a main component,
Since an alloy film with Si, Al, Ti, etc., or a Ni—Fe alloy film) has a columnar structure as shown in FIG. 1, the magnetization is hard to move at the boundary of the columnar structure and the coercive force is increased. Sometimes. Therefore, when a magnetic head is made of a magnetic film having a large coercive force, there is a problem that the magnetic head core is magnetized when a large magnetic field is applied from the outside. In order to solve this problem, there is a method of reducing the coercive force by alternately stacking a submicron-thick magnetic layer and a non-magnetic layer having a thickness of about 100Å (for example, JP-A-52). -1112797). For example, about 1 μm thick F obtained by sputtering
A single layer film of e-6.5% Si alloy has a coercive force of several oersteds, but the above method can reduce the coercive force to about 1 Oe. However, even the one showing the lowest coercive force was limited to about 0.8 Oe. Therefore, it was not satisfactory as a magnetic head material.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、上述
した従来技術における問題点を解消し、高保磁力記録媒
体に対して優れた記録再生特性を示す磁気ヘッド用の磁
性体膜を提供することにあり、特に主磁性体膜が高飽和
磁束密度を有する強磁性体膜からなり、低い保磁力で、
高透磁率を有する積層磁性体膜と、それを用いた磁気ヘ
ッドを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the prior art and provide a magnetic film for a magnetic head exhibiting excellent recording / reproducing characteristics for a high coercive force recording medium. Especially, the main magnetic film is made of a ferromagnetic film having a high saturation magnetic flux density, and has a low coercive force.
It is to provide a laminated magnetic film having a high magnetic permeability and a magnetic head using the same.

【0004】[0004]

【課題を解決するための手段】本発明は、従来の方法で
形成された磁性体層と非磁性体層とを交互に積層した積
層磁性体膜では得られない低保磁力の磁性体膜を、10
000ガウス以上の高飽和磁束密度を有する結晶質のF
e、CoまたはNiを主成分とする金属磁性体を用いて
容易に得られるようにしたものである。本発明者らは、
上記の積層磁性体膜は、従来の積層磁性体膜において磁
性体層間に設ける中間膜としての非磁性体層の代りに、
前記磁性体層と異なる磁性体層を中間膜として用いるこ
とによって達成できることを見出した。具体的に言え
ば、本発明の磁性体膜は、厚さ0.5μm以下の主磁性
体膜と、厚さ100Å以下の中間磁性体膜を積層して形
成されるものである。
The present invention provides a magnetic substance film having a low coercive force which cannot be obtained by a laminated magnetic substance film formed by alternately laminating magnetic substance layers and non-magnetic substance layers formed by a conventional method. 10,
Crystalline F with high saturation magnetic flux density of 000 Gauss or more
The metal magnetic material containing e, Co or Ni as a main component is used to easily obtain the magnetic material. We have
The above-mentioned laminated magnetic film is a conventional laminated magnetic film, instead of the non-magnetic layer as an intermediate film provided between the magnetic layers,
It has been found that this can be achieved by using a magnetic layer different from the magnetic layer as the intermediate film. Specifically, the magnetic film of the present invention is formed by laminating a main magnetic film having a thickness of 0.5 μm or less and an intermediate magnetic film having a thickness of 100 Å or less.

【0005】図2は、本発明の磁性体膜の構造の一例を
示す断面図である。 図において、20は高飽和磁束密
度を有する、例えば鉄を主成分とする磁性合金からなる
主磁性体膜、21は鉄以外のCo、Ni等を主成分とする
磁性合金からなる中間磁性体膜、23は非磁性基板であ
る。この中間磁性体膜21は、厚さ100Å以下のごく
薄い層からなり、主磁性体膜20は柱状晶構造が磁気的
に大きな悪影響を与えない程度の膜厚となるように形成
し、中間磁性体層21によって主磁性体膜20の柱状晶
構造22が細分化されている。このような構造にすれ
ば、柱状組織に沿って膜面に垂直に向っていた磁化や、
柱状組織の境界で動き難くなっていた磁化が、膜面内に
向き、膜面内を小さな磁界で動くようになるので、保磁
力が小さくなる。また、中間磁性体膜21が各主磁性体
膜20の磁気的連結を補い、磁化の動きを助けているも
のと思われる。
FIG. 2 is a sectional view showing an example of the structure of the magnetic film of the present invention. In the figure, 20 is a main magnetic film having a high saturation magnetic flux density, for example, a magnetic alloy mainly composed of iron, and 21 is an intermediate magnetic film made of a magnetic alloy mainly composed of Co, Ni, etc. other than iron. , 23 are non-magnetic substrates. The intermediate magnetic film 21 is made of a very thin layer having a thickness of 100 Å or less, and the main magnetic film 20 is formed so that the columnar crystal structure does not have a great magnetic effect. The columnar crystal structure 22 of the main magnetic film 20 is subdivided by the body layer 21. With such a structure, the magnetization that was perpendicular to the film surface along the columnar structure,
The magnetization, which was difficult to move at the boundary of the columnar structure, is directed to the film surface and moves in the film surface with a small magnetic field, so that the coercive force becomes small. Further, it seems that the intermediate magnetic film 21 supplements the magnetic coupling of the main magnetic films 20 and assists the movement of magnetization.

