JPS6159616A - Production of magnetic head core - Google Patents

Production of magnetic head core

Info

Publication number
JPS6159616A
JPS6159616A JP18208784A JP18208784A JPS6159616A JP S6159616 A JPS6159616 A JP S6159616A JP 18208784 A JP18208784 A JP 18208784A JP 18208784 A JP18208784 A JP 18208784A JP S6159616 A JPS6159616 A JP S6159616A
Authority
JP
Japan
Prior art keywords
electron beam
film
evaporation
vapor deposition
head core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18208784A
Other languages
Japanese (ja)
Other versions
JPH0320810B2 (en
Inventor
Kumio Nako
久美男 名古
▲かど▼野 勝
Masaru Kadono
Shuhei Tsuchimoto
修平 土本
Mitsuhiko Yoshikawa
吉川 光彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP18208784A priority Critical patent/JPS6159616A/en
Priority to US06/664,425 priority patent/US4592923A/en
Publication of JPS6159616A publication Critical patent/JPS6159616A/en
Publication of JPH0320810B2 publication Critical patent/JPH0320810B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon

Abstract

PURPOSE:To obtain a magnetic head core having excellent magnetic characteristics by weighing 'Sendust(R)' materials consisting of Fe, Al and Si having different m.p., and vapor pressures at a prescribed ratio, subjecting the materials to vacuum melting during vapor deposition stage using an electron beam then forming continuously a thick film to the thickness corresponding to the width of a head track in the same vacuum by using electron beam vapor deposition in continuation. CONSTITUTION:A heater and a nonmagnetic substrate 3 are disposed in the upper part in a vacuum bell-jar 1 and a shutter 4 is provided. When an electron bean 6 is irradiated to a tablet 8 consisting of Fe, Al and Si in a crucible 7, the vapor flow of the elements is deposited by evaporation while the shutter 4 is open. The film deposited by evaporation is thus formed. The tablet 8 in the crucible 7 is made into the 5-layered structure in which the essential components Fe 9, Al 10 and Si 11 are respectively formed into a laminar state. The three elements Fe 9, Al 10 and Si 11 are thus uniformly melted.

Description

【発明の詳細な説明】 く技術分野〉 本発明は電子ビーム蒸着法等の蒸着技術を用いた磁気ヘ
ッドコアの製造方法に関するものであり、特に融点及び
蒸気圧の異々る鉄(Fe)、アルミニウム(A[) 、
硅素(Si)等を主成分として有するコアの成膜技術に
関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a method for manufacturing a magnetic head core using vapor deposition technology such as electron beam evaporation. (A[),
The present invention relates to a film forming technology for a core containing silicon (Si) or the like as a main component.

〈従来技術〉 近年、磁気記録技術の分野においては情報の多様化にと
もなってその記録密度の増大を求める要求が強くなシ、
このため磁気ヘッドのトラック幅やギャップ長を極力小
さく設定し、高透磁率及び高飽和磁化を有する磁気ヘッ
ドを作製することが必要となってきた。
<Prior art> In recent years, in the field of magnetic recording technology, there has been a strong demand for increased recording density as information becomes more diverse.
Therefore, it has become necessary to set the track width and gap length of the magnetic head as small as possible to produce a magnetic head having high magnetic permeability and high saturation magnetization.

従来の磁気ヘッドのコア作製においてはバルク部材をブ
ロック状に切り出し、ダイシンググレード等でトラック
幅の形成を施すために30μm以下のトラック幅を形成
する場合、ダイシングプレードからの衝撃によるチッピ
ングやトラックl?iの精度が問題となる。また、セン
ダストやアモルファス等の様に超急冷法によるリボン薄
帯をヘッドコアとして用いる場合、コア材を樹脂接着に
より、非磁性基板で挟み込んでいる。樹脂接着は接着層
の制御が困難で一般的には厚くなる傾向にある。
In manufacturing the core of a conventional magnetic head, when a bulk member is cut into blocks and a track width of 30 μm or less is formed using a dicing grade, etc., chipping due to impact from the dicing blade or track l? The accuracy of i is a problem. Furthermore, when a ribbon made by an ultra-quenching method such as sendust or amorphous is used as the head core, the core material is sandwiched between nonmagnetic substrates by resin adhesion. With resin adhesives, it is difficult to control the adhesive layer, and the adhesive layer generally tends to be thick.

