JP3445307B2 - Superconducting composite billet - Google Patents
Superconducting composite billetInfo
- Publication number
- JP3445307B2 JP3445307B2 JP11791993A JP11791993A JP3445307B2 JP 3445307 B2 JP3445307 B2 JP 3445307B2 JP 11791993 A JP11791993 A JP 11791993A JP 11791993 A JP11791993 A JP 11791993A JP 3445307 B2 JP3445307 B2 JP 3445307B2
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- billet
- composite billet
- center
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、銅又は銅合金ビレット
中に複合した超電導素材を形状良好なフィラメントに加
工し得る超電導複合ビレットに関する。
【0002】
【従来の技術】超電導線は、銅等の熱伝導性に優れた金
属材料にNb−TiやNb3 Sn等の超電導体フィラメ
ントを多数本複合して用いられている。このような超電
導線の製造は、例えば図6に示したように、断面円形の
ブロンズ製ビレット2に複数の縦孔3をその中心点を結
ぶ線が六角形状になるように穿ち、この縦孔3にNb等
の超電導素材4を充填して超電導複合ビレット1とな
し、この超電導複合ビレット1に熱間押出、引抜加工、
伸線加工等の延伸加工を施して、図7イに示したような
断面六角形の超電導線材となし、この超電導六角線材5
の多数本を、図8に示したように銅管6とTa管7の二
重管内に稠密に充填して二次複合ビレット8となし、こ
れを再び延伸加工する工程を所望回繰り返して超電導線
材となし、最後に所定温度に加熱して前記Nbをブロン
ズ中のSnと反応させてNb3 Snとすることにより製
造がなされていた。
【0003】
【発明が解決しようとする課題】ところで、前述の超電
導複合ビレット1を超電導六角線材5に延伸加工するの
は、二次複合ビレット8内に超電導素材4を高密度に充
填する為である。又前述の超電導複合ビレット1に縦孔
3をその中心点を結ぶ線が六角形状になるように穿つの
は、前記縦孔3に超電導素材4を充填した超電導複合ビ
レット1を断面六角形に延伸加工する際に超電導素材4
の中心点を結んで形成される六角形状aと超電導六角線
材5の外周の六角形状bとが図7イのように頂点と頂点
とを一致させて各々の超電導素材4が均一に加工される
ようにする為である。
【0004】しかしながら、実際には、図7ロに示した
ように、延伸加工中に加工材が軸回転して六角形状aと
六角形状bとの関係が、六角形状aの角部の超電導素材
4が六角形状bの辺に位置するようなことが頻繁に起
き、このような位置関係では六角形状aの角部にある超
電導素材は断面が楕円状に変形してしまい、これを超電
導線材にまで加工すると、超電導フィラメントが断線し
て高い超電導特性が得られないという問題があった。
【0005】
【課題を解決するための手段】本発明はこのような状況
に鑑み鋭意研究を行った結果、前述の超電導素材が異常
変形するのは、超電導素材が特定の径方向に集中して配
列されている為、つまり図6で説明すると超電導複合ビ
レット1の中心を通る直線上に5本の超電導素材4が配
列されている為であり、この超電導素材の異常変形は超
電導素材4の径方向の配列密度を均一化することにより
改善されることを知見し、更に研究を重ねて本発明を完
成するに至ったものである。
【0006】即ち、本発明は、銅又は銅合金からなる断
面円形のビレットに縦孔を複数個穿ち、この縦孔に超電
導素材を充填した超電導複合ビレットにおいて、縦孔が
ビレットの中心部に1個、ビレットの中心を同心とする
2個の同心円の各々の同心円上に複数個、等間隔に穿た
れており、且つビレットの中心を通るいかなる中心線
も、それが横切る縦孔の長さが3.4p〔但しpは縦孔
の内径〕以下であることを特徴とする超電導複合ビレッ
トである。
【0007】本発明において、NbTi超電導線を製造
する時は、通常銅ビレットが用いられる。用途によって
はCu−Ni系合金が用いられる。前記ビレットの縦孔
にはNbTi超電導棒材が充填される。Nb3 Sn,V
3 Ga,Nb3 Al等の化合物超電導線を製造する時は
Cu−Sn系合金、Cu−Ga系合金,Cu−Al系合
金等のビレットが用いられる。前記ビレットの縦孔には
Nb金属又はV金属等の棒材が充填される。
【0008】本発明において、ビレットの中心を同心と
する2個の同心円の各々の同心円上に縦孔を複数個、等
間隔に穿つのは、超電導素材を断面上に均一に分布させ
る為である。又ビレットの中心を通るいかなる中心線
も、それが横切る縦孔の長さが3.4p〔但しpは縦孔
の内径〕以下になるように限定した理由は、特定の中心
線上に3.4pを超えて超電導素材が配列されると、そ
の中心線上の超電導素材は超電導複合ビレットが六角線
材に加工される間に異常変形を起こす為である。つまり
図7に示した従来の超電導複合ビレットでは、横切る縦
孔の長さが3.4pを超える、5pになる中心線が3本
存在するが、本発明では、いかなる中心線も、それが横
切る縦孔長さを3.4p以下に限定するものである。
【0009】以下に本発明の複合ビレットを図を参照し
て具体的に説明する。図1〜図2は、本発明の複合ビレ
ットの態様を示すそれぞれ横断面図である。図1に示し
た複合ビレット1はブロンズ製ビレット2の軸方向に断
面円形の縦孔3が19個穿たれ、各々の縦孔3に超電導
素材4が1本づつ充填されている。前記ビレット2の縦
孔3は、ブロンズ製ビレット2の中心部に1個、前記ビ
レット2の中心を同心とする2本の同心円の内側の同心
円上に等間隔に6個、外側の同心円上にやはり等間隔に
12個穿たれている。そして前記19個の縦孔3は前記
ビレット2のいかなる中心線も、それが横切る縦孔の長
さが3.4p〔但しpは縦孔の内径〕を超えないように
ずらして配置されている。
【0010】図2に示した複合ビレット1はブロンズ製
ビレット2の軸方向に縦孔3が22個穿たれ、各々の縦
孔3に超電導素材4が1本づつ充填されたものである。
前記ビレット2の縦孔3は、前記ビレット2の中心部に
1個、前記ビレット2の中心を同心とする2本の同心円
の内側の同心円上に等間隔に7個、外側の同心円上にや
はり等間隔に14個穿たれている。そして前記22個の
縦孔3は前記ビレット2の中心を通るいかなる中心線
も、それが横切る縦孔の長さが3.4p〔但しpは縦孔
の内径〕を超えないようにずらして配置されている。
【0011】尚、本発明の超電導複合ビレット1は超電