【0006】本発明は、Feを主成分とする高飽和磁束
密度(10000ガウス以上)を有する複数の主磁性体
膜と該主磁性体膜間に介在するFe以外の金属元素を主
成分とする中間磁性体膜からなる積層構造を有する磁性
体膜である。本発明の主磁性体膜は、例えばFeを主成
分とし、Si、Al、Tiの中から選ばれる少なくとも1
種、または2種以上を含み、磁歪が小さく、透磁率の高
い、高飽和磁束密度を有する強磁性合金膜からなるもの
である。なお、主磁性体膜の組成は、耐食性、耐摩耗
性、磁歪制御等の目的で、Cr、Pt等の他の添加物を1
0%以下の量で添加してもよい。ただし、1200 Oe
以上の高保磁力の磁気記録媒体に適用する磁気ヘッド材
料として用いる場合には、主磁性体膜の飽和磁束密度を
10000ガウス以上に確保することが望ましい。一
方、中間磁性体膜は、CoあるいはNi、もしくは、これ
らの元素を主体とした合金からなっていることが望まし
い。また、Feは単体で用いると、その柱状組織が主磁
性体膜の柱状組織とつながってしまうため、あまり良い
結果は得られないが、NiまたはCoを主体にした合金、
例えば、Co80Fe20合金を用いれば本発明の効果が得ら
れる。本発明は、主磁性体膜が単層膜において、柱状
(または針状)構造を示すような結晶質の強磁性体膜に
おいて有効である。特に、単層膜において数エルステッ
ドの保磁力を有する磁性体膜に本発明を適用すれば、保
磁力を約1桁低減することが可能である。本発明におけ
る主磁性体膜の各層の厚みは0.5μm以下、好適には
0.05〜0.3μmであることが望ましい。0.05μ
m以下では中間磁性体膜の磁性が勝り、0.5μm以上
では柱状組織の影響が強く、保磁力が大きくなってしま
う。また、中間磁性体膜の各層の厚みは100Å以下が
好ましく、より好ましい範囲は10〜80Å、最も好適
には15〜70Åとすることが望ましい。10Å以下で
は、主磁性体膜の柱状組織を完全に遮断することが困難
となり、80Å以上では中間磁性体膜の磁性が強調され
保磁力が大きくなってしまう。上記のような主磁性体膜
と、中間磁性体膜とを積層した本発明の積層磁性体膜
は、従来の主磁性体膜と非磁性絶縁物よりなる中間膜で
構成した積層磁性体膜に比べ、保磁力の低い磁性体膜を
得ることができる。さらに、前記の主磁性体膜と中間磁
性体膜とからなる適当な厚さの単位積層磁性体膜を、S
iO2、Al23膜のような電気絶縁性のある非磁性体膜
を介して所定枚数積層することによって、高周波特性の
優れた本発明の膜厚の大きい積層磁性体膜を得ることが
できる。本発明の積層磁性体膜は、スパッタリング、蒸
着、イオンプレーティングやメッキ等のいわゆる薄膜形
成技術によって形成することができる。
In the present invention, a plurality of main magnetic films having a high saturation magnetic flux density (10,000 Gauss or more) containing Fe as a main component and a metal element other than Fe interposed between the main magnetic films are main components. The magnetic film has a laminated structure made of an intermediate magnetic film. The main magnetic film of the present invention contains, for example, Fe as a main component and at least one selected from Si, Al, and Ti.
It is composed of a ferromagnetic alloy film containing two or more kinds, a small magnetostriction, a high magnetic permeability, and a high saturation magnetic flux density. The composition of the main magnetic film contains 1% of other additives such as Cr and Pt for the purpose of corrosion resistance, wear resistance, magnetostriction control, and the like.
It may be added in an amount of 0% or less. However, 1200 Oe
When used as a magnetic head material applied to the above high coercive force magnetic recording medium, it is desirable to secure the saturation magnetic flux density of the main magnetic film at 10,000 Gauss or more. On the other hand, the intermediate magnetic film is preferably made of Co or Ni, or an alloy mainly containing these elements. Further, when Fe is used alone, the columnar structure is connected to the columnar structure of the main magnetic film, so that a good result cannot be obtained, but an alloy mainly composed of Ni or Co,
For example, the effect of the present invention can be obtained by using a Co 80 Fe 20 alloy. INDUSTRIAL APPLICABILITY The present invention is effective for a crystalline ferromagnetic material film having a columnar (or acicular) structure in which the main magnetic film is a single-layer film. In particular, if the present invention is applied to a magnetic film having a coercive force of several oersteds in a single layer film, the coercive force can be reduced by about one digit. The thickness of each layer of the main magnetic film of the present invention is 0.5 μm or less, preferably 0.05 to 0.3 μm. 0.05μ
When it is less than m, the magnetism of the intermediate magnetic film is superior, and when it is more than 0.5 μm, the influence of the columnar structure is strong and the coercive force becomes large. The thickness of each layer of the intermediate magnetic film is preferably 100 Å or less, more preferably 10 to 80 Å, most preferably 15 to 70 Å. If it is 10 Å or less, it is difficult to completely block the columnar structure of the main magnetic film, and if it is 80 Å or more, the magnetism of the intermediate magnetic film is emphasized and the coercive force becomes large. The laminated magnetic material film of the present invention in which the main magnetic material film and the intermediate magnetic material film as described above are laminated is a laminated magnetic material film composed of a conventional main magnetic material film and an intermediate film made of a non-magnetic insulator. In comparison, a magnetic film having a low coercive force can be obtained. Furthermore, a unit laminated magnetic film having an appropriate thickness composed of the main magnetic film and the intermediate magnetic film is
By laminating a predetermined number of layers through a non-magnetic material film having an electrical insulation property such as an iO 2 film or an Al 2 O 3 film, it is possible to obtain the laminated magnetic material film of the present invention having excellent high frequency characteristics. it can. The laminated magnetic film of the present invention can be formed by a so-called thin film forming technique such as sputtering, vapor deposition, ion plating or plating.

【0007】[0007]

【実施例】以下、本発明の実施例を挙げ、図面を用いて
さらに詳細に説明する。磁性体膜の形成は、図3に示す
ようなRFスパッタリング装置を用いた。真空容器30
内には3つの独立した対向電極を有し、電極31、3
2、33はターゲット電極(陰極)で、電極31にはF
eを主成分とした主磁性体膜を形成するための合金ター
ゲットが配置され、電極32には中間磁性体膜を形成す
るためのFe以外のCo、Ni等の磁性金属を主体とする
磁性ターゲットが配置され、電極33には中間非磁性体
層を形成するためのSiO2、Al23、Al、Mo等の
絶縁体あるいは非磁性金属からなるターゲットが配置さ
れる。一方、電極34、35、36は、それぞれ前記タ
ーゲット電極31、32、33の直下に設けた試料電極
(陽極)で、試料37は目的に応じてそれぞれの試料電
極上に移動できるようになっている。また、スパッタリ
ング時には電磁石38、38′によって、 試料37の
面内に磁界が印加されるようになっている。なお、放電
はアルゴンガス中で行われ、ガス導入管39から真空容
器30内に入る。40は、容器30の排気孔、41は、
電極切り換え器である。
Embodiments of the present invention will be described below in more detail with reference to the drawings. The magnetic film was formed using an RF sputtering device as shown in FIG. Vacuum container 30
It has three independent counter electrodes inside, and electrodes 31, 3
Reference numerals 2 and 33 are target electrodes (cathodes), and electrode 31 has F
An alloy target for forming a main magnetic film mainly containing e is arranged, and a magnetic target mainly for a magnetic metal such as Co or Ni other than Fe for forming an intermediate magnetic film is arranged on the electrode 32. A target made of an insulator such as SiO 2 , Al 2 O 3 , Al, Mo or a nonmagnetic metal for forming an intermediate nonmagnetic layer is disposed on the electrode 33. On the other hand, the electrodes 34, 35 and 36 are sample electrodes (anodes) provided directly below the target electrodes 31, 32 and 33, respectively, and the sample 37 can be moved onto the respective sample electrodes according to the purpose. There is. A magnetic field is applied to the surface of the sample 37 by the electromagnets 38 and 38 'during sputtering. The discharge is performed in argon gas and enters the vacuum container 30 through the gas introduction pipe 39. 40 is the exhaust hole of the container 30, 41 is
It is an electrode switching device.

