JPH05325666A - Complex multi-conductor superconductive wire - Google Patents

Complex multi-conductor superconductive wire

Info

Publication number
JPH05325666A
JPH05325666A JP4151417A JP15141792A JPH05325666A JP H05325666 A JPH05325666 A JP H05325666A JP 4151417 A JP4151417 A JP 4151417A JP 15141792 A JP15141792 A JP 15141792A JP H05325666 A JPH05325666 A JP H05325666A
Authority
JP
Japan
Prior art keywords
wire
hexagonal
superconducting
conductor
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4151417A
Other languages
Japanese (ja)
Inventor
Katsunori Wada
克則 和田
Takeshi Endo
壮 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4151417A priority Critical patent/JPH05325666A/en
Publication of JPH05325666A publication Critical patent/JPH05325666A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Wire Processing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide a complex multi-conductor superconductive wire which is excellent in processability and superconductivity. CONSTITUTION:In a complex multi-conductor superconductive wire obtained in such a way that a multi-conductor superconductive wire rod 5 is molded/ processed into a hexagonal cross sectional shape to form a hexagonal element wire 1, and this hexagonal element wire 1 is filled densely in a Cu or Cu alloy pipe 6 to form a complex billet, and a drawing processing is carried out on this complex billet, a material being molded/processed into the hexagonal cross sectional shape after a twist processing is carried out on the multi-conductor superconductive wire rod 5, is used as the hexagonal element wire 1. Thereby, since an abnormally deformed length of a superconductive material filament 3 can be reduced when being molded/processed into a hexagonal shape, the complex multi-conductor superconductive wire which is excellent in processability and superconductivity, can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加工性及び超電導特性に
優れた複合多芯超電導線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite multifilamentary superconducting wire having excellent workability and superconducting properties.

【0002】[0002]