導素材4の間隔が広く取られた配置になっており、従っ
て強冷却を必要とする交流用の超電導線の製造に用いて
特に有用である。
【0012】
【作用】本発明の超電導ビレットは、縦孔がビレットの
中心部に1個、ビレットの中心を同心とする2個の同心
円の各々の同心円上に複数個穿たれており、且つビレッ
トのいかなる中心線も、それが横切る縦孔の長さが3.
4p〔但しpは縦孔の内径〕以下なので、超電導複合ビ
レットの変形能が径方向に対して均一化されて、のちの
延伸加工において、内部の超電導素材は均一に変形し、
従って超電導フィラメントが異常変形したり断線したり
することがない。
【0013】
【実施例】以下に本発明を実施例により詳細に説明す
る。
実施例1
外径 200mmφのブロンズ製ビレットに23.5mmφの縦孔を
19個、図1に示したパターンにて穿ち、この19個の
縦孔にNb棒の超電導素材4を充填して超電導複合ビレ
ット1となし、この超電導複合ビレット1を延伸加工し
て対辺距離 3.2mmの六角線材に加工した。尚、内側同心
円の直径は、282(=23.5×12)mm φ, 外側同心円の直径
は、564(=23.5×24) mmφとした。この六角線材内の超
電導素材は、図3に示したように断面がほぼ円形に加工
された。
【0014】比較例1
外径 200mmφのブロンズ製ビレットに23.5mmφの縦孔を
19個、図4に示したパターンにて穿ち、各々の縦孔3に
Nbの超電導棒材4を充填して超電導複合ビレット1と
なし、この超電導複合ビレット1に熱間押出しと引抜加
工を施して対辺距離 3.2mmの六角線材に加工した。前記
ブロンズ製ビレット2には縦孔3が前記ビレット2の中
心部に1個、ビレット2の中心を同心とする2本の同心
円の内側の同心円上に等間隔に6個、外側の同心円上に
等間隔に12個穿たれている。そして前記ビレット2の中
心線の中には、それが横切る縦孔の長さが5pのものが
3本ある。尚、同心円の直径は実施例1と同じにした。
この超電導複合ビレット1を延伸加工した超電導六角線
材は、図5に示したように断面が楕円状に変形した超電
導素材4が散在した。
【0015】比較例2
外径 200mmφのブロンズ製ビレットに23.5mmφの縦孔を
19個、図6に示した従来のパターンにて穿ち、各々の
縦孔にNbの超電導素材4を充填して超電導複合ビレッ
ト1となし、この超電導複合ビレット1に熱間押出しと
引抜加工を施して対辺距離 3.2mmの六角線材に加工し
た。この超電導複合ビレット1を延伸加工した超電導六
角線材は、図7ロに示したような断面が楕円状に変形し
た超電導素材4が散在した。
【0016】このようにして得られた各々の超電導六角
線材を肉厚37.5mmの銅管を被せた外径 124mm,内径 120
mmのTa管内に多数本充填して二次複合ビレットとなし
た。この二次複合ビレットを再度延伸加工して 0.9mmφ
の超電導線材となし、次いでこの超電導線材に所定の加
熱処理を施してNb金属棒の超電導素材をNb3 Sn超
電導体に反応させてNb3 Sn超電導線を製造した。得
られた各々のNb3 Sn超電導線について、臨界電流密
度(Jc)及び有効フィラメント径を調査した。結果を
表1に示した。
【0017】
【表1】
【0018】表1より明らかなように本発明例品(No
1)は臨界電流密度(Jc)が高く、又有効フィラメン
ト径が小さかった。これは超電導複合ビレット内の超電
導素材の径方向の配列密度が3pと低く、従って超電導
素材が均一に加工されたことによる。これに対し比較例
品(No2,3)は、前記径方向の配列密度が5pと 3.4
pを超えたものがあった為に超電導素材が延伸加工中に
異常変形し、その結果Jcが低下し又有効フィラメント
径が大きくなった。
【0019】実施例2
実施例1において、同心円の径を2通りに変えた他は実
施例1と同じ方法により超電導六角線材を成形した。得
られた超電導六角線材中の超電導素材の断面形状を観察
した。結果を表2に示した。
【0020】
【表2】【0021】表2より明らかなように、本発明例品(No
4)は超電導素材の径方向の配列密度が3.4pと小さ
かった為、超電導素材の断面形状が円形の良好なものと
なった。これに対し比較例品(No5)は超電導素材の径
方向の配列密度が3.4pを超えた為、超電導素材の断
面形状が楕円形となった。
【0022】以上、図1に示した縦穴配置パターンの超
電導複合ビレットを用いてNb3 Sn超電導線を製造す
る場合について説明したが、本発明の超電導複合ビレッ
トは図2に示したような他の縦孔配置パターンの超電導
複合ビレットを用いた場合においても、又NbTi超電
導線を製造する場合においても同様の効果が得られる。
【0023】
【効果】以上述べたように、本発明の超電導複合ビレッ
トによれば、超電導フィラメントを形状良好に加工する
ことができ、従って超電導特性が向上し、工業上顕著な
効果を奏する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting composite billet capable of processing a superconducting material composited in a copper or copper alloy billet into a filament having a good shape. [0002] superconducting wire is used in a large number the composite superconductor filaments, such as Nb-Ti and Nb 3 Sn in the metal material having excellent thermal conductivity such as copper. For manufacturing such a superconducting wire, for example, as shown in FIG. 6 , a plurality of vertical holes 3 are drilled in a bronze billet 2 having a circular cross section so that the line connecting the center points thereof has a hexagonal shape. 3 is filled with a superconducting material 4 such as Nb to form a superconducting composite billet 1. The superconducting composite billet 1 is subjected to hot extrusion, drawing,