【0008】<実施例1>まず、主磁性体膜としての高
飽和磁束密度を有するFe−6.5%Si(重量%)膜の
形成について述べる。比較的好条件でスパッタリングす
るために選ばれた諸条件は以下のようである。 ターゲット組成…Fe−6.5%Si 高周波電力密度…2.8W/cm2 アルゴン圧力……2×10~2Torr 基板温度 ………350℃ 電極間距離 ……25mm 膜厚 ……………1.5μm 得られた単層膜の磁気特性は、保磁力Hc;2.5 Oe、
5MHzにおける透磁率μ;400、飽和磁束密度B
s;18500ガウスであった。なお、スパッタリング
中には磁性体膜の面内に一方向の磁界(約10 Oe)が
印加されている。試料の磁気特性は磁性体膜の磁化困難
軸方向で測定した結果を示す。また、基板としてはガラ
ス基板を用いた。スパッタリングに際しての諸条件は、
ターゲット組成をFe−6.5%SiとするとFe側に組成
がずれる傾向にあり、堆積された膜の組成は5〜6%S
iとなる。高周波電力密度は2W/cm2以上にした方
が、保磁力Hcが低減する傾向にある。基板温度は膜の
歪応力を緩和するために300℃以上にするのが好まし
い。電極間距離は短い方が保磁力が低くなる傾向にあ
り、スパッタリング中の放電の安定性を加速すると、2
0〜30mm程度が好ましい。また、アルゴンガス導入
前の真空容器の真空度は酸素や不純物の残存が磁性体膜
の磁気特性に影響するので、10~7Torr以上の高真空
にすることが好ましい。一方、中間膜の形成は、一般に
RFスパッタリングで行われている以下の条件で行っ
た。
Example 1 First, the formation of a Fe-6.5% Si (weight%) film having a high saturation magnetic flux density as a main magnetic film will be described. The conditions selected for sputtering under relatively favorable conditions are as follows. Target composition ... Fe-6.5% Si RF power density ... 2.8W / cm 2 argon pressure ...... 2 × 10 ~ 2 Torr substrate temperature ......... 350 ℃ electrode distance ...... 25mm thickness ............... The magnetic properties of the obtained single layer film are as follows: coercive force Hc; 2.5 Oe;
Permeability at 5 MHz μ; 400, saturation magnetic flux density B
s; 18500 gauss. A unidirectional magnetic field (about 10 Oe) is applied to the surface of the magnetic film during sputtering. The magnetic characteristics of the sample are the results measured in the hard axis direction of the magnetic film. A glass substrate was used as the substrate. The various conditions for sputtering are
When the target composition is Fe-6.5% Si, the composition tends to shift to the Fe side, and the composition of the deposited film is 5-6% S.
i. The coercive force Hc tends to decrease when the high frequency power density is set to 2 W / cm 2 or more. The substrate temperature is preferably 300 ° C. or higher in order to relax the strain stress of the film. The shorter the distance between the electrodes, the lower the coercive force tends to be. Therefore, if the stability of discharge during sputtering is accelerated,
About 0 to 30 mm is preferable. The degree of vacuum of the vacuum container before the introduction of the argon gas is preferably set to a high vacuum of 10 to 7 Torr or more because the residual oxygen and impurities affect the magnetic properties of the magnetic film. On the other hand, the formation of the intermediate film was performed under the following conditions generally performed by RF sputtering.

【0009】ターゲット材料…Co、Ni、Co80Fe20
よびSiO2、Al23、Al、Mo、Fe 高周波電力密度…0.5W/cm2 アルゴン圧力……5×10~3Torr 基板温度 ………250℃ 電極間距離 ……50mm 膜厚 ……………30Å 中間膜にCo、Niからなる磁性体膜との比較のために、
Fe膜および従来用いられているSiO2、Al23から
なる絶縁体膜ならびにAl、Mo等の非磁性金属膜を用
いたものについても実験した。積層磁性体膜において、
主磁性体膜の一層の膜厚を0.1μmとし、中間膜の膜
厚を30Åとし、主磁性体膜を15層積層して全膜厚を
約1.5μmとした。図4は上記のようにして得たFe−
6.5%Si膜を主磁性体膜とし、種々の中間膜を用いた
積層磁性体膜の磁気特性を示す図表である。同図表中の
磁気特性は、それぞれスパッタリングしたままの膜の平
均値を示す。また、図表中、(イ)はFe−6.5%Si
合金の単層膜の特性、(ロ)〜(ホ)は従来の非磁性材
を中間膜とした積層磁性体膜の特性、(ヘ)はFeを中
間膜とした本発明と類似する積層磁性体膜の特性、
(ト)〜(リ)はFe以外の磁性金属を主体とした磁性
金属を中間膜とした本発明の磁性体膜の特性である。同
図表の結果によれば、Co、NiおよびCo80Fe20を中間
膜とした本発明の磁性体膜は、Feおよび従来の非磁性
体膜を中間膜とした磁性体膜に比べて保磁力が非常に小
さいことが分かる。すなわち、保磁力が0.5 Oe以下
となり、実用的な透磁率を得ることができた。
Target material: Co, Ni, Co 80 Fe 20 and SiO 2 , Al 2 O 3 , Al, Mo, Fe High frequency power density: 0.5 W / cm 2 Argon pressure: 5 × 10 to 3 Torr substrate temperature ...... 250 ° C Distance between electrodes ...... 50 mm Film thickness ………… 30 Å For comparison with the magnetic film made of Co and Ni as the intermediate film,
Experiments were also conducted on the Fe film, the conventionally used insulator film made of SiO 2 , Al 2 O 3 and the non-magnetic metal film such as Al and Mo. In the laminated magnetic film,
The thickness of one layer of the main magnetic film was 0.1 μm, the thickness of the intermediate film was 30 Å, and 15 layers of the main magnetic film were laminated so that the total thickness was about 1.5 μm. FIG. 4 shows the Fe− obtained as described above.
6 is a chart showing magnetic characteristics of a laminated magnetic film using various intermediate films with a 6.5% Si film as a main magnetic film. The magnetic characteristics in the figure show the average values of the as-sputtered films. In the chart, (a) is Fe-6.5% Si.
Characteristics of a single layer film of alloy, (b) to (e) are characteristics of a laminated magnetic film using a conventional non-magnetic material as an intermediate film, and (f) is a laminated magnetic film similar to the present invention using Fe as an intermediate film. Characteristics of the body membrane,
(G) to (d) are characteristics of the magnetic film of the present invention in which a magnetic metal mainly composed of a magnetic metal other than Fe is used as an intermediate film. According to the results shown in the figure, the magnetic film of the present invention having Co, Ni and Co 80 Fe 20 as an intermediate film has a coercive force higher than that of a magnetic film having Fe and a conventional non-magnetic film as an intermediate film. It turns out that is very small. That is, the coercive force was 0.5 Oe or less, and a practical magnetic permeability could be obtained.

【0010】本発明において、主磁性体膜の一層の膜厚
は0.05〜0.5μmの範囲で、積層磁性体膜の磁気特
性に悪影響を与えない程度に柱状組織を微細化すること
ができる。図5はFe−6.5%Si膜を主磁性体膜と
し、Coを中間膜とした時の中間膜の膜厚と保磁力Hcお
よび5MHzでの透磁率μの関係を示したものである。
この積層磁性体膜は、15層の主磁性体膜と、それらの
間に中間膜を設けたものである。この図によると中間膜
の膜厚は10〜80Åの範囲で保磁力が約0.8 Oe、
15〜70Åの範囲で保磁力が0.5 Oe以下となり、
40Å付近で最小となる。一方、透磁率はこの付近で最
大となる。中間膜の膜厚の影響は、材質によって若干異
なるものの、ほぼ同等の範囲で好適な磁気特性が得られ
る。なお、10Å以下の膜厚では、主磁性体膜の組織を
遮断することが困難となり、柱状組織が成長してしまう
ため本発明の効果は低減する。一方、80Å以上にする
と、中間膜の磁気的性質が強調され、保磁力が大きくな
ってしまう。中間膜の膜厚は直接測定することが困難で
あるため、数ミクロンの膜厚に被着したときのスパッタ
リング速度から算出して時間で管理した。本実施例で
は、スパッタリング中に磁性体膜の面内に一方向の磁界
が印加されており、磁界印加方向に磁化容易軸が形成さ
れる。図6に示すように周波数を変えて磁界印加方向
(磁化容易軸方向)で測定した透磁率(曲線51)よ
り、印加磁界と垂直方向(磁化困難軸方向)で測定した
透磁率(曲線52)の方が高くなっている。したがっ
て、本発明の積層磁性体膜を磁気ヘッドの作製に用いる
場合に、磁化困難軸方向を磁気ヘッドの磁気回路に対し
て有利な方向に配置することができる。
In the present invention, the thickness of one layer of the main magnetic film is in the range of 0.05 to 0.5 μm, and the columnar structure can be made fine to such an extent that the magnetic characteristics of the laminated magnetic film are not adversely affected. it can. FIG. 5 shows the relationship between the film thickness of the intermediate film and the coercive force Hc and the magnetic permeability μ at 5 MHz when the Fe-6.5% Si film is the main magnetic film and Co is the intermediate film. ..
This laminated magnetic film is formed by providing 15 layers of main magnetic films and an intermediate film between them. According to this figure, the coercive force is about 0.8 Oe when the thickness of the intermediate film is in the range of 10 to 80Å,
Coercive force is less than 0.5 Oe in the range of 15 to 70Å,
The minimum is around 40Å. On the other hand, the magnetic permeability becomes maximum around this. Although the influence of the film thickness of the intermediate film is slightly different depending on the material, suitable magnetic properties can be obtained in a substantially equivalent range. If the film thickness is 10 Å or less, it becomes difficult to block the structure of the main magnetic film and the columnar structure grows, so that the effect of the present invention is reduced. On the other hand, when it is set to 80 Å or more, the magnetic property of the intermediate film is emphasized and the coercive force becomes large. Since it is difficult to directly measure the film thickness of the intermediate film, the film thickness was calculated from the sputtering rate when the film was deposited to a film thickness of several microns and was controlled by time. In this embodiment, a magnetic field in one direction is applied to the surface of the magnetic film during sputtering, and an easy axis of magnetization is formed in the magnetic field application direction. As shown in FIG. 6, magnetic permeability (curve 51) measured in the direction perpendicular to the applied magnetic field (hard axis of magnetization) from the magnetic permeability (curve 51) measured in the direction of magnetic field application (direction of easy magnetization axis) as shown in FIG. Is higher. Therefore, when the laminated magnetic film of the present invention is used for manufacturing a magnetic head, the hard axis direction can be arranged in an advantageous direction with respect to the magnetic circuit of the magnetic head.