しかしながら、摺動時の磨耗の影響や耐候性等を考慮す
ると接着層は薄く形成する必要がある。またリボン薄帯
やバルク部材から切削加工によってトランク幅を形成す
る場合、トラック幅の制御等は狭トラツクになる程困難
になる。スパンタリング法を用いると成膜速度が遅く長
時間の工程を必要とする。
However, in consideration of the effects of abrasion during sliding, weather resistance, etc., it is necessary to form the adhesive layer thinly. Further, when the trunk width is formed by cutting from a ribbon or a bulk member, controlling the track width becomes more difficult as the track becomes narrower. When the sputtering method is used, the film formation rate is slow and a long process is required.

〈発明の目的〉 本発明は、融点及び蒸気圧の異なる、鉄、アルミニウム
及び硅素から成るセンダストコア材料を所定の割合で秤
量し、電子ビーム蒸着工程中に真空溶解した後、連続し
て電子ビーム蒸着を竹ない、同一真空中でヘッドトラッ
ク幅に相当する厚さ迄連続的に厚膜を形成することによ
り、上記従来法の問題点を解消した磁気へソドコアの製
造方法を提供することを目的とする。また本発明の他の
目的は不純物混入がほとんどなく短時間で作製可能な高
透磁率ヘッドコアを作製することにある。
<Object of the Invention> The present invention involves weighing sendust core materials made of iron, aluminum, and silicon, which have different melting points and vapor pressures, in a predetermined ratio, melting them in vacuum during an electron beam evaporation process, and then continuously depositing them with an electron beam. The purpose of the present invention is to provide a method for manufacturing a magnetic helix core that eliminates the problems of the conventional method by continuously forming a thick film in the same vacuum to a thickness equivalent to the head track width without using vapor deposition. shall be. Another object of the present invention is to produce a head core with high magnetic permeability that contains almost no impurities and can be produced in a short time.

〈実施例〉 第1図(A) (B)は本発明の1実施例の説明に供す
る電子ビーム蒸着装置の模式構成図である。真空ベルジ
ャ1内の上方には蒸着用基板を蒸着温度に加熱保持する
ためのヒータ2と蒸着膜が形成される結晶化ガラス、セ
ラミック等から成る非磁性基板3力祐己置されている。
<Embodiment> FIGS. 1A and 1B are schematic configuration diagrams of an electron beam evaporation apparatus for explaining an embodiment of the present invention. Above the vacuum belljar 1 are placed a heater 2 for heating and maintaining the deposition substrate at the deposition temperature, and a non-magnetic substrate made of crystallized glass, ceramic, etc. on which a deposition film is to be formed.

この非磁性基板3と蒸着源との間には蒸着気流の通過乞
(しj御するンヤッタ4が介設されている。丑だ下方の
蒸着源位置にtat子ビーム発生用フィラメント5とフ
ィラメント5で発生した電子ビーム6の照射方向に配設
されたるつぼ(ハース)7があり、るつぼ7内にはFJ
A着源利料である鉄、アルミニウム及び硅素から成るタ
ブレット8が載置されている。電子ヒーム6がタグレッ
ト8に照射されるとその都合の元素が蒸気流となって飛
翔し、シャッタ4が開成されている期間でシャッタ4を
通過して非磁性基板3に被着され、蒸着膜が形成される
Between the non-magnetic substrate 3 and the evaporation source, there is interposed a filter 4 for controlling the passage of the evaporation air flow. There is a crucible (hearth) 7 arranged in the irradiation direction of the electron beam 6 generated in the FJ.
A tablet 8 made of iron, aluminum, and silicon, which are A-source materials, is placed. When the taglet 8 is irradiated with the electron beam 6, the appropriate element flies off as a vapor flow, passes through the shutter 4 and is deposited on the non-magnetic substrate 3 while the shutter 4 is open, forming a vapor deposited film. is formed.

るつぼ7内に載置されるタブレット8は第1図(B)に
示す如り]v)成される。即ち、タブレスト8の主成分
である鉄9、アルミニウム10、硅素11は各々層状に
成形されておシ、硅素11と中央にしてその両面にアル
ミニウム10が積層され更にその外側よシ鉄9で挟持し
た計5層構造より成る。
The tablet 8 placed in the crucible 7 is formed as shown in FIG. 1(B). That is, iron 9, aluminum 10, and silicon 11, which are the main components of the tabletop 8, are each formed into layers, and aluminum 10 is laminated on both sides of the silicon 11 in the center, which is further sandwiched by iron 9 on the outside. It consists of a total of 5 layers.