Subjected to stretching of the wire drawing and the like, 7 hexagonal cross section of the superconducting wire and without, as shown in (a), the superconducting hexagonal wire 5
8 is densely filled in a double tube of a copper tube 6 and a Ta tube 7 as shown in FIG. 8 to form a secondary composite billet 8, and a process of stretching the material again is repeated a desired number of times to obtain a superconducting material. It was manufactured by forming a wire and finally heating it to a predetermined temperature to react the Nb with Sn in bronze to form Nb 3 Sn. The reason why the superconducting composite billet 1 is stretched into a superconducting hexagonal wire 5 is to fill the superconducting material 4 into the secondary composite billet 8 at a high density. is there. The above-described superconducting composite billet 1 is provided with the vertical hole 3 so that the line connecting the center points thereof has a hexagonal shape. The superconducting composite billet 1 in which the vertical hole 3 is filled with the superconducting material 4 is stretched into a hexagonal cross section. Superconducting material 4 when processing
Each of the superconducting material 4 is matched with the vertex and vertices are uniformly processed as hexagonal b Togazu 7 b hexagonal a and the outer circumference of the superconducting hexagonal wire 5 formed by connecting the center points of It is to do so. However, in practice, as shown in FIG. 7 (b), the relationship between the hexagonal a workpiece is pivoted during stretching and hexagonal b is, superconducting materials corners of the hexagonal shape a 4 frequently occurs on the side of the hexagonal shape b. In such a positional relationship, the superconducting material at the corner of the hexagonal shape a is deformed into an elliptical cross section. If processed to such a degree, there is a problem that the superconducting filament breaks and high superconducting properties cannot be obtained. SUMMARY OF THE INVENTION The present invention has been studied in view of such a situation, and as a result of the intensive research, the above-mentioned abnormal deformation of the superconducting material is caused by the fact that the superconducting material is concentrated in a specific radial direction. because it has been arranged, that is a straight line in the five superconducting material 4 passing through the center of the explaining superconducting composite billet 1 in FIG. 6 is because the are arranged, abnormal deformation of the superconducting material diameter of the superconducting material 4 The inventors have found that the present invention can be improved by making the array density in the direction uniform, and have further studied to complete the present invention. That is, according to the present invention, in a superconducting composite billet in which a plurality of vertical holes are formed in a billet made of copper or a copper alloy and having a circular cross section, and the vertical holes are filled with a superconducting material, the vertical hole is located at the center of the billet. Concentric with the center of the billet