【従来の技術】近年、Nb−Ti系合金やNb3 Sn化
合物の超電導線が磁気浮上列車,高エネルギー粒子加速
器,医療診断用核磁気共鳴映像装置等に実用化されつつ
ある。超電導線は、Cu或いはCu合金マトリックス中
にNb−TiやNb3 Sn等の超電導フィラメントが多
数本埋込まれた構造のもので、このような超電導線の製
造は、例えば、Cu製管内にNb−Ti系超電導合金材
を充填し、これを延伸加工して単芯の超電導線材とな
し、この単芯の超電導線材を再びCu製管内に多数本充
填して複合ビレットとなし、この複合ビレットを延伸加
工する工程を所望回繰返し施してなされている。ところ
で、前記の複合ビレットは、超電導線材の充填密度を高
める為、図4に示したように、Cu或いはCu合金マト
リックス2中に超電導材フィラメント3を多数本埋込ん
だ断面円形の超電導線材5(図イ)を断面六角形に成形
加工して六角素線11となし(図ロ)、この六角素線11を
Cu或いはCu合金製管6内に稠密に充填する方法によ
り組立てられていた(図ハ)。
2. Description of the Related Art In recent years, superconducting wires of Nb--Ti alloys and Nb 3 Sn compounds have been put to practical use in magnetic levitation trains, high energy particle accelerators, nuclear magnetic resonance imaging devices for medical diagnosis and the like. Superconducting wire is intended in a Cu or Cu alloy matrix of Nb-Ti and Nb 3 superconducting filaments of Sn or the like many be incorporated present embedded structure, the manufacture of such superconducting wire, for example, Nb in the Cu tube -Ti-based superconducting alloy material is filled and drawn to form a single-core superconducting wire, and a large number of this single-core superconducting wire is again filled in a Cu pipe to form a composite billet. The stretching process is repeated a desired number of times. By the way, in order to increase the packing density of the superconducting wire in the composite billet, as shown in FIG. 4, a superconducting wire 5 having a circular cross section in which a large number of superconducting material filaments 3 are embedded in a Cu or Cu alloy matrix 2 ( (A) was formed into a hexagonal cross section to form a hexagonal wire 11 (figure b), and the hexagonal wire 11 was assembled by a method of densely filling the tube 6 made of Cu or Cu alloy (figure B). C).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述の
ように、超電導線材が、超電導材フィラメントを多数本
複合した多芯超電導線材の場合は、これをそのまま断面
六角形に成形加工すると、図4ロを見てわかるように、
六角素線11の角部4に位置する超電導フィラメント3は
前記角部4に向かって断面が細長く異常変形し、この異
常変形部分は六角素線11の角部4の全長にわたって現
れ、このような六角素線11を用いて製造した複合ビレッ
トは、Nb−Ti超電導線の場合は加工中に断線を生じ
易く、又Nb3 Sn超電導線をブロンズ法により製造す
る場合は、ブロンズ中の超電導材フィラメントつまりN
bフィラメントの相互間隔が不均一になる為、Nbフィ
ラメントに供給されるSnが場所により過不足して、得
られる複合多芯超電導線はマトックス中にSnが残留し
たり又はNb3 Sn化合物への反応が不十分となり、高
い超電導特性が得られないという問題があった。
However, as described above, in the case where the superconducting wire is a multi-core superconducting wire in which a large number of filaments of the superconducting material are combined, if this is directly processed into a hexagonal cross section, it is possible to obtain the structure shown in FIG. As you can see,
The superconducting filament 3 located at the corner 4 of the hexagonal wire 11 has an elongated cross-section that is abnormally deformed toward the corner 4, and this abnormally deformed portion appears over the entire length of the corner 4 of the hexagonal wire 11. The composite billet produced by using the hexagonal element wire 11 is likely to be broken during processing in the case of Nb-Ti superconducting wire, and the superconducting material filament in the bronze in case of manufacturing the Nb 3 Sn superconducting wire by the bronze method. That is N
Since the b filaments have a non-uniform spacing, the Sn supplied to the Nb filaments may be excessive or deficient depending on the location, and the resulting composite multifilamentary superconducting wire may have Sn remaining in the matox or a Nb 3 Sn compound. There is a problem that the reaction becomes insufficient and high superconducting properties cannot be obtained.

【0004】[0004]

【課題を解決する為の手段】本発明はこのような状況に
鑑み鋭意研究を行った結果なされたもので、その目的と
するところは、加工性及び超電導特性に優れた複合多芯
超電導線を提供することにある。即ち、本発明は、多芯
超電導線材を断面六角形に成形加工して六角素線とな
し、この六角素線を金属製管内に稠密充填して複合ビレ
ットとなし、この複合ビレットに延伸加工を施して得ら
れる複合多芯超電導線において、前記六角素線が多芯超
電導線材をツイスト加工したのち、断面六角形に成形加
工したものであることを特徴とするものである。
The present invention has been made as a result of intensive studies in view of such a situation, and an object thereof is to provide a composite multicore superconducting wire excellent in workability and superconducting properties. To provide. That is, the present invention, a multi-core superconducting wire rod is formed into a hexagonal cross section to form a hexagonal element wire, the hexagonal element wire is densely packed in a metal tube to form a composite billet, and this composite billet is drawn. In the composite multifilamentary superconducting wire obtained by subjecting the multifilamentary superconducting wire, the hexagonal wire is formed by twisting a multifilamentary superconducting wire and then forming it into a hexagonal cross section.