【0011】<実施例2>本実施例は、本発明の積層磁
性体膜により得られる保磁力について、従来の積層構造
の磁性体膜と比較して示すものである。例えば、Fe−
9.5%Si−6%Al合金をターゲットとし、以下の条
件でスパッタリングして得られた積層磁性体膜は、0.
2 Oeの保磁力が恒常的に得られる。なお、従来型の積
層構造(例えば、中間膜にSiO2膜を用いた場合)で得
られた保磁力は0.5 Oeであった。 ターゲット組成…Fe−10%Si−6.5%Al 高周波電力密度…2.5W/cm2 アルゴン圧力……1×10~3Torr 基板温度 ………350℃ 電極間距離 ……30mm Fe−Si−Al合金の膜厚…0.2μm 中間膜 …………Co Coの膜厚 ……30Å 合金膜の層数……8 中間膜の層数……7 保磁力Hc ……0.2 Oe 飽和磁束密度……9000ガウス 本発明に用いる主磁性体膜はFeを主成分とする磁性体
膜であってもよいが、高飽和磁束密度を有し、ほぼ磁歪
が零付近であるFe以外のCoまたはNiを主成分とす
る合金磁性体であれば十分な効果が生じる。特に、薄膜
形成技術によって形成された、膜体が膜面に垂直あるい
は傾斜した柱状構造を示す磁性体膜において保磁力が低
減され、磁気ヘッド材料として好適な積層磁性体膜を得
ることができる。
<Embodiment 2> In this embodiment, the coercive force obtained by the laminated magnetic film of the present invention is shown in comparison with a conventional laminated magnetic film. For example, Fe-
A laminated magnetic film obtained by sputtering a 9.5% Si-6% Al alloy as a target under the following conditions was 0.1.
A coercive force of 2 Oe is constantly obtained. The coercive force obtained by the conventional laminated structure (for example, when the SiO 2 film is used as the intermediate film) was 0.5 Oe. Target composition: Fe-10% Si-6.5% Al High frequency power density: 2.5 W / cm 2 Argon pressure: 1 × 10 ~ 3 Torr Substrate temperature: 350 ° C Distance between electrodes: 30 mm Fe-Si -Al alloy film thickness: 0.2 μm Intermediate film: Co Co film thickness: 30Å Number of alloy film layers: 8 Number of intermediate film layers: 7 Coercive force Hc: 0.2 Oe Saturation Magnetic flux density: 9000 gauss The main magnetic film used in the present invention may be a magnetic film containing Fe as a main component, but Co other than Fe, which has a high saturation magnetic flux density and has a magnetostriction near zero, is used. Alternatively, a sufficient effect can be obtained with an alloy magnetic body containing Ni as a main component. In particular, the coercive force is reduced in the magnetic film formed by the thin film forming technique and having a columnar structure in which the film body is perpendicular or inclined to the film surface, and a laminated magnetic film suitable as a magnetic head material can be obtained.

【0012】<実施例3>図7は、膜構造に関する本発
明の実施例を示すものであって、厚膜積層磁性体膜の構
造を示すものである。非磁性基板23の上に、主磁性体
膜20と中間磁性体膜21を交互に積層した厚さ数ミク
ロンの単位積層膜ごとに、非磁性絶縁物よりなる中間膜
24を形成してなる積層磁性体膜である。このように構
成した積層磁性体膜は、高周波領域での透磁率の劣化が
なく優れた磁気ヘッドコア材となる。このような積層磁
性体膜はトラック幅が10μm以上のビデオヘッド材料
として用いられる。
<Embodiment 3> FIG. 7 shows an embodiment of the present invention relating to a film structure, and shows the structure of a thick film laminated magnetic film. A laminate in which an intermediate film 24 made of a nonmagnetic insulator is formed on a non-magnetic substrate 23 for each unit laminated film having a thickness of several microns in which a main magnetic film 20 and an intermediate magnetic film 21 are alternately laminated. It is a magnetic film. The laminated magnetic film having such a structure is an excellent magnetic head core material without deterioration of magnetic permeability in a high frequency region. Such a laminated magnetic film is used as a video head material having a track width of 10 μm or more.

【0013】<実施例4>以下に、本発明の磁気ヘッド
の実施例について説明する。本発明の磁気ヘッドは、磁
気ギャップを形成するコア部材と、コア部材に磁気的に
結合されるコイルを有する磁気ヘッドで、コア部材を2
種以上の磁性体膜を積層して形成したものである。この
ようにコアを形成することで、磁性体膜同士の磁気的な
つながりを保ったまま、磁性体膜の結晶構造を制御する
ことができる。この結果、単層では保磁力が大きい磁性
体膜であっても、磁気ヘッドコアとした時の保磁力は小
さく、透磁率は大きくなり、優れた特性の磁気ヘッドを
構成できる。図8には、上述の積層磁性体膜を非磁性基
板上に形成してから、所定の形状に加工し、ギャップ形
成面が互いに対向するように突き合せて作った磁気ヘッ
ドの一例を示す。図において、61は、磁性体膜が形成
された非磁性基板、62は積層磁性体膜、63は、積層
磁性体膜62を保護するためのもう一方の非磁性基板で
あって、他方の基板または磁性体膜にガラス等で接着さ
れている。64はギャップ、65はコイル巻線窓であ
る。この例では、積層磁性体膜62の厚さがトラック幅
となる。図9は、上述した本発明の積層磁性体層を用い
た薄膜磁気ヘッドの構造の一例を示すものである。図9
(イ)は磁気ヘッドコア断面図、図9(ロ)は上面図で
ある。図において、71は非磁性基板、72は下部磁性
体膜、73は上部磁性体膜、74は導体コイル、75は
作動ギャップである。この例では、磁性体膜は数ミクロ
ン以下の膜厚でよいので、図7に示すような非磁性絶縁
物よりなる中間膜24を省くことができる。図10は、
図9に示す磁気ヘッドの作動ギャップ近傍の磁性体膜の
主要部拡大図である。図10(イ)は下部磁性体膜7
2、上部磁性体膜73を、柱状構造の大きい単層膜で形
成した場合の一例を示す。この場合、曲り部76、77
のよううな、曲りをもつ部分で柱状組織が乱れ、その部
分でひび割れが生じたり、また腐食が起る原因となる。
また、曲りの部分での応力集中によってクラックを生じ
る。図10(ロ)に示す本発明による積層磁性体膜によ
れば、曲り部76、77で結晶組織が細かく、均一にし
て連続的で応力集中も少ないためクラックを生じること
もなく、耐食性の良い磁気回路を形成することができ
る。
<Embodiment 4> An embodiment of the magnetic head of the present invention will be described below. The magnetic head of the present invention is a magnetic head having a core member forming a magnetic gap and a coil magnetically coupled to the core member.
It is formed by laminating magnetic films of at least one kind. By forming the core in this way, the crystal structure of the magnetic film can be controlled while maintaining the magnetic connection between the magnetic films. As a result, even a magnetic film having a large coercive force in a single layer has a small coercive force when used as a magnetic head core and a large magnetic permeability, and a magnetic head having excellent characteristics can be constructed. FIG. 8 shows an example of a magnetic head formed by forming the above-mentioned laminated magnetic film on a non-magnetic substrate, processing it into a predetermined shape, and butting them so that the gap forming surfaces face each other. In the figure, 61 is a non-magnetic substrate on which a magnetic film is formed, 62 is a laminated magnetic film, 63 is another non-magnetic substrate for protecting the laminated magnetic film 62, and the other substrate. Alternatively, it is adhered to the magnetic film with glass or the like. 64 is a gap and 65 is a coil winding window. In this example, the thickness of the laminated magnetic film 62 is the track width. FIG. 9 shows an example of the structure of a thin film magnetic head using the above-mentioned laminated magnetic layer of the present invention. Figure 9
9A is a cross-sectional view of the magnetic head core, and FIG. 9B is a top view. In the figure, 71 is a non-magnetic substrate, 72 is a lower magnetic film, 73 is an upper magnetic film, 74 is a conductor coil, and 75 is an operating gap. In this example, since the magnetic film may have a film thickness of several microns or less, the intermediate film 24 made of a nonmagnetic insulator as shown in FIG. 7 can be omitted. Figure 10
FIG. 10 is an enlarged view of a main part of a magnetic film near the working gap of the magnetic head shown in FIG. 9. FIG. 10A shows the lower magnetic film 7.
2. An example of the case where the upper magnetic film 73 is formed of a single layer film having a large columnar structure is shown. In this case, the bent portions 76 and 77
The columnar structure is disturbed in a curved portion such as the above, which causes cracking or corrosion in that portion.
In addition, cracks are generated due to stress concentration in the bent portion. According to the laminated magnetic film of the present invention shown in FIG. 10B, since the bent portions 76 and 77 have fine crystal structures and are uniform and continuous, and stress concentration is small, cracks do not occur and good corrosion resistance is obtained. A magnetic circuit can be formed.

【0014】[0014]

【発明の効果】以上詳細に説明したごとく、本発明の厚
さ0.5μm以下のFeを主成分とする結晶質の磁性合金
からなる主磁性体膜と、厚さ100Å以下の中間磁性体
膜とを積層した磁性体膜、あるいは主磁性体膜と中間磁
性体膜を所定数積層した単位積層磁性体膜と、非磁性絶
縁物よりなる中間膜を積層して構成した磁性体膜は、低
い保磁力で、高透磁率が得られる。また、単位積層磁性
体膜を電気絶縁性の非磁性絶縁物よりなる中間膜を介し
て複数積層することにより高周波特性に優れた膜厚の大
きい積層磁性体膜が得られる。したがって、本発明の磁
性体膜を磁気ヘッドのコア材として用いることにより、
特に高保磁力記録媒体に対して優れた記録再生特性を示
す高密度磁気記録再生用ヘッドを実現することができ
る。
As described above in detail, the main magnetic film of the present invention is made of a crystalline magnetic alloy containing Fe as a main component and having a thickness of 0.5 μm or less, and an intermediate magnetic film having a thickness of 100 Å or less. The magnetic film formed by laminating a magnetic substance film formed by laminating a main magnetic substance film and a predetermined number of intermediate magnetic substance films, and a magnetic substance film formed by laminating an intermediate film made of a non-magnetic insulator are low. High coercivity can be obtained with coercive force. Further, by laminating a plurality of unit laminated magnetic films with an intermediate film made of an electrically insulating non-magnetic insulator interposed therebetween, it is possible to obtain a laminated magnetic film having a large thickness and excellent in high frequency characteristics. Therefore, by using the magnetic film of the present invention as a core material of a magnetic head,
In particular, it is possible to realize a high-density magnetic recording / reproducing head that exhibits excellent recording / reproducing characteristics for a high coercive force recording medium.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の積層磁性体膜の断面構成を示す模式図。FIG. 1 is a schematic diagram showing a cross-sectional structure of a conventional laminated magnetic film.

【図2】本発明の積層磁性体膜の断面構成の一例を示す
模式図。
FIG. 2 is a schematic diagram showing an example of a cross-sectional structure of a laminated magnetic film of the present invention.

【図3】本発明の実施例において磁性体膜の形成に用い
たスパッタリング装置の構成を示す模式図。
FIG. 3 is a schematic diagram showing a configuration of a sputtering apparatus used for forming a magnetic film in an example of the present invention.

【図4】本発明の実施例1で例示したFe−6.5%Si
合金膜を主磁性体膜とし、種々の中間膜を用いた積層磁
性体膜の磁気特性を示す図表。
FIG. 4 is Fe-6.5% Si exemplified in Example 1 of the present invention.
The chart which shows the magnetic characteristic of the laminated magnetic film which used the alloy film as the main magnetic film and various intermediate films.

【図5】本発明の実施例1で例示したFe−6.5%Si
合金膜を主磁性体膜とし、Coを中間膜とした本発明の
積層磁性体膜の磁気特性を示すグラフ。
FIG. 5: Fe-6.5% Si exemplified in Example 1 of the present invention.
6 is a graph showing the magnetic characteristics of the laminated magnetic film of the present invention in which the alloy film is the main magnetic film and Co is the intermediate film.

【図6】本発明の実施例1で例示したFe−6.5%Si
合金膜を主磁性体膜とし、Coを中間膜とした本発明の
積層磁性体膜の磁気特性を示すグラフ。
FIG. 6 is Fe-6.5% Si exemplified in Example 1 of the present invention.
6 is a graph showing the magnetic characteristics of the laminated magnetic film of the present invention in which the alloy film is the main magnetic film and Co is the intermediate film.

【図7】本発明の実施例3で例示した本発明の他の積層
磁性体膜の断面構成を示す模式図。
FIG. 7 is a schematic view showing a cross-sectional structure of another laminated magnetic film of the present invention exemplified in Example 3 of the present invention.

【図8】本発明の実施例4で例示した積層磁性体膜を用
いて作製した磁気ヘッドの構成を示す模式図。
FIG. 8 is a schematic diagram showing the configuration of a magnetic head manufactured using the laminated magnetic film illustrated in Example 4 of the present invention.

【図9】本発明の実施例4で例示した薄膜磁気ヘッドの
構造を示す模式図。
FIG. 9 is a schematic diagram showing the structure of the thin film magnetic head exemplified in Embodiment 4 of the present invention.