Plurality to two on each concentric circle concentric, are drilled at regular intervals, any center line and passing through the center of the billet, the length 3.4p [where p of the vertical hole in which it crosses the vertical hole Of the superconducting composite billet. In the present invention, a copper billet is usually used when manufacturing an NbTi superconducting wire. Depending on the application, a Cu-Ni alloy is used. The vertical hole of the billet is filled with a NbTi superconducting rod. Nb 3 Sn, V
3 Ga, when preparing a compound superconducting wire such as Nb 3 Al is Cu-Sn alloy, Cu-Ga alloy, billet, such as Cu-Al-based alloy is used. The vertical hole of the billet is filled with a bar material such as Nb metal or V metal. [0008] In the present invention, a plurality of vertical holes on the concentric circle of each of the two concentric circles the center of the billet and concentric, the drilled at equal intervals is the order to evenly distribute the superconducting material on a section . The reason why any center line passing through the center of the billet is limited so that the length of the vertical hole crossed by the center line is 3.4p or less (where p is the inner diameter of the vertical hole) is that 3.4p on the specific center line. When the superconducting material is arranged beyond the range, the superconducting material on the center line causes abnormal deformation while the superconducting composite billet is processed into a hexagonal wire. That is, in the conventional superconducting composite billet shown in FIG. 7, there are three center lines having a vertical hole crossing over 3.4 p and having a length of 5 p, but in the present invention, any center line has The length of the vertical hole which crosses is limited to 3.4 p or less. The composite billet of the present invention will be specifically described below with reference to the drawings. 1 and 2 are cross-sectional views each showing an embodiment of the composite billet of the present invention. In the composite billet 1 shown in FIG. 1, 19 vertical holes 3 having a circular cross section are formed in the axial direction of the billet 2 made of bronze, and each vertical hole 3 is filled with a superconducting material 4 one by one. One vertical hole 3 of the billet 2 is provided at the center of the bronze billet 2, six at equal intervals on two concentric circles concentric with the center of the billet 2, and on the outer concentric circle. Again, 12 are evenly spaced. The nineteen vertical holes 3 are arranged so that any center line of the billet 2 does not exceed the length of the vertical hole traversed by 3.4p (where p is the inner diameter of the vertical hole). . The composite billet 1 shown in FIG. 2 is a bronze billet 2 in which 22 vertical holes 3 are formed in the axial direction, and each of the vertical holes 3 is filled with a superconducting material 4 one by one.