【0005】以下に本発明を図を参照して具体的に説明
する。図1は本発明の複合多芯超電導線を製造するのに
用いる六角素線の態様例を示す断面説明図である。1は
六角素線で、Cu或いはCu合金マトリックス2中に超
電導材フィラメント3が19本埋込まれたものである。こ
の六角素線1の角部4には外周の12本の超電導材フィラ
メント3が次々に顔をだすが、その角部4に位置する超
電導材フィラメント3の長さは短く、従って超電導材フ
ィラメント3の角部で生じる異常変形長さはトータルで
みて低減される。図2は本発明の複合多芯超電導線の製
造に用いる六角素線の他の態様例を示す説明図である。
この六角素線はCuマトリックス2中に超電導材フィラ
メント3が31本埋込まれたもので、超電導材フィラメン
トの異常変形長さは、図1に示したものと同様に低減さ
れる。
The present invention will be specifically described below with reference to the drawings. FIG. 1 is a cross-sectional explanatory view showing an example of a hexagonal element wire used for manufacturing the composite multicore superconducting wire of the present invention. Reference numeral 1 is a hexagonal element wire, in which 19 superconducting material filaments 3 are embedded in a Cu or Cu alloy matrix 2. Twelve superconducting material filaments 3 on the outer periphery face the corner portion 4 of the hexagonal wire 1 one after another, but the length of the superconducting material filament 3 located at the corner portion 4 is short, and therefore the superconducting material filament 3 The abnormal deformation length that occurs at the corners of is reduced in total. FIG. 2 is an explanatory view showing another example of the hexagonal element wire used in the production of the composite multicore superconducting wire of the present invention.
This hexagonal wire has 31 superconducting material filaments 3 embedded in the Cu matrix 2, and the abnormal deformation length of the superconducting material filaments is reduced similarly to that shown in FIG.

【0006】上記のような六角素線は、例えば図3に示
した工程に従って作製される。即ち、Cuマトリックス
2中に超電導材フィラメント3が19本、各々の超電導材
フィラメント3が正三角形の頂点に位置し全体が正六角
形を呈するように埋込まれた、断面円形の多芯超電導線
材5(図イ)を、ツイスト加工し(図ロ)、次いでこれ
を断面六角形に加工して六角素線1となす(図ハ)。本
発明の複合多芯超電導線において、多芯超電導線材のツ
イストピッチは特に限定するものではないが、ピッチが
長過ぎるとその異常変形防止効果が十分に発現されず、
又短か過ぎると超電導フィラメントにダメージが加わる
為、多芯超電導線材の線径の5〜30倍程度の範囲が好ま
しい。又本発明の複合多芯超電導線には、Nb−Ti系
合金やNb3 Sn化合物等の超電導線の他、酸化物超電
導線等が適用される。
The hexagonal wire as described above is manufactured, for example, according to the process shown in FIG. That is, 19 superconducting material filaments 3 are embedded in a Cu matrix 2, and each superconducting material filament 3 is embedded at the apex of an equilateral triangle so as to form a regular hexagon. (Fig. A) is twisted (Fig. B) and then processed into a hexagonal cross section to form a hexagonal element wire 1 (Fig. C). In the composite multicore superconducting wire of the present invention, the twist pitch of the multicore superconducting wire is not particularly limited, but if the pitch is too long, its abnormal deformation preventing effect is not sufficiently expressed,
If it is too short, the superconducting filament will be damaged. Therefore, the range of 5 to 30 times the wire diameter of the multifilamentary superconducting wire is preferable. Further the composite multifilamentary superconducting wire of the present invention, other superconducting wire, such as Nb-Ti alloy and Nb 3 Sn compound oxide superconducting wire or the like is applied.

【0007】[0007]

【作用】本発明の複合多芯超電導線は、複合ビレットの
組立てに用いる六角素線に、多芯超電導線材をツイスト
加工したのち、これを断面六角形に成形加工した六角素
線を用いるので、六角素線中の超電導材フィラメントの
断面形状が良好であり、従ってNb−Ti超電導線にあ
ってはその加工性が改善され、又Nb3 Sn超電導線に
あってはブロンズ中のSnとNbフィラメントとの反応
が良好になされて超電導特性が向上する。
In the composite multicore superconducting wire of the present invention, since the hexagonal wire used for assembling the composite billet is twisted with the multicore superconducting wire, the hexagonal wire formed into a hexagonal cross section is used. cross-sectional shape of the superconducting material filaments in hexagonal wire is good and therefore Nb-Ti in the superconducting wire has an improved its processability, and Nb 3 Sn in the superconducting wire Sn and Nb filaments in the bronze And the superconducting characteristics are improved.