タプレッl−8をこのように構成することによシ鉄9、
硅素11に比し融点が低く蒸気圧の高いアルミニウム1
0が後述する溶融過程で鉄9に固溶する前に蒸発すると
いう現象が起こらず、鉄9、アルミニウム10.硅素1
1の三元素を均一に溶融きせることか可能になる。タブ
レット8の組成は鉄60〜70重址(Wt)形、アルミ
ニウム3〜6wt%、硅素20〜30wt%の割合で(
11°f成され全体として80〜110 grに秤量設
定される。
By configuring the tapelet l-8 in this way, iron 9,
Aluminum 1 has a lower melting point and higher vapor pressure than silicon 11
The phenomenon that 0 evaporates before becoming a solid solution in iron 9 during the melting process described later does not occur, and iron 9, aluminum 10. silicon 1
It becomes possible to uniformly melt the three elements of 1. The composition of tablet 8 is 60-70 wt% iron, 3-6 wt% aluminum, and 20-30 wt% silicon (
11°f and the overall weight is set at 80-110 gr.

この三元素から成る合金はセンダストコア利料として知
られている高透磁率合金であり、本発明によればセンダ
スト組成又はこれに近い組成の高透磁率へノドコア厚膜
が形成される。電子ビーム蒸着におけるフィラメント5
への電力外圧過程で鉄9、アルミニウム10、硅素11
の突沸を防キ、均一な溶融状態を維持するため、第2図
に示す通電曲線に従って0.5〜I KWで14分間保
持し、タブレット8に対して電子ビーム真空溶解を行な
う。その後aKW迄1分間に0.1〜0.5KWの割合
で23分間の外圧を行なう。その結果るつぼ7内で鉄9
、アルミニウムlO1硅素11の溶融状態が均一に整え
られる。その後、1分間に2〜4KWの割合でl0KW
まで昇圧する。電子ビーム電力がl0KWに到達した後
、シャッタ4の開成状態で一定時間保持し、非磁性基板
3を取9出すとこの上に蒸着膜が得られる。得られた蒸
着膜を1分10秒から17分20秒迄の間の各種保持時
間に対応して膜厚1.3μmずつ分割し、順次化学分析
により膜組成変化を調べ、これを成膜時の組成分布例と
して第3図に示す。第3図は電子ビーム電力10KWに
到達後の保持時間分1分10秒〜3分20秒、3分20
秒〜5分50秒、5分50秒〜8分50秒、8分50秒
〜11分50秒、11分50秒〜14分20秒、14分
20秒から17分20秒迄の各々に設定し各領域ir、
  II、 I[l。
The alloy consisting of these three elements is a high magnetic permeability alloy known as Sendust core material, and according to the present invention, a high magnetic permeability core thick film having a Sendust composition or a composition close to this is formed. Filament 5 in electron beam evaporation
9 iron, 10 aluminum, 11 silicon in the process of applying external power to
In order to prevent bumping and maintain a uniform melted state, the tablet 8 is vacuum melted with an electron beam while being maintained at 0.5 to I KW for 14 minutes according to the current flow curve shown in FIG. After that, external pressure is applied for 23 minutes at a rate of 0.1 to 0.5 KW per minute until aKW is reached. As a result, iron 9 in crucible 7
, the molten state of aluminum 1O1 silicon 11 is made uniform. After that, 10KW at a rate of 2-4KW per minute
Pressure increases to After the electron beam power reaches 10 KW, the shutter 4 is kept open for a certain period of time, and the nonmagnetic substrate 3 is taken out to form a deposited film thereon. The obtained vapor-deposited film was divided into 1.3-μm-thick sections corresponding to various holding times from 1 minute 10 seconds to 17 minutes 20 seconds, and changes in film composition were sequentially investigated by chemical analysis. An example of the composition distribution is shown in FIG. Figure 3 shows the holding time after reaching the electron beam power of 10KW: 1 minute 10 seconds to 3 minutes 20 seconds, 3 minutes 20 seconds.
seconds to 5 minutes 50 seconds, 5 minutes 50 seconds to 8 minutes 50 seconds, 8 minutes 50 seconds to 11 minutes 50 seconds, 11 minutes 50 seconds to 14 minutes 20 seconds, and 14 minutes 20 seconds to 17 minutes 20 seconds. Set each area IR,
II, I[l.