One vertical hole 3 of the billet 2 is provided at the center of the billet 2, seven at equal intervals on two concentric circles concentric with the center of the billet 2, and also on the outer concentric circle. Fourteen are drilled at equal intervals. The 22 vertical holes 3 are arranged such that any center line passing through the center of the billet 2 does not exceed 3.4p [where p is the inner diameter of the vertical hole]. Have been. [0011] Incidentally, the superconducting composite billet 1 of the present invention are particularly useful with the production of superconducting wire of AC in need has become to the arrangement interval of the superconducting material 4 is taken widely, thus the strong cooling . [0012] [action] superconducting billet of the present invention, one in the center of the vertical hole billet has been drilled a plurality concentrically of each of the two concentric circles the center of the billet and concentric, and billets The centerline of any of the above has a vertical hole length of 3.
Since 4p [where p is the inner diameter of the vertical hole] or less, the deformability of the superconducting composite billet is made uniform in the radial direction, and in the subsequent stretching, the internal superconducting material is uniformly deformed.
Therefore, the superconducting filament does not deform abnormally or break. The present invention will be described below in detail with reference to examples. Example 1 A bronze billet having an outer diameter of 200 mmφ was pierced with 19 vertical holes of 23.5 mmφ in the pattern shown in FIG. 1, and these 19 vertical holes were filled with a superconducting material 4 of Nb rod to form a superconducting composite billet. This superconducting composite billet 1 was stretched and processed into a hexagonal wire having a distance of 3.2 mm across. The diameter of the inner concentric circle was 282 (= 23.5 × 12) mmφ, and the diameter of the outer concentric circle was 564 (= 23.5 × 24) mmφ. Superconducting material of the hexagonal wire inside material, the cross-section as shown in FIG. 3 is processed in a substantially circular shape. Comparative Example 1 A 23.5 mmφ vertical hole was formed in a bronze billet having an outer diameter of 200 mmφ.
Nineteen holes were drilled in the pattern shown in FIG. 4 , and each vertical hole 3 was filled with a superconducting rod 4 of Nb to form a superconducting composite billet 1. The superconducting composite billet 1 was subjected to hot extrusion and drawing. Into a hexagonal wire with a distance of 3.2 mm on the opposite side. The bronze billet 2 has one longitudinal hole 3 at the center of the billet 2, six at equal intervals on the inner concentric circle of two concentric circles concentric with the center of the billet 2, and on the outer concentric circle. Twelve are evenly spaced. In the center line of the billet 2, there are three vertical holes having a length of 5p. The diameter of the concentric circle was the same as in Example 1.
The superconducting composite billet 1 stretch processed superconducting hexagonal wire is superconducting material 4 which cross-section as shown in FIG. 5 is deformed into an elliptical shape interspersed. COMPARATIVE EXAMPLE 2 A bronze billet having an outer diameter of 200 mmφ was pierced with 19 vertical holes of 23.5 mmφ in the conventional pattern shown in FIG. 6 , and each of the vertical holes was filled with Nb superconducting material 4 for superconductivity. The superconducting composite billet 1 was subjected to hot extrusion and drawing to form a hexagonal wire having a distance to the opposite side of 3.2 mm. The superconducting composite billet 1 stretch processed superconducting hexagonal wire is superconducting material 4 is cross section as shown in FIG. 7 (b) is deformed into an elliptical shape interspersed. Each superconducting hexagonal wire thus obtained is covered with a copper tube having a thickness of 37.5 mm and has an outer diameter of 124 mm and an inner diameter of 120 mm.