【0008】[0008]

【実施例】以下に本発明を実施例により詳細に説明す
る。 実施例1 Cuマトリックス中にNb−Tiフィラメントを19本埋
込んだ6mmφの多芯超電導線材を60mmピッチでツイスト
加工したのち、これを溝ロール圧延して図1に示した構
造の対辺距離が 4.9mmの六角素線に成形加工した。次に
この六角素線を外径 200mmφ, 内径 170mmφ, 長さ 500
mmのCu 製管内に1000本稠密充填し、このCu製管の両
端に、脱気後Cu製蓋を電子ビーム溶接して複合ビレッ
トを作製した。次にこの複合ビレットを熱間押出しし、
次いでこの熱間押出材にスエージング加工及び伸線加工
を施して線径1mmφの線材となし、これに熱処理を施し
てNb−Ti系複合多芯超電導線を製造した。
EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 A 6 mmφ multifilamentary superconducting wire in which 19 Nb-Ti filaments were embedded in a Cu matrix was twisted at a pitch of 60 mm, and this was groove-rolled to obtain a structure with a distance between opposite sides of 4.9. It was formed into a hexagonal element wire of mm. Next, use this hexagonal wire with an outer diameter of 200 mmφ, an inner diameter of 170 mmφ, and a length of 500
A Cu bill tube of 1000 mm was densely packed, and after degassing, Cu lids were electron beam welded to both ends of the Cu tube to prepare a composite billet. Next, this composite billet is hot extruded,
Next, this hot extruded material was swaged and drawn to form a wire having a wire diameter of 1 mmφ, and heat-treated to produce a Nb-Ti-based composite multicore superconducting wire.

【0009】比較例1 実施例1において、多芯超電導線材をツイスト加工せず
に溝ロール圧延して六角素線となした他は、実施例1と
同じ方法により1mmφのNb−Ti系複合多芯超電導線
を製造した。このようにして得られた各々の複合多芯超
電導線について、伸線加工中の断線状況を調べた。結果
を表1に示した。
Comparative Example 1 In Example 1, the same procedure as in Example 1 was repeated except that the multifilamentary superconducting wire rod was groove-rolled into a hexagonal element wire without being twisted. A core superconducting wire was manufactured. With respect to each of the composite multifilamentary superconducting wires thus obtained, the state of disconnection during the drawing process was examined. The results are shown in Table 1.

【0010】[0010]

【表1】 [Table 1]

【0011】表1より明らかなように、本発明例品(No
1)は、伸線加工中一度も断線せず良好な加工性を示し
た。尚、超電導特性は規格値を十分満足するものであっ
た。これに対し、比較例品(No2)は、用いた六角素線
の超電導材フィラメントが異常変形していた為に断線が
多発した。
As is clear from Table 1, the products of the present invention (No.
In 1), the wire was not broken even during wire drawing and showed good workability. Incidentally, the superconducting property was sufficiently satisfied with the standard value. On the other hand, in the comparative example product (No. 2), the breakage occurred frequently because the superconducting material filament of the hexagonal wire used was abnormally deformed.