IV、V、VIとした場合の成膜時の膜組成を示したも
のである。この様に電子ヒーム蒸着においては各元素の
融点や蒸気圧が異なることによυ、成膜に際して膜厚方
向に組成分布が生じる。この組成分布に対して本実施例
ではンヤンタ4の開閉を制御し、刹1図(B)に示すタ
ブレット8の(114成で第2図に示す電子ビーム電力
昇圧過程を介して電子ビーム蒸着を行ない電子ビーム電
力10KW到達後アルミニウムの蒸着速度が最大に達し
た時点より3分40秒後から15分40秒後までの間の
みシャッタ4を開成し、5μm厚のセンダストrmt非
磁性基板3上に作製した。第4図はるっぼ7の全体的外
観を示す斜視図である。るっぽ7には溶1図(B)にて
示したタブレット8を収納する複数の収納室12とS 
r 02 、A 11203等の絶縁層を形成するため
の材料を収納する収納室13が円周方向に沿って配設さ
れている。また、るっぽ7は回転軸14によシ回転可能
に軸支されている。5μm厚のセンダスト膜を作製後、
るつぼ7を回転させ同一真空中で収納室13へ電子ビー
ムを照射して5I02 又はA620xの絶縁膜をセン
ダスト膜上に約2000Aの厚さで形成する。次に再度
るっぽ7を回転させて収納室12へ電子ビームを照射し
、厚さ5μ几のセンダスト膜を絶縁膜上に堆積する。以
後、この操作を繰シ返してセンダスト膜5μm、絶縁膜
2000λを交互にそれぞれ4;・塀ずつ積層する。以
上によりトラック幅20μm幅20μmのラミネート構
造を有する高透磁率磁気ヘッドコアが作製される。絶縁
膜は渦電流による高周波での実効透磁率の減衰を防止す
るために挿入される中間層である。
The film compositions during film formation in the case of IV, V, and VI are shown. In this way, in electron beam evaporation, due to the different melting points and vapor pressures of each element, a compositional distribution occurs in the film thickness direction during film formation. In this embodiment, the opening and closing of the Nyanta 4 is controlled for this composition distribution, and electron beam evaporation is performed through the electron beam power boosting process shown in FIG. After the electron beam power reached 10 KW, the shutter 4 was opened only from 3 minutes 40 seconds to 15 minutes 40 seconds after the aluminum evaporation rate reached the maximum, and a 5 μm thick Sendust RMT nonmagnetic substrate 3 was deposited. Figure 4 is a perspective view showing the overall appearance of Ruppo 7. Ruppo 7 has a plurality of storage chambers 12 and S for storing tablets 8 shown in Figure 1 (B).
A storage chamber 13 for storing materials for forming an insulating layer such as r 02 and A 11203 is arranged along the circumferential direction. Further, the Ruppo 7 is rotatably supported by a rotating shaft 14. After creating a 5 μm thick sendust film,
The crucible 7 is rotated and the storage chamber 13 is irradiated with an electron beam in the same vacuum to form an insulating film of 5I02 or A620x to a thickness of about 2000 Å on the sendust film. Next, the Ruppo 7 is rotated again to irradiate the storage chamber 12 with an electron beam to deposit a 5 μm thick sendust film on the insulating film. Thereafter, this operation is repeated to alternately stack 5 .mu.m Sendust films and 2000 .lambda. insulating films, each having a thickness of 4.cm. As described above, a high magnetic permeability magnetic head core having a laminate structure with a track width of 20 μm and a width of 20 μm is manufactured. The insulating film is an intermediate layer inserted to prevent effective magnetic permeability from attenuating at high frequencies due to eddy currents.