【図10】本発明の実施例4で例示した磁気ヘッドの作
動ギャップ近傍の磁性体膜の構成を示す拡大図。
FIG. 10 is an enlarged view showing the configuration of a magnetic film in the vicinity of the working gap of the magnetic head exemplified in Embodiment 4 of the present invention.

【符号の説明】[Explanation of symbols]

10…磁性体層 11…非磁性絶縁層 12…金属磁性体膜 13…非磁性基板 20…主磁性体膜 21…中間磁性体膜 22…柱状晶構造 23…非磁性基板 24…非磁性絶縁物よりなる中間膜 30…真空容器 31、32、33…電極(ターゲット…陰極) 34、35、36…電極(試料電極…陽極) 37…試料 38、38′…電磁石 39…ガス導入管 40…排気口 41…電極切り換え器 51…磁化容易軸方向の透磁率 52…磁化困難軸方向の透磁率 61…非磁性基板 62…積層磁性体膜 63…非磁性基板 64…ギャップ 65…コイル巻線窓 71…非磁性基板 72…下部磁性体膜 73…上部磁性体膜 74…導体コイル 75…作動ギャップ 76、77…曲り部 10 ... Magnetic layer 11 ... Nonmagnetic insulating layer 12 ... Metal magnetic film 13 ... Nonmagnetic substrate 20 ... Main magnetic film 21 ... Intermediate magnetic film 22 ... Columnar crystal structure 23 ... Nonmagnetic substrate 24 ... Nonmagnetic insulator Intermediate film 30 ... Vacuum container 31, 32, 33 ... Electrode (target ... Cathode) 34, 35, 36 ... Electrode (sample electrode ... Anode) 37 ... Sample 38, 38 '... Electromagnet 39 ... Gas introduction tube 40 ... Exhaust Port 41 ... Electrode switch 51 ... Magnetic permeability in easy magnetization axis direction 52 ... Magnetic permeability in hard magnetization axis direction 61 ... Non-magnetic substrate 62 ... Laminated magnetic film 63 ... Non-magnetic substrate 64 ... Gap 65 ... Coil winding window 71 ... Non-magnetic substrate 72 ... Lower magnetic film 73 ... Upper magnetic film 74 ... Conductor coil 75 ... Operating gap 76, 77 ... Bent portion

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大友 茂一 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 山下 武夫 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 工藤 實弘 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigekazu Otomo 1-280 Higashi Koikeku, Kokubunji, Tokyo Inside Hitachi Central Research Laboratory (72) Inventor Takeo Yamashita 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Ltd. Central Research Laboratory (72) Inventor, Masahiro Kudo 1-280, Higashi Koigokubo, Kokubunji, Tokyo Metropolitan Research Center, Hitachi, Ltd.

Claims (32)