【0012】実施例2 Cu−Sn系合金(ブロンズ)マトリックス中にNbフ
ィラメントを31本埋込んだ 2.5mmφの多芯超電導線材を
30mmピッチでツイスト加工したのち、これを溝ロール圧
延して図2に示した構造の対辺距離が 2.0mmの六角素線
に成形加工した。次にこの六角素線を1300本、厚さ1mm
のNb製管を内接させた外径 107mmφ,内径79mmφ, 長
さ 200mmのCu 製管内に稠密充填し、このCu製管の両
端に、脱気後Cu製蓋を電子ビーム溶接して複合ビレッ
トとなした。次にこの複合ビレットを熱間押出しし、次
いでこの熱間押出材にスエージング加工及び伸線加工を
施して 1.5mmφの線材となした。最後に、この線材に所
定の加熱処理を施してNb3 Sn系複合多芯超電導線を
製造した。
Example 2 A 2.5 mmφ multifilamentary superconducting wire in which 31 Nb filaments were embedded in a Cu-Sn alloy (bronze) matrix.
After twisting at a pitch of 30 mm, this was groove-rolled and formed into a hexagonal wire having a structure shown in FIG. Next, 1300 hexagonal wires with a thickness of 1 mm
The Nb tube is inscribed in an outer diameter of 107 mmφ, inner diameter of 79 mmφ, and length of 200 mm, and is closely packed in a Cu tube. After degassing, Cu lids are electron beam welded to both ends of the Cu tube to form a composite billet. I said. Next, this composite billet was hot extruded, and then this hot extruded material was swaged and drawn to obtain a wire rod having a diameter of 1.5 mm. Finally, this wire was subjected to a predetermined heat treatment to produce a Nb 3 Sn-based composite multicore superconducting wire.

【0013】比較例2 実施例2において、多芯超電導線材をツイスト加工せず
に溝ロール圧延して六角素線となした他は、実施例2と
同じ方法により 1.5mmφのNb3 Sn系複合多芯超電導
線を製造した。このようにして得られた各々の複合多芯
超電導線について、液体He(4.2K)中、12T(テスラ
ー)の磁場下で臨界電流値を測定した。結果を表1に示
した。
Comparative Example 2 A Nb 3 Sn-based composite of 1.5 mmφ was prepared in the same manner as in Example 2 except that the multifilamentary superconducting wire rod was groove-rolled into a hexagonal wire without twisting in Example 2. A multifilamentary superconducting wire was manufactured. The critical current value of each composite multicore superconducting wire thus obtained was measured in liquid He (4.2 K) under a magnetic field of 12 T (Tessler). The results are shown in Table 1.

【0014】[0014]

【表2】 [Table 2]

【0015】表1より明らかなように、本発明例品(No
3)は、臨界電流値が高い値のものであった。尚、伸線
加工中、断線することはなかった。これに対し、比較例
品(No4)は、用いた六角素線のNbフィラメントが異
常変形していた為に、Nb3 Snが十分反応生成せず、
又マトリックス中にSnが残留したりして、臨界電流値
が低い値のものとなった。
As is clear from Table 1, the products of the present invention (No.
In 3), the critical current value was high. During the wire drawing process, there was no breakage. On the other hand, in the comparative example product (No. 4), the Nb filament of the hexagonal wire used was abnormally deformed, so that Nb 3 Sn was not sufficiently generated by reaction,
Further, Sn remained in the matrix, and the critical current value was low.

【0016】[0016]

【効果】以上述べたように、本発明の複合多芯超電導線
は、超電導材フィラメントの形状が良好な為、加工性及
び超電導特性に優れ、工業上顕著な効果を奏する。
As described above, since the composite multifilamentary superconducting wire of the present invention has a good shape of the superconducting material filament, it is excellent in workability and superconducting properties and has a remarkable industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複合多芯超電導線を製造するのに用い
る六角素線の態様例を示す断面説明図である。
FIG. 1 is a cross-sectional explanatory view showing an example of a hexagonal element wire used to manufacture a composite multicore superconducting wire of the present invention.

【図2】本発明の複合多芯超電導線を製造するのに用い
る六角素線の他の態様例を示す断面説明図である。
FIG. 2 is a cross-sectional explanatory view showing another embodiment of the hexagonal element wire used for manufacturing the composite multicore superconducting wire of the present invention.

【図3】本発明の複合多芯超電導線の製造に用いる六角
素線の作製法を例示した工程説明図である。
FIG. 3 is a process explanatory view illustrating the method for producing a hexagonal element wire used in the production of the composite multicore superconducting wire of the present invention.

【図4】従来の複合多芯超電導線の製造に用いる複合ビ
レットの組立て法を示す説明図である。
FIG. 4 is an explanatory view showing a method of assembling a composite billet used for manufacturing a conventional composite multicore superconducting wire.

【符号の説明】[Explanation of symbols]

1,11 六角素線 2 Cu或いはCu合金マトリックス 3 超電導材フィラメント 4 六角素線の角部 5 多芯超電導線材 6 Cu或いはCu合金製管 1,11 Hexagonal wire 2 Cu or Cu alloy matrix 3 Superconducting material filament 4 Hexagonal wire corner 5 Multi-core superconducting wire 6 Cu or Cu alloy tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多芯超電導線材を断面六角形に成形加工
して六角素線となし、この六角素線を金属製管内に稠密
充填して複合ビレットとなし、この複合ビレットに延伸
加工を施して得られる複合多芯超電導線において、前記
六角素線が多芯超電導線材をツイスト加工したのち、断
面六角形に成形加工したものであることを特徴とする複
合多芯超電導線。
1. A multifilamentary superconducting wire rod is formed into a hexagonal cross section to form a hexagonal element wire. The hexagonal element wire is densely packed in a metal tube to form a composite billet, and the composite billet is stretched. In the composite multicore superconducting wire obtained as described above, the hexagonal element wire is formed by twisting a multicore superconducting wire and then forming it into a hexagonal cross section.
JP4151417A 1992-05-18 1992-05-18 Complex multi-conductor superconductive wire Pending JPH05325666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4151417A JPH05325666A (en) 1992-05-18 1992-05-18 Complex multi-conductor superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4151417A JPH05325666A (en) 1992-05-18 1992-05-18 Complex multi-conductor superconductive wire

Publications (1)

Publication Number Publication Date
JPH05325666A true JPH05325666A (en) 1993-12-10

Family

ID=15518161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4151417A Pending JPH05325666A (en) 1992-05-18 1992-05-18 Complex multi-conductor superconductive wire

Country Status (1)

Country Link
JP (1) JPH05325666A (en)

Similar Documents

Publication Publication Date Title
JPS62170111A (en) Manufacture of multicore fine wire super conductor
JPH05325666A (en) Complex multi-conductor superconductive wire
JPH08180752A (en) Nb3sn superconductive wire and manufacture thereof
JPH0329215A (en) Nb3al multicore superconductive wire
JP3445307B2 (en) Superconducting composite billet
JP3124448B2 (en) Method for manufacturing Nb (3) Sn superconducting wire
JP5100459B2 (en) NbTi superconducting wire and method for manufacturing the same
JPH04277416A (en) Manufacture of nb3sn superconducting wire
JP3757617B2 (en) Oxide superconducting billet, oxide superconducting wire, and manufacturing method thereof
JPH065130A (en) Composite multi-core nbti superconductive wire
JP3061208B2 (en) Method for producing copper-stabilized multi-core Nb-Ti superconducting wire
JPH08190825A (en) Manufacture of a3 b type compound superconducting wire
JP2749136B2 (en) Aluminum stabilized superconducting wire
JPH0579408B2 (en)
JP2002279834A (en) Oxide superconducting wire and its manufacturing method
JP3154246B2 (en) Extruded billet for AC superconducting wire
JPH09171727A (en) Manufacture of metal-based superconductive wire
JPH04132117A (en) Manufacture of nb3x multi-core superconducting wire
JPH04132113A (en) Manufacture of nb3x multi-core superconducting wire
JPH04132114A (en) Manufacture of nb3x multi-core superconducting wire
JPH04132115A (en) Manufacture of nb3x multi-core superconducting wire
JPS61230210A (en) Manufacture of nb-ti based superconducting wire
JPS61115613A (en) Production of nb-ti multicore superconductive wire
JPH09120722A (en) Manufacture of metal superconductive wire
JPH06295627A (en) Superconducting wire and its manufacture