センダスト膜の膜形成は成膜速度2000〜5000 
A/minで行ない1層の膜厚は約2〜6μmの範囲と
する。本実力色例で得られたセンダスト膜の膜組成は化
学分析によI) Fe 85.7 wt%、Si9.8
wt%、Ag4.5wt%であった。この膜を600℃
2時間真空中で熱処理することにより電気比抵抗71μ
Ω口、抗持力0.50e、飽和磁束密度11.0OOG
t有するトラック幅20μmの非常に優れた磁気特性分
有する磁気ヘッドを作製することができた。本実施例の
方法で作製したヘッドコア厚膜材料の実効透磁率の周波
数特性を第5図に41で示す。尚、図中の42 はセン
ダスト膜厚IQpm、絶縁膜(SiOz)200OAを
有するトラック幅20μmのヘッドコア材料ヲ600℃
・10時間熱処理した後の実効透磁率の周波数特性、7
!3はセンダスト膜厚20μm、絶縁膜2000Aを有
するトラ7り幅20μmのヘッドコア材料を600℃・
10時間熱処理した後の実効透磁率の周波数特性を示す
。本実施例によ!ll得られた磁気ヘッドコアは5 M
 Hzの実効透磁率が1100を有し、他の12. g
3 に比べて高周波帯域で非常に優れたヘッドコア材料
であることがわかる。また本実施例の方法を用いれば、
トラック幅が10μm、20μm、30μm等任意の磁
気ヘッドコアを同一真空中で連続して作製することも可
能である。
The film formation rate of sendust film is 2000 to 5000
The film thickness of one layer is approximately 2 to 6 μm. The film composition of the sendust film obtained in this actual color example was determined by chemical analysis: I) Fe 85.7 wt%, Si 9.8
wt% and Ag4.5wt%. This film was heated to 600℃
Electrical specific resistance reduced to 71μ by heat treatment in vacuum for 2 hours.
Ω mouth, holding force 0.50e, saturation magnetic flux density 11.0OOG
A magnetic head having a track width of 20 .mu.m and extremely excellent magnetic properties could be manufactured. The frequency characteristic of effective magnetic permeability of the head core thick film material produced by the method of this example is shown at 41 in FIG. In addition, 42 in the figure is a head core material with a track width of 20 μm having a sendust film thickness of IQpm and an insulating film (SiOz) of 200 OA at 600°C.
・Frequency characteristics of effective magnetic permeability after 10 hours of heat treatment, 7
! 3 is a head core material with a sendust film thickness of 20 μm, an insulating film of 2000 A, and a track width of 20 μm at 600°C.
The frequency characteristics of effective magnetic permeability after heat treatment for 10 hours are shown. According to this example! The obtained magnetic head core is 5M
The effective magnetic permeability of Hz is 1100, and the other 12. g
It can be seen that this head core material is extremely superior in high frequency bands compared to No. 3. Furthermore, if the method of this example is used,
It is also possible to continuously manufacture magnetic head cores having arbitrary track widths of 10 μm, 20 μm, 30 μm, etc. in the same vacuum.

〈発明の効果〉 以上、詳細に説明した如く、本発明は資源として豊富で
、安価な鉄、アルミニウム、硅素を各々秤貴し、同−真
空中内で不純物混入がほとんどない電子ビーム真空溶解
技術と蒸着速度が早い電子ビーム真空蒸着技術とを駆使
することによシ磁気特性の優れたヘッドコア材料を作製
するものであシ、狭ギャップ、狭トラツクのヘッド作製
が容易とな9、記録密度が増加向上する傾向にあるデジ
タルオーディオ用ヘッド、高品質VTR用ヘッドの製作
に非常に有効である。まだ本発明は量産に適し、高周波
帯域での実効透磁率の優れた所定のトラック幅を有する
磁気ヘッドコアを安価に大量生産することができる。
<Effects of the Invention> As explained above in detail, the present invention utilizes an electron beam vacuum melting technology that uses iron, aluminum, and silicon, which are abundant and inexpensive resources, and which produces virtually no impurities in a vacuum. By making full use of electron beam vacuum evaporation technology with a high deposition rate, head core materials with excellent magnetic properties can be manufactured. It is very effective in producing digital audio heads and high-quality VTR heads, which are becoming increasingly popular. Still, the present invention is suitable for mass production, and enables mass production of magnetic head cores having a predetermined track width with excellent effective magnetic permeability in a high frequency band at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A) (B)は本発明の1実施例の説明に供す
る電子ビーム蒸着装置の模式構成図である。第2図は電
子ビーム蒸着における電力操作曲線を示す説明図である
。@3図は成j模された蒸盾膜の蒸着時間に対応する膜
厚方向の組成分布図である。 @4図は狛1図(A) (B)に示するつぼの外観斜視
図である。第5図は本発明により得られた磁気ヘッドコ
アの実効透磁率の周波数特性を示す特性図である。 1・・・真空ベルジャ  3・・・非磁性基板  4・
シャッタ  5・・・フィラメン1−6・・・電子ビー
ム  7・・・るつFY   8=−タブレット、年、
  代理人 弁理士  福 士 愛 彦(飴2名)<A
> 第1図 第3図 第4図
FIGS. 1A and 1B are schematic configuration diagrams of an electron beam evaporation apparatus for explaining one embodiment of the present invention. FIG. 2 is an explanatory diagram showing a power operation curve in electron beam evaporation. Figure @3 is a composition distribution diagram in the film thickness direction corresponding to the deposition time of the simulated vapor shield film. @Figure 4 is an external perspective view of the vase shown in Figures 1 (A) and (B). FIG. 5 is a characteristic diagram showing the frequency characteristics of the effective magnetic permeability of the magnetic head core obtained according to the present invention. 1...Vacuum bell jar 3...Nonmagnetic substrate 4.
Shutter 5...Filament 1-6...Electron beam 7...Rutsu FY 8=-tablet, year,
Agent Patent attorney Aihiko Fuku (2 people) <A
> Figure 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、鉄、アルミニウム及び硅素を成分とする第1の蒸着
源材料と絶縁膜を蒸着形成するための成分を有する第2
の蒸着源材料を並設し、前記第1の蒸着源材料を蒸着位
置に配設して電子ビーム溶解した後引き続いて電子ビー
ム蒸着し、ヘッドコア膜を形成する工程と前記第2の蒸
着源材料を蒸着位置に配設して電子ビーム蒸着し、前記
ヘッドコア膜に重畳する絶縁膜を形成する工程とを同一
真空系中で連続して行なうことを特徴とする磁気ヘッド
コアの製造方法。
1. A first vapor deposition source material containing iron, aluminum, and silicon as components, and a second vapor deposition source material containing components for forming an insulating film by vapor deposition.
arranging the first evaporation source material in parallel at the evaporation position and melting it with an electron beam, followed by electron beam evaporation to form a head core film; and the second evaporation source material. 1. A method for manufacturing a magnetic head core, characterized in that the steps of arranging a film at a vapor deposition position, performing electron beam vapor deposition, and forming an insulating film superimposed on the head core film are successively carried out in the same vacuum system.
JP18208784A 1983-10-24 1984-08-29 Production of magnetic head core Granted JPS6159616A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18208784A JPS6159616A (en) 1984-08-29 1984-08-29 Production of magnetic head core
US06/664,425 US4592923A (en) 1983-10-24 1984-10-24 Production method of a high magnetic permeability film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18208784A JPS6159616A (en) 1984-08-29 1984-08-29 Production of magnetic head core

Publications (2)

Publication Number Publication Date
JPS6159616A true JPS6159616A (en) 1986-03-27
JPH0320810B2 JPH0320810B2 (en) 1991-03-20

Family

ID=16112132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18208784A Granted JPS6159616A (en) 1983-10-24 1984-08-29 Production of magnetic head core

Country Status (1)

Country Link
JP (1) JPS6159616A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4890513A (en) * 1972-03-02 1973-11-26
JPS599905A (en) * 1982-07-09 1984-01-19 Hitachi Ltd Magnetic substance film
JPS59130408A (en) * 1983-01-17 1984-07-27 Hitachi Ltd Magnetic film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4890513A (en) * 1972-03-02 1973-11-26
JPS599905A (en) * 1982-07-09 1984-01-19 Hitachi Ltd Magnetic substance film
JPS59130408A (en) * 1983-01-17 1984-07-27 Hitachi Ltd Magnetic film

Also Published As

Publication number Publication date
JPH0320810B2 (en) 1991-03-20

Similar Documents

Publication Publication Date Title
JPH0466366B2 (en)
JPS61233405A (en) Magnetic head
JPS6159616A (en) Production of magnetic head core
JPH0243243B2 (en)
JPH02121309A (en) Manufacture of fe-si-al magnetic core and magnetic head using same
US4592923A (en) Production method of a high magnetic permeability film
JPS58100412A (en) Manufacture of soft magnetic material
JPH0159727B2 (en)
JPS6091617A (en) Manufacture of magnetic alloy film
JPS6062105A (en) Manufacture of high magnetic permeability alloy film
JPS59136415A (en) Manufacture of high magnetic permeability alloy film
JPH0673532A (en) Production of alloy film
JPS6362805B2 (en)
JPS63155604A (en) Multilayered magnetic film and manufacture thereof
JPH025207A (en) Magnetic head core material and production thereof
JPH02258614A (en) Low argon-containing sio2 deposited film and production thereof
JPH0785290B2 (en) Method of manufacturing magnetic head core
JPH0584566B2 (en)
JPH07116564B2 (en) Magnetic alloy
JPS61265715A (en) Member for magnetic head core
JPH01146312A (en) Soft magnetic thin film
JPH01194120A (en) Magnetic head and production thereof
JPH0329304A (en) Soft magnetic thin film and manufacture thereof
JPS63281250A (en) Magnetooptics thin film material and manufacture thereof
JPS60261006A (en) Production of magnetic head