【特許請求の範囲】[Claims] 【請求項1】磁性体膜を構成する主要部分が、厚さ0.
5μm以下のFeを主成分とする結晶質の磁性合金から
なる主磁性体膜と、該主磁性体膜とは組成の異なる磁性
合金からなる厚さ100Å以下の中間磁性体膜とを少な
くとも積層してなることを特徴とする磁性体膜。
1. A main part constituting a magnetic film has a thickness of 0.1.
At least a main magnetic film made of a crystalline magnetic alloy having Fe as a main component of 5 μm or less and an intermediate magnetic film having a thickness of 100 Å or less made of a magnetic alloy having a composition different from that of the main magnetic film are laminated. A magnetic film characterized by being formed.
【請求項2】前記主磁性体膜および中間磁性体膜を積層
して構成した単位積層磁性体膜と、非磁性絶縁物よりな
る中間膜とを積層して構成したことを特徴とする請求項
1記載の磁性体膜。
2. A unit laminated magnetic film formed by laminating the main magnetic film and an intermediate magnetic film, and an intermediate film made of a non-magnetic insulator are laminated. 1. The magnetic film according to 1.
【請求項3】前記主磁性体膜は、単層膜としたときに柱
状または針状の結晶構造を有することを特徴とする請求
項1または請求項2記載の磁性体膜。
3. The magnetic film according to claim 1, wherein the main magnetic film has a columnar or acicular crystal structure when formed into a single-layer film.
【請求項4】前記主磁性体膜は、単層膜としたときに数
Oeの保磁力を有することを特徴とする請求項1ないし
請求項3のいずれか1項記載の磁性体膜。
4. The magnetic film according to claim 1, wherein the main magnetic film has a coercive force of several Oe when formed into a single-layer film.
【請求項5】前記主磁性体膜は、単層膜としたときに1
0000ガウス以上の飽和磁束密度を有することを特徴
とする請求項1ないし請求項5のいずれか1項記載の磁
性体膜。
5. The main magnetic film is 1 when it is a single layer film.
The magnetic film according to any one of claims 1 to 5, which has a saturation magnetic flux density of 0000 Gauss or more.
【請求項6】前記主磁性体膜は、Feを主成分とし、S
i、Al、Tiのうちから選ばれる少なくとも1種の元素
を含む磁性合金からなることを特徴とする請求項1ない
し請求項5のいずれか1項記載の磁性体膜。
6. The main magnetic film contains Fe as a main component and S
The magnetic film according to claim 1, which is made of a magnetic alloy containing at least one element selected from i, Al, and Ti.
【請求項7】前記主磁性体膜は、Fe以外の元素を10
重量%以下の範囲で含有する磁性合金であることを特徴
とする請求項1ないし請求項6のいずれか1項記載の磁
性体膜。
7. The main magnetic film contains 10 elements other than Fe.
The magnetic film according to any one of claims 1 to 6, which is a magnetic alloy contained in a range of not more than wt%.
【請求項8】前記主磁性体膜は、CrまたはPtを含有す
る磁性合金であることを特徴とする請求項1ないし請求
項7のいずれか1項記載の磁性体膜。
8. The magnetic film according to claim 1, wherein the main magnetic film is a magnetic alloy containing Cr or Pt.
【請求項9】前記中間磁性体膜は、CoまたはNiを主成
分とする磁性合金からなることを特徴とする請求項1な
いし請求項8のいずれか1項記載の磁性体膜。
9. The magnetic film according to claim 1, wherein the intermediate magnetic film is made of a magnetic alloy containing Co or Ni as a main component.
【請求項10】前記主磁性体膜の単層の厚さが0.05
〜0.3μmの範囲であることを特徴とする請求項1な
いし請求項9のいずれか1項記載の磁性体膜。
10. The thickness of a single layer of the main magnetic film is 0.05.
The magnetic film according to any one of claims 1 to 9, wherein the thickness is in the range of from 0.3 to 0.3 µm.
【請求項11】前記中間磁性体膜の単層の厚さが10〜
80Åの範囲であることを特徴とする請求項1ないし請
求項10のいずれか1項記載の磁性体膜。
11. A single layer of the intermediate magnetic film has a thickness of 10 to 10.
The magnetic film according to any one of claims 1 to 10, wherein the thickness is in the range of 80Å.
【請求項12】前記中間磁性体膜の単層の厚さが15〜
70Åの範囲であることを特徴とする請求項1ないし請
求項10のいずれか1項記載の磁性体膜。
12. A single layer of the intermediate magnetic film has a thickness of 15 to 10.
The magnetic film according to any one of claims 1 to 10, which has a range of 70Å.
【請求項13】前記非磁性絶縁物よりなる中間膜は、S
iO2、Al23、Al、Moのうちから選ばれる少なく
とも1種の非磁性絶縁物からなることを特徴とする請求
項1ないし請求項12のいずれか1項記載の磁性体膜。
13. The intermediate film made of the non-magnetic insulator is S
The magnetic film according to any one of claims 1 to 12, which is made of at least one kind of non-magnetic insulator selected from iO 2 , Al 2 O 3 , Al and Mo.
【請求項14】前記磁性体膜は、その膜面に対して所定
方向の磁界を印加して形成したものであることを特徴と
する請求項1ないし請求項13のいずれか1項記載の磁
性体膜。
14. The magnetic film according to claim 1, wherein the magnetic film is formed by applying a magnetic field in a predetermined direction to the film surface. Body membrane.
【請求項15】前記磁性体膜は、非磁性基板上に形成し
てなることを特徴とする請求項1ないし請求項14のい
ずれか1項記載の磁性体膜。
15. The magnetic film according to claim 1, wherein the magnetic film is formed on a non-magnetic substrate.
【請求項16】磁気ギャップを形成する磁気コア部材
と、該コア部材に磁気的に結合されるコイル手段を有す
る磁気ヘッドにおいて、上記コア部材は、厚さ0.5μ
m以下のFeを主成分とする結晶質の磁性合金からなる
主磁性体膜と、該主磁性体膜とは組成の異なる磁性合金
からなる厚さ100Å以下の中間磁性体膜を積層して構
成した磁性体膜、もしくは前記主磁性体膜と中間磁性体
膜とを積層して構成される単位積層磁性体膜と、非磁性
絶縁物よりなる中間膜とを積層して構成した磁性体膜に
より構成したことを特徴とする磁気ヘッド。
16. A magnetic head having a magnetic core member forming a magnetic gap and coil means magnetically coupled to the core member, wherein the core member has a thickness of 0.5 μm.
A structure in which a main magnetic film made of a crystalline magnetic alloy containing Fe as the main component and having a thickness of 100 m or less and an intermediate magnetic film having a thickness of 100 Å or less made of a magnetic alloy having a composition different from that of the main magnetic film are laminated. Or a unit laminated magnetic film formed by laminating the main magnetic film and the intermediate magnetic film, and a magnetic film formed by laminating an intermediate film made of a non-magnetic insulator. A magnetic head characterized by being configured.
【請求項17】前記磁気コア部材は、厚さ0.5μm以
下の主磁性体膜と、厚さ10〜80Åの中間磁性体膜と
を積層して構成したことを特徴とする請求項16記載の
磁気ヘッド。
17. The magnetic core member is formed by laminating a main magnetic film having a thickness of 0.5 μm or less and an intermediate magnetic film having a thickness of 10 to 80 Å. Magnetic head.
【請求項18】前記磁気コア部材は、主磁性体膜および
中間磁性体膜を積層して構成した単位積層磁性体膜と、
非磁性絶縁物よりなる中間膜とを積層して構成した磁性
体膜からなることを特徴とする請求項16または請求項
17記載の磁気ヘッド。
18. A unit laminated magnetic film formed by laminating a main magnetic film and an intermediate magnetic film, said magnetic core member comprising:
18. The magnetic head according to claim 16 or 17, wherein the magnetic head is formed by laminating an intermediate film made of a non-magnetic insulator.
【請求項19】前記磁気コア部材を構成する主磁性体膜
は、単層膜としたときに柱状または針状の結晶構造を有
することを特徴とする請求項16ないし請求項18のい
ずれか1項記載の磁気ヘッド。
19. The main magnetic film forming the magnetic core member has a columnar or acicular crystal structure when formed into a single-layer film. A magnetic head according to the item.
【請求項20】前記磁気コア部材を構成する主磁性体膜
は、単層膜としたときに数Oeの保磁力を有することを
特徴とする請求項16ないし請求項19のいずれか1項
記載の磁気ヘッド。
20. The main magnetic film forming the magnetic core member has a coercive force of several Oe when formed into a single-layer film, according to any one of claims 16 to 19. Magnetic head.
【請求項21】前記磁気コア部材を構成する主磁性体膜
は、単層膜としたときに10000ガウス以上の飽和磁
束密度を有することを特徴とする請求項16ないし請求
項20のいずれか1項記載の磁気ヘッド。
21. The main magnetic film forming the magnetic core member has a saturation magnetic flux density of 10,000 Gauss or more when formed as a single-layer film, according to any one of claims 16 to 20. A magnetic head according to the item.
【請求項22】前記磁気コア部材を構成する主磁性体膜
は、Feを主成分とする高飽和磁束密度を有する磁性合
金からなることを特徴とする請求項16ないし請求項2
1のいずれか1項記載の磁気ヘッド。
22. The main magnetic film forming the magnetic core member is made of a magnetic alloy containing Fe as a main component and having a high saturation magnetic flux density.
2. The magnetic head according to any one of 1.
【請求項23】前記磁気コア部材を構成する高飽和磁束
密度を有するFeを主成分とする磁性合金からなる主磁
性体膜は、Si、Al、Tiのうちから選ばれる少なくと
も1種の元素を含む磁性合金であることを特徴とする請
求項16ないし請求項22のいずれか1項記載の磁気ヘ
ッド。
23. The main magnetic film made of a magnetic alloy containing Fe as a main component and having a high saturation magnetic flux density, which constitutes the magnetic core member, contains at least one element selected from Si, Al and Ti. 23. The magnetic head according to claim 16, wherein the magnetic head contains a magnetic alloy.
【請求項24】前記磁気コア部材を構成するFeを主成
分とする磁性合金からなる主磁性体膜は、Fe以外の元
素を10重量%以下の範囲で含有する磁性合金であるこ
とを特徴とする請求項16ないし請求項23のいずれか
1項記載の磁気ヘッド。
24. The main magnetic film made of a magnetic alloy containing Fe as a main component constituting the magnetic core member is a magnetic alloy containing an element other than Fe in an amount of 10% by weight or less. The magnetic head according to any one of claims 16 to 23.
【請求項25】前記磁気コア部材を構成する主磁性体膜
は、CrまたはPtを含有する磁性合金であることを特徴
とする請求項16ないし請求項24のいずれか1項記載
の磁気ヘッド。
25. The magnetic head according to claim 16, wherein the main magnetic film forming the magnetic core member is a magnetic alloy containing Cr or Pt.
【請求項26】前記磁気コア部材を構成する中間磁性体
膜は、CoまたはNiを主成分とする磁性合金からなるこ
とを特徴とする請求項16ないし請求項25のいずれか
1項記載の磁気ヘッド。
26. The magnetic material according to claim 16, wherein the intermediate magnetic film forming the magnetic core member is made of a magnetic alloy containing Co or Ni as a main component. head.
【請求項27】前記磁気コア部材を構成する主磁性体膜
の単層の厚さが0.05〜0.3μmの範囲であることを
特徴とする請求項16ないし請求項26のいずれか1項
記載の磁気ヘッド。
27. The single layer of the main magnetic film forming the magnetic core member has a thickness in the range of 0.05 to 0.3 .mu.m. A magnetic head according to the item.
【請求項28】前記磁気コア部材を構成する中間磁性体
膜の単層の厚さが10〜80Åの範囲であることを特徴
とする請求項16ないし請求項27のいずれか1項記載
の磁気ヘッド。
28. The magnetic according to claim 16, wherein the thickness of the single layer of the intermediate magnetic film forming the magnetic core member is in the range of 10 to 80Å. head.
【請求項29】前記磁気コア部材を構成する中間磁性体
膜の単層の厚さが15〜70Åの範囲であることを特徴
とする請求項16ないし請求項27のいずれか1項記載
の磁気ヘッド。
29. The magnetic material according to claim 16, wherein a single layer of the intermediate magnetic film forming the magnetic core member has a thickness in the range of 15 to 70Å. head.
【請求項30】前記磁気コア部材を構成する非磁性絶縁
物よりなる中間膜は、SiO2、Al23、Al、Moの
うちから選ばれる少なくとも1種の非磁性絶縁物からな
ることを特徴とする請求項16ないし請求項29のいず
れか1項記載の磁気ヘッド。
30. The intermediate film made of a non-magnetic insulator forming the magnetic core member is made of at least one non-magnetic insulator selected from SiO 2 , Al 2 O 3 , Al and Mo. 30. The magnetic head according to claim 16, wherein the magnetic head is a magnetic head.
【請求項31】前記磁気コア部材を構成する磁性体膜
は、その膜面に対して所定方向の磁界を印加して形成し
たものであることを特徴とする請求項16ないし請求項
30のいずれか1項記載の磁気ヘッド。
31. The magnetic material film forming the magnetic core member is formed by applying a magnetic field in a predetermined direction to the film surface. The magnetic head according to item 1.
【請求項32】前記磁気コア部材を構成する磁性体膜
は、非磁性基板上に形成したものであることを特徴とす
る請求項16ないし請求項31のいずれか1項記載の磁
気ヘッド。
32. The magnetic head according to claim 16, wherein the magnetic film forming the magnetic core member is formed on a non-magnetic substrate.
JP4195060A 1982-07-09 1992-07-22 Magnetic material film and magnetic head using the same Pending JPH05335146A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57118509A JPS599905A (en) 1982-07-09 1982-07-09 Magnetic substance film
JP4195060A JPH05335146A (en) 1982-07-09 1992-07-22 Magnetic material film and magnetic head using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP57118509A JPS599905A (en) 1982-07-09 1982-07-09 Magnetic substance film
JP4195060A JPH05335146A (en) 1982-07-09 1992-07-22 Magnetic material film and magnetic head using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57118509A Division JPS599905A (en) 1982-07-09 1982-07-09 Magnetic substance film