A large number of mm Ta tubes were filled to form a secondary composite billet. This secondary composite billet is stretched again to 0.9mmφ
Of the superconducting wire and without, then produce Nb 3 Sn superconducting wire by a superconducting material Nb metal rod reacted Nb 3 Sn superconductor is subjected to predetermined heat treatment to the superconducting wire. For each of the obtained Nb 3 Sn superconducting wires, the critical current density (Jc) and the effective filament diameter were investigated. The results are shown in Table 1. [Table 1] As is clear from Table 1, the sample of the present invention (No.
1) had a high critical current density (Jc) and a small effective filament diameter. This is because the radial arrangement density of the superconducting material in the superconducting composite billet is as low as 3p, and therefore, the superconducting material is uniformly processed. On the other hand, the comparative example products (Nos. 2 and 3) had the radial array density of 5p and 3.4%.
The superconducting material was abnormally deformed during the stretching process due to the fact that some exceeded p, and as a result, Jc decreased and the effective filament diameter increased. Example 2 A superconducting hexagonal wire was formed in the same manner as in Example 1 except that the diameter of the concentric circle was changed to two. The cross-sectional shape of the superconducting material in the obtained superconducting hexagonal wire was observed. The results are shown in Table 2. [Table 2] As is clear from Table 2, the sample of the present invention (No.
In 4), since the arrangement density in the radial direction of the superconducting material was as small as 3.4 p, the cross-sectional shape of the superconducting material became a good circular shape. On the other hand, in the comparative example (No. 5), since the radial arrangement density of the superconducting material exceeded 3.4 p , the cross-sectional shape of the superconducting material became elliptical. The above has described the case of manufacturing a Nb 3 Sn superconducting wire by using a superconducting composite billet vertical hole arrangement pattern shown in FIG. 1, the superconducting composite billet of the invention other as shown in FIG. 2 Similar effects can be obtained even when a superconducting composite billet having a vertical hole arrangement pattern is used or when an NbTi superconducting wire is manufactured. As described above, according to the superconducting composite billet of the present invention, the superconducting filament can be processed into a good shape, and therefore, the superconducting characteristics are improved, and a remarkable industrial effect is achieved.
【図面の簡単な説明】
【図1】本発明の超電導複合ビレットの第1の実施例を
示す横断面図である。
【図2】本発明の超電導複合ビレットの第2の実施例を
示す横断面図である。
【図3】図1に示した超電導複合ビレットを延伸加工し
て得られた超電導六角線材の横断面図である。
【図4】従来の超電導複合ビレットの横断面図である。
【図5】図4に示した超電導複合ビレットを延伸加工し
て得られた超電導六角線材の横断面図である。
【図6】従来の超電導複合ビレットの横断面図である。
【図7】図6に示した超電導複合ビレットを延伸加工し
て得られた超電導六角線材の横断面図である。
【図8】超電導六角線材を銅管内に充填した二次複合ビ
レットの説明図である。
【符号の説明】
1 超電導複合ビレット
2 ブロンズ製ビレット
3 縦孔
4 超電導素材
5 超電導六角線材
6 銅管
7 Ta管
8 二次複合ビレット
a,b 六角形状BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a first embodiment of a superconducting composite billet according to the present invention. FIG. 2 is a transverse sectional view showing a second embodiment of the superconducting composite billet according to the present invention. FIG. 3 is a cross-sectional view of a superconducting hexagonal wire obtained by stretching the superconducting composite billet shown in FIG. FIG. 4 is a cross-sectional view of a conventional superconducting composite billet. [5] The superconducting composite billet shown in FIG. 4 is a cross-sectional view of a stretching-obtained superconducting hexagonal wire. FIG. 6 is a cross-sectional view of a conventional superconducting composite billet. 7 is a cross-sectional view of the resulting superconducting hexagonal wire by stretching the superconducting composite billet shown in FIG. FIG. 8 is an explanatory diagram of a secondary composite billet in which a superconducting hexagonal wire is filled in a copper tube. [Description of Signs] 1 Superconducting composite billet 2 Bronze billet 3 Vertical hole 4 Superconducting material 5 Superconducting hexagonal wire 6 Copper tube 7 Ta tube 8 Secondary composite billet a, b Hexagon
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01B 12/00 - 13/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) H01B 12/00-13/00
Claims (1)
トに縦孔を複数個穿ち、この縦孔に超電導素材を充填し
た超電導複合ビレットにおいて、縦孔がビレットの中心
部に1個、ビレットの中心を同心とする2個の同心円の
各々の同心円上に複数個、等間隔に穿たれており、且つ
ビレットの中心を通るいかなる中心線も、それが横切る
縦孔の長さが3.4p〔但しpは縦孔の内径〕以下であ
ることを特徴とする超電導複合ビレット。(57) [Claim 1] In a superconducting composite billet in which a plurality of vertical holes are formed in a billet made of copper or a copper alloy and having a circular cross section, and the vertical holes are filled with a superconducting material, the vertical holes are billets. one in the center of a plurality concentrically of each of the two concentric circles the center of the billet and concentric, are drilled at regular intervals, any center line and passing through the center of the billet, the vertical it crosses A superconducting composite billet, wherein the length of the hole is not more than 3.4p [where p is the inner diameter of the vertical hole].