Publications (1)

Publication Number Publication Date
JPH05335146A true JPH05335146A (en) 1993-12-17

Family

ID=26456434

Family Applications (2)

Application Number Title Priority Date Filing Date
JP57118509A Granted JPS599905A (en) 1982-07-09 1982-07-09 Magnetic substance film
JP4195060A Pending JPH05335146A (en) 1982-07-09 1992-07-22 Magnetic material film and magnetic head using the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP57118509A Granted JPS599905A (en) 1982-07-09 1982-07-09 Magnetic substance film

Country Status (1)

Country Link
JP (2) JPS599905A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001209910A (en) * 2000-01-24 2001-08-03 Matsushita Electric Ind Co Ltd Thin film magnetic head and its manufacturing method
US7288333B2 (en) 2002-09-12 2007-10-30 Alps Electric Co., Ltd. Magnetic film and thin film magnetic head using this magnetic film

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599905A (en) * 1982-07-09 1984-01-19 Hitachi Ltd Magnetic substance film
JPH061729B2 (en) * 1983-01-17 1994-01-05 株式会社日立製作所 Magnetic film and magnetic head using the same
JPS6159616A (en) * 1984-08-29 1986-03-27 Sharp Corp Production of magnetic head core
JP2502965B2 (en) * 1984-10-19 1996-05-29 株式会社日立製作所 Thin film magnetic head
JP2533860B2 (en) * 1986-09-24 1996-09-11 株式会社日立製作所 Magnetic superlattice film and magnetic head using the same
JPH07114164B2 (en) * 1987-08-04 1995-12-06 日本電信電話株式会社 Magnetic artificial lattice film
JPH01239821A (en) * 1988-03-18 1989-09-25 Nippon Telegr & Teleph Corp <Ntt> Magnetic multilayered film and manufacture thereof
KR100210579B1 (en) * 1990-01-08 1999-07-15 가나이 쓰도무 Ferromagnetic film and manufacturing method magnetic head in use therewith
JPH03263306A (en) * 1990-02-02 1991-11-22 Nec Corp Magnetic film and magnetic head
US5132859A (en) * 1990-08-23 1992-07-21 International Business Machines Corporation Thin film structures for magnetic recording heads
US5589221A (en) * 1994-05-16 1996-12-31 Matsushita Electric Industrial Co., Ltd. Magnetic thin film, and method of manufacturing the same, and magnetic head

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118509A (en) * 1981-01-14 1982-07-23 Toyo Jozo Co Ltd Novel preparation of high absorbability
JPS599905A (en) * 1982-07-09 1984-01-19 Hitachi Ltd Magnetic substance film
JPH0519804A (en) * 1991-07-09 1993-01-29 Toshiba Corp Automatic controller

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669809A (en) * 1979-11-09 1981-06-11 Tdk Corp Magnetic material and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118509A (en) * 1981-01-14 1982-07-23 Toyo Jozo Co Ltd Novel preparation of high absorbability
JPS599905A (en) * 1982-07-09 1984-01-19 Hitachi Ltd Magnetic substance film
JPH0519804A (en) * 1991-07-09 1993-01-29 Toshiba Corp Automatic controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001209910A (en) * 2000-01-24 2001-08-03 Matsushita Electric Ind Co Ltd Thin film magnetic head and its manufacturing method
US7288333B2 (en) 2002-09-12 2007-10-30 Alps Electric Co., Ltd. Magnetic film and thin film magnetic head using this magnetic film

Also Published As

Publication number Publication date
JPS599905A (en) 1984-01-19
JPH0519804B2 (en) 1993-03-17

Similar Documents

Publication Publication Date Title
JPH061729B2 (en) Magnetic film and magnetic head using the same
JPH04214205A (en) Thin-film magnetic head and its production
US4935311A (en) Magnetic multilayered film and magnetic head using the same
US5403457A (en) Method for making soft magnetic film
JPH05335146A (en) Magnetic material film and magnetic head using the same
US5068147A (en) Soft magnetic thin film comprising alternate layers of iron carbide with either iron, iron nitride or iron carbon-nitride
US4762755A (en) Ferromagnetic material and a magnetic head using the same material
US4943879A (en) Thin film magnetic head including magnetic layers having high saturation magnetic flux density and metal film for avoiding deterioration during manufacturing
JP2000054083A (en) Soft magnetic multilayered film, and flat magnetic element, filter, and thin film magnetic head using the soft magnetic multilayered film, and manufacture of the soft magnetic multilayer film
JP2565187B2 (en) Thin film magnetic head
JPH08288138A (en) Soft magnetic thin film and magnetic head using the film
JPH0462162B2 (en)
JPH09293207A (en) Magnetic head
JP3232592B2 (en) Magnetic head
JPH06176315A (en) Thin film magnetic head
JPH0282601A (en) Multilayer magnetic film
JP3132254B2 (en) Soft magnetic film and method for manufacturing soft magnetic multilayer film
JP3036891B2 (en) Thin film magnetic head
JP2790159B2 (en) Thin-film magnetic head
KR950001603B1 (en) Magnetic head for multi-layer
KR920006630B1 (en) Ferromagnetic material and a magnetic head using the same material
JP2638739B2 (en) Magnetic thin film and method of manufacturing the same
JPH01175707A (en) Laminated soft thin magnetic film
KR950011127B1 (en) Magnetic head
JPH03203008A (en) Production of laminated film of fe-si-al ferromagnetic alloy for magnetic head