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11791993A JP3445307B2 (en) | 1993-04-21 | 1993-04-21 | Superconducting composite billet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11791993A JP3445307B2 (en) | 1993-04-21 | 1993-04-21 | Superconducting composite billet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06309964A JPH06309964A (en) | 1994-11-04 |
JP3445307B2 true JP3445307B2 (en) | 2003-09-08 |
Family
ID=14723429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11791993A Expired - Lifetime JP3445307B2 (en) | 1993-04-21 | 1993-04-21 | Superconducting composite billet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3445307B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022075127A1 (en) | 2020-10-08 | 2022-04-14 | 古河電気工業株式会社 | Nbti superconducting multi-core wire |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100407150B1 (en) * | 2001-11-01 | 2003-11-28 | 엘지전선 주식회사 | The Marking Roller for the Cable |
JP2012151025A (en) * | 2011-01-20 | 2012-08-09 | Hitachi Cable Ltd | Structure of superconducting multi-core billet, and method of manufacturing superconducting multi-core wire material |
-
1993
- 1993-04-21 JP JP11791993A patent/JP3445307B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022075127A1 (en) | 2020-10-08 | 2022-04-14 | 古河電気工業株式会社 | Nbti superconducting multi-core wire |
Also Published As
Publication number | Publication date |
---|---|
JPH06309964A (en) | 1994-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4044457A (en) | Method of fabricating composite superconducting wire | |
JP3445307B2 (en) | Superconducting composite billet | |
JP3813260B2 (en) | Oxide multi-core superconducting conductor and method for producing the same | |
Kreilick et al. | Geometric considerations in the design and fabrication of multifilamentary superconducting composites | |
JP2562435B2 (en) | Superfine superconducting wire | |
JP3602151B2 (en) | Method for producing Nb (3) Sn compound superconducting wire | |
JPH09167531A (en) | Manufacture of multi-conductor nb3sn superconducting wire | |
JP2871754B2 (en) | Nb Lower 3 Method for Manufacturing Sn Compound Superconducting Wire | |
JP2547193B2 (en) | Nb-Ti alloy superconducting wire | |
JPH05325666A (en) | Complex multi-conductor superconductive wire | |
JPH03280307A (en) | Manufacture of multicore superconductive wire | |
JPH09245539A (en) | Superconductive wire | |
JPH0465032A (en) | Nb-ti superconducting wire | |
RU96116402A (en) | METHOD FOR PRODUCING COMPOSITE SUPERCONDUCTOR BASED ON NB3SN CONNECTION | |
JP3061208B2 (en) | Method for producing copper-stabilized multi-core Nb-Ti superconducting wire | |
JP3154246B2 (en) | Extruded billet for AC superconducting wire | |
JPS6386323A (en) | Manufacture of aluminum stabilizing superconductor | |
JPS61115612A (en) | Production of nb-ti multicore superconductive wire | |
JPS6329921B2 (en) | ||
JPH08190825A (en) | Manufacture of a3 b type compound superconducting wire | |
JPH04319208A (en) | Superconducting multicore complex billet and manufacture thereof | |
JPH01321032A (en) | Manufacture of multi-core superconducting wire | |
JPH07249328A (en) | Oxide superconductive wire and manufacture thereof | |
JPH03246822A (en) | Cu or al stabilized superconducting wire and manufacture thereof | |
JPH04329221A (en) | Manufacture of superconductive wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080627 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090627 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090627 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100627 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100627 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |