JPH03246822A - Cu or al stabilized superconducting wire and manufacture thereof - Google Patents

Cu or al stabilized superconducting wire and manufacture thereof

Info

Publication number
JPH03246822A
JPH03246822A JP2044142A JP4414290A JPH03246822A JP H03246822 A JPH03246822 A JP H03246822A JP 2044142 A JP2044142 A JP 2044142A JP 4414290 A JP4414290 A JP 4414290A JP H03246822 A JPH03246822 A JP H03246822A
Authority
JP
Japan
Prior art keywords
pure
tube
wire
superconducting wire
stabilized superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2044142A
Other languages
Japanese (ja)
Other versions
JP2931020B2 (en
Inventor
Takeshi Endo
壮 遠藤
Kiyouta Suzai
京太 須齋
Minoru Ishikawa
石川 實
Hiroshi Onoguchi
博 小野口
Kinya Ogawa
欽也 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2044142A priority Critical patent/JP2931020B2/en
Publication of JPH03246822A publication Critical patent/JPH03246822A/en
Application granted granted Critical
Publication of JP2931020B2 publication Critical patent/JP2931020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To prevent the deterioration of superconducting characteristics by covering each of Nb-Ti filaments containing a plurality of scattered materials A not producing an intermetallic compound with Ni-Tb, with a material B not producing any reaction product with the materials. CONSTITUTION:A plurality of Nb-Ti filaments 1 having a sectional structure with a plurality of scattered materials A2 practically free from the generation of an intermetallic compound with Nb-Ti 1, are respectively covered with a material B3 not producing a reaction product with any of a stabilizer 4, Nb-Ti 1 and the material A2. According to the aforesaid construction, an intended wire material can be processed without causing a drop in workability, and superconducting characteristics can be improved, due to the introduction of an artificial pinning center as aforementioned.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Nb−Tiフィラメント中のピンニングセン
ターを人工的に導入したCuまたはAl安定化超電導線
とその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a Cu- or Al-stabilized superconducting wire in which a pinning center is artificially introduced into a Nb-Ti filament, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

Nb−Ti超電導線は、その用途により超電導特性の異
なるものが要求され、製造されている。
Nb-Ti superconducting wires are manufactured with different superconducting characteristics required depending on their use.

Nb−Ti超電導線の臨界電流密度特性をコントロール
する方法として、−船釣には熱間押出後のNb−Ti超
電導線を冷間加工することにより加工歪を加えていき、
逐次多段時効熱処理を加えることで冷間加工により生し
た転位近傍に微細なαTiを析出させる方法がとられて
おり、この冷間加工率や時効熱処理条件により得られる
臨界電流密度特性をコントロールする方法が行われてい
る。この方法によれば、冷間加工率を大きくとり、多段
時効熱処理の回数を増やしたり時間を長くすることでよ
り高い臨界電流密度が得られることが明らかであるが、
Nb−Ti自身の加工性が著しく低下する為、Nb−T
iフィラメントの断線を招いて超電導特性を劣化させた
り、線材自身の断線に至る場合も珍しくない。特に粒子
加速器用大型マグネットなど高磁場対応の要求される極
細多芯型のNb−Ti超電導線にあっては、著しい加工
性の低下につながり、断線が多発する問題があった。
As a method to control the critical current density characteristics of Nb-Ti superconducting wire, - For boat fishing, we apply processing strain by cold working Nb-Ti superconducting wire after hot extrusion.
A method is used in which fine αTi is precipitated in the vicinity of dislocations generated by cold working by adding sequential multi-stage aging heat treatment, and the critical current density characteristics obtained by this cold working rate and aging heat treatment conditions are controlled. is being carried out. According to this method, it is clear that a higher critical current density can be obtained by increasing the cold working rate and increasing the number and duration of multistage aging heat treatment.
Since the workability of Nb-Ti itself is significantly reduced, Nb-T
It is not uncommon for the i-filament to break, resulting in deterioration of the superconducting properties, or for the wire itself to break. Particularly in the case of ultra-fine multi-core Nb-Ti superconducting wires that are required to handle high magnetic fields, such as large magnets for particle accelerators, there have been problems in that workability is significantly reduced and wire breakage occurs frequently.

以上のような問題から、条件の厳しい冷間加工や時効熱
処理を要さずにビン止め力を向上させる方法として、人
工的にピンニングセンターを導入する方法が検討されて
きている。この方法では、Nb−Tiフィラメント中に
ある程度加工性の良好な常電導物質を素線形成の段階で
予め導入し、以鋒の減面加工により数〜十数nm程度ま
で微細化させてピンニングセンターとするものである。
Due to the above-mentioned problems, a method of artificially introducing a pinning center has been studied as a method of improving the bottle-holding force without requiring severe cold working or aging heat treatment. In this method, a normal conductive substance with good workability to some extent is introduced into the Nb-Ti filament at the stage of wire formation, and the pinning center is refined to several to tens of nanometers by surface reduction processing. That is.

例えばNb−Ti細棒に所定の厚さの純Cuのシートを
巻いたものを複数本束ねてCu或いはCu合金の管内に
挿入・嵌合し、熱間押出した複合材を素線として多芯超
電導線を形成する場合、Cuがピンニングセンターとな
る。Cuは液体He温度でも常電導体である為、ピンニ
ングセンターとして機能する。この方法によれば、条件
の厳しい冷間加工や時効熱処理を要さずにピンニングセ
ンターを生成させることができ、ピンニングセンターの
数も、素線の設計により自由にコントロールができる為
、臨界電流密度特性をより正確にコントロールでき、要
求特性によって異なった超電導線が設計・製造できると
いう利点がある。
For example, a Nb-Ti thin rod wrapped with a pure Cu sheet of a predetermined thickness is bundled, inserted into a Cu or Cu alloy tube, and then hot extruded to form a composite material with multiple cores. When forming a superconducting wire, Cu serves as a pinning center. Since Cu is a normal conductor even at the temperature of liquid He, it functions as a pinning center. According to this method, pinning centers can be generated without requiring severe cold working or aging heat treatment, and the number of pinning centers can be freely controlled by the design of the strands, so the critical current density This has the advantage that the characteristics can be controlled more accurately and that different superconducting wires can be designed and manufactured depending on the required characteristics.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上記のように、人工ピンニングセンターと
してCuを対象に採り上げた場合、NbTiと変形抵抗
が大きく異なる為複合加工性に問題があり、また中間熱
処理等によって、Nb−TiとCuとの界面に、加工性
の著しく乏しいCu−Ti化合物を生成してしまう為、
減面加工の途中でフィラメントの断線が発生して超電導
特性を著しく劣化させたり、最悪の場合には線材自身の
断線に至るなどの問題があった。
However, as mentioned above, when Cu is used as an artificial pinning center, there is a problem with composite workability because the deformation resistance is significantly different from that of NbTi, and due to intermediate heat treatment etc., the interface between Nb-Ti and Cu Because it produces a Cu-Ti compound with extremely poor processability,
There were problems such as filament breakage occurring during the area reduction process, which significantly deteriorated the superconducting properties, or in the worst case, the wire itself breaking.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記の点に鑑み、鋭意検討の結果為されたもの
であり、その目的とするところは、NbTiフィラメン
ト中に人工的にピンニングセンターを導入したNb−T
i、4g電導線に於いて、人工的にピンニングセンター
を導入したことで、実用上有害となる二次的な反応生成
物が生じて超電導特性が劣化するようなことのない、且
つ加工性の良好なCu又はAl安定化超電導線、及びそ
の製造方法を提供するものである。
The present invention was made as a result of intensive studies in view of the above points, and its purpose is to create an Nb-T filament in which a pinning center is artificially introduced into the Nb-Ti filament.
i. Introducing artificial pinning centers in 4g conductive wires will not result in the production of secondary reaction products that are harmful in practice and will not deteriorate the superconducting properties, and will improve workability. The present invention provides a good Cu- or Al-stabilized superconducting wire and a method for manufacturing the same.

即ち本発明に於ける超電導線とは、実用上NbTiと金
属間化合物を生成しない材質Aが複数散在している断面
構造を持つ複数のNb−Tiフィラメントの各々が、実
用上、安定化材やNb−Ti、材質Aのいずれとも反応
生成物を生じない材質Bで被覆されていることを特徴と
するCuまたはAl安定化超電導線であって、材質Aと
してはNbまたはTa、材質BとしてはNbまたはTa
が好適である。またその製造方法とは、■Nb−Ti合
金棒に、その長手方向に平行に複数の貫通孔を設け、そ
の中にNbまたTaの棒を挿入した後、該Nb−Ti合
金棒の周囲をNbまたはTaで被覆し、次いでこれを純
Cu管に封じ熱間押出した複合材を素線とする場合、■
Nb−Ti合金棒に、その長手方向に平行に1本、或い
は数本の貫通孔を設け、その中にNbまたはTaの棒を
挿入したものを複数本束ね、その周囲をNbまたはTa
で被覆し、次いでこれを純Cu管に封じ、熱間押出した
ものを素線とする場合、■Nb−Ti合金棒の複数本と
、NbまたはTa棒の複数本を、NbまたはTa棒の複
数本が相互に接触し合わないように束ね、その周囲をN
bまたはTaで被覆し、次いでこれを純Cu管に封じ、
熱間押出した複合材を素線とする場合の各々について、
その素線を複数本束ねて純Cu管または純Al管に挿入
・密封後熱間押出することを特徴とするCuまたはAl
安定化超電導線の製造方法である。
In other words, the superconducting wire according to the present invention means that each of a plurality of Nb-Ti filaments has a cross-sectional structure in which a plurality of materials A, which do not practically form an intermetallic compound with NbTi, are interspersed. A Cu or Al stabilized superconducting wire characterized by being coated with a material B that does not produce reaction products with either Nb-Ti or material A, where material A is Nb or Ta and material B is Nb or Ta
is suitable. The manufacturing method is as follows: 1) A Nb-Ti alloy rod is provided with a plurality of through holes parallel to its longitudinal direction, a Nb or Ta rod is inserted into the holes, and then the periphery of the Nb-Ti alloy rod is When using a composite material coated with Nb or Ta, then sealed in a pure Cu tube and hot extruded as a wire, ■
A Nb-Ti alloy rod has one or several through holes parallel to its longitudinal direction, and a plurality of Nb or Ta rods are inserted into the through holes, which are then bundled together and surrounded by Nb or Ta.
Then, when hot-extruding the pure Cu tube and sealing it in a pure Cu tube to make a wire, Bundle multiple pieces together so they don't touch each other, and surround them with N.
b or Ta, and then sealed in a pure Cu tube,
For each case when hot extruded composite material is used as wire,
Cu or Al characterized by bundling a plurality of the wires, inserting them into a pure Cu pipe or pure Al pipe, sealing them, and hot extruding them.
This is a method for producing a stabilized superconducting wire.

〔作用〕[Effect]

本発明に於いては、1本のNb−Tiフィラメントの断
面内に散在する複数の材質Aが、実用上Nb−Tiと金
属間化合物を生成しない為、人工的にピンニングセンタ
ーを導入したことで塑性加工上有害となる二次的な反応
生成物は生成されず、健全に加工することができる。更
にこの材質Aとして例えばNbまたはTaのようにNb
−Tiと変形抵抗の差の大きくない材質を用いることで
複合加工性も向上するので好ましい。ここで人工ピンニ
ングセンターにNbやTaを用いた場合これらも液体H
e温度に於いては超電導性を示すが、Nb−Tiの超電
導特性はこれらよりも優れる為、実用上はこれらの臨界
磁場や臨界電流密度以上の条件で使用され、この条件下
ではNbやTaの超電導性は破れて常電導状態となる為
、実用上問題なくピンニング効果が得られる。また、人
工ピンニングセンターの導入された各Nb−Tiフィラ
メントを、実用上、安定化材やNb−Ti、材質Aと反
応生成物を生じない材質Bで被覆しておくことで、安定
化材とNb−Ti或いは/及び材質Aと反応することを
防止でき、且つ塑性加工上有害となる二次的な反応生成
物も生成しない為、健全に加工することができる。
In the present invention, since the plurality of materials A scattered within the cross section of one Nb-Ti filament do not practically form intermetallic compounds with Nb-Ti, pinning centers are artificially introduced. No secondary reaction products harmful to plastic working are generated, and processing can be performed in a sound manner. Furthermore, as this material A, for example, Nb such as Nb or Ta
- It is preferable to use a material that does not have a large difference in deformation resistance from Ti because composite workability is also improved. Here, if Nb or Ta is used for the artificial pinning center, these also have liquid H
Nb-Ti exhibits superconductivity at temperatures of The superconductivity of is broken and it becomes a normal conductivity state, so the pinning effect can be obtained without any practical problems. In addition, for practical purposes, each Nb-Ti filament introduced into the artificial pinning center is coated with a stabilizing material, Nb-Ti, and a material B that does not produce reaction products with material A. Since reaction with Nb-Ti and/or material A can be prevented, and secondary reaction products harmful to plastic working are not generated, sound processing can be achieved.

〔実施例〕〔Example〕

Nb−Ti棒の長手方向に平行に220本の貫通孔をあ
け、その中にNb細棒を挿入、充填したものをCu  
0.5wt%Mnの管に挿入・嵌合した複合材を押出温
度900°Cで熱間押出し、伸線して最終六角形状に成
形した後整直・切断したものを1次素線とし、該1次素
線を130本整然と束ねて純Cu管に挿入し、純Cuフ
タで両端を密封じた複合材を押出温度500℃で熱間押
出した後、伸線し最終六角形状に成形し整直・切断した
ものを2次素線とし、該2次素線を222本整然と束ね
て純Cu管に挿入し、純Cuフタで両端を密封じて10
0鴫φX500mmj!のケーブルビレットを作製した
220 through holes were drilled parallel to the longitudinal direction of the Nb-Ti rod, and Nb thin rods were inserted and filled into the holes to form a Cu
The composite material inserted and fitted into a 0.5 wt% Mn tube was hot extruded at an extrusion temperature of 900°C, drawn and formed into a final hexagonal shape, and then straightened and cut to form a primary wire. 130 of the primary wires were neatly bundled and inserted into a pure Cu tube, both ends of which were sealed with pure Cu lids, and the composite material was hot extruded at an extrusion temperature of 500°C, then drawn and formed into a final hexagonal shape. The straightened and cut wires were used as secondary strands, and 222 secondary strands were neatly bundled and inserted into a pure Cu tube, and both ends were sealed with pure Cu lids.
0 φ×500mmj! A cable billet was produced.

このケーブルビレットを押出温度500″Cで15n+
mφに熱間押出した後、総加工率約52%ごとに時効熱
処理380″CX24hを加える操作を4回繰返しなが
ら3.44mmφ(as−annealed )まで伸
線し、その後は無焼鈍で0.520 mφまで伸線し、
最後にアニーラ−でSOO℃X20m/ll1inの走
間焼鈍を行った。
This cable billet was extruded at a temperature of 500"C to 15n+
After hot extrusion to 3.44 mmφ (as-annealed), the operation of adding aging heat treatment of 380"CX24h at every 52% of the total processing rate was repeated 4 times, and then the wire was drawn to 3.44 mmφ (as-annealed), and then non-annealed to 0.520 mm. Draw the wire to mφ,
Finally, running annealing was performed in an annealer at SOO°C x 20m/11in.

この時、Nb−Tiフィラメント1本当たりの径は約1
.065−であり、更にこのフィラメント中には、太さ
約5.8nmφのNbが約64.9nmの間隔て散在し
ている断面構造となっている。この0.520mmφの
線材について液体Heで冷却し、5Tの磁場中で臨界電
流値・I、(A)を測定し、臨界電流密度、J c  
(A / mj )を計算により求めた。測定は0.5
20 amφの長尺線から任意にサンプリングしたn−
20について行った。その結果、3080〜3220(
A / −’)と高い臨界電流密度が安定して得られて
いることがわかった。比較材として、Nb−Ti棒にN
bシートを巻き付けたものをCu−0,,5wt%Mn
の管に挿入・嵌合した複合材を押出温度900°Cで熱
間押出し、伸線して最終六角形状に成形した後整直・切
断したものを1次素線として、上記と同一構成の100
鵬φX500mmj!のケーブルビレット(素線数28
860本)を作製し、同一の加工条件で0.520mm
φまで伸線加工し、最後にアニーラ−で500°CX2
0m /ll1inの走間焼鈍を行った。
At this time, the diameter of one Nb-Ti filament is approximately 1
.. 065-, and the filament has a cross-sectional structure in which Nb with a thickness of about 5.8 nm is scattered at intervals of about 64.9 nm. This 0.520 mmφ wire was cooled with liquid He, the critical current value I, (A) was measured in a 5 T magnetic field, and the critical current density, J c
(A/mj) was determined by calculation. The measurement is 0.5
n− arbitrarily sampled from a long line of 20 amφ
I followed 20. As a result, 3080-3220 (
It was found that a high critical current density of A/-') was stably obtained. As a comparison material, Nb-Ti rod was
B sheet wrapped around Cu-0,,5wt%Mn
The composite material inserted and fitted into the tube was hot-extruded at an extrusion temperature of 900°C, wire-drawn, formed into a final hexagonal shape, straightened and cut, and used as the primary wire. 100
PengφX500mmj! Cable billet (28 strands)
860 pieces) and 0.520mm under the same processing conditions.
Wire drawn to φ, and finally annealed at 500°C
Running annealing was performed at 0 m /11 inch.

この時のNb−Tiフィラメント1本当たりの径は約1
.065−であり、断面には特に何も埋設されていない
、この0.520Mφの線材について上記と同一の測定
方法、測定条件により、I、(A)を測定し、J c 
 (A / mj )を計算により求めたところ、5T
で2520〜2680(A/■シ)と高いJ、値ではあ
ったものの、Nb人工ピンニングセンターを導入した実
施例の場合よりもやや劣る結果となった。
At this time, the diameter of one Nb-Ti filament is approximately 1
.. 065-, and nothing in particular is buried in the cross section, I and (A) were measured using the same measuring method and measurement conditions as above for this 0.520 Mφ wire, and J c
(A/mj) was calculated and found to be 5T.
Although the J value was as high as 2,520 to 2,680 (A/■), the result was slightly inferior to that of the example in which an Nb artificial pinning center was introduced.

また、もう−稗の比較材として先のNbの人工ピンニン
グセンターを導入した構成に対し、これを純Cuに置き
換えた構成にして、つまりCuを人工ピンニングセンタ
ーとして考える構成にした線材を作製した。ところがこ
の場合、最終加工工程0.520 traφまで縮径す
る以前に線材表面にくびれが見られたり、断線が多発し
た。この線材の断線部をHNO,に浸漬してCu部を溶
解除去し、Nb−Tiフィラメントを摘出して走査電子
顕微鏡、及び電子線マイクロアナライザーにより調べた
ところ、Nb−Tiフィラメント表面、或いは内部のい
たるところにCu−Ti化合物の粒が生成しており、こ
れが原因となって断線に至ったものと考えられる。
In addition, as a comparative material for wire rods, a wire rod was produced in which the Nb artificial pinning center introduced above was replaced with pure Cu, that is, Cu was considered as the artificial pinning center. However, in this case, constrictions were observed on the surface of the wire and many wire breaks occurred before the diameter was reduced to 0.520 traφ in the final processing step. The broken part of this wire was immersed in HNO to dissolve and remove the Cu part, and the Nb-Ti filament was extracted and examined using a scanning electron microscope and an electron beam microanalyzer. Particles of Cu-Ti compounds were formed everywhere, and it is thought that this was the cause of the disconnection.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、Nb−Tiフィラ
メント中に人工的にピンニングセンターを導入するに際
し、Nb−Tiと塑性加工上有害となる二次的な反応生
成物を実用上化じない材質を人工ピンニングセンターと
することで、加工性を劣化させることなく、目的とする
線材が加工でき、且つ、人工ピンニングセンターを導入
したことにより、超電導特性を向上せしめるという工業
上優れた効果がある。
As described above, according to the present invention, when artificially introducing pinning centers into Nb-Ti filaments, secondary reaction products with Nb-Ti that are harmful to plastic working can be practically avoided. By using an artificial pinning center for a material that does not exist, the desired wire material can be processed without deteriorating workability, and the introduction of an artificial pinning center has an industrially excellent effect of improving superconducting properties. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明Cuまたは、11安定化超電導線の構造
を示す説明図である。第1図において(a)が集合して
(b)となり(b)が集合して(C)となる。 1・・・Nb−Ti、2・・・材質A、  3・・・材
質B、4・・・安定化材、 5・・・素線、 6・・・
ケーブル。
FIG. 1 is an explanatory diagram showing the structure of the Cu- or 11-stabilized superconducting wire of the present invention. In FIG. 1, (a) is aggregated to form (b), and (b) is aggregated to form (C). 1...Nb-Ti, 2...Material A, 3...Material B, 4...Stabilizing material, 5...Element wire, 6...
cable.

Claims (6)

【特許請求の範囲】[Claims] (1)実用上、Nb−Tiと金属間化合物を生成しない
材質Aが複数散在している断面構造を持つ複数のNb−
Tiフィラメントの各々が、実用上、安定化材やNb−
Ti、材質Aのいずれとも反応生成物を生じない材質B
で被覆されていることを特徴とするCuまたはAl安定
化超電導線。
(1) In practical use, multiple Nb-
In practical use, each Ti filament has a stabilizer or Nb-
Material B that does not produce reaction products with either Ti or material A
A Cu- or Al-stabilized superconducting wire characterized by being coated with.
(2)材質AがNbまたはTaであることを特徴とする
請求項1記載のCuまたはAl安定化超電導線。
(2) The Cu- or Al-stabilized superconducting wire according to claim 1, wherein the material A is Nb or Ta.
(3)材質BがNbまたはTaであることを特徴とする
請求項1記載のCuまたはAl安定化超電導線。
(3) The Cu- or Al-stabilized superconducting wire according to claim 1, wherein the material B is Nb or Ta.
(4)Nb−Ti合金棒に、その長手方向に平行に複数
の貫通孔を設け、その中に、NbまたはTaの棒を挿入
した後、該Nb−Ti合金棒の周囲をNbまたはTaで
被覆し、次いでこれを純Cu管に封じ、熱間押出した複
合素材を素線とし、該素線を複数本束ねて純Cu管また
は純Al管に挿入・密封後熱間押出することを特徴とす
るCuまたはAl安定化超電導線の製造方法。
(4) A plurality of through holes are provided in the Nb-Ti alloy rod in parallel to its longitudinal direction, and after inserting the Nb or Ta rod into the holes, the periphery of the Nb-Ti alloy rod is covered with Nb or Ta. The composite material is coated, then sealed in a pure Cu tube, and hot extruded to form a wire, and a plurality of the wires are bundled, inserted into a pure Cu tube or pure Al tube, sealed, and then hot extruded. A method for producing a Cu- or Al-stabilized superconducting wire.
(5)Nb−Ti合金棒に、その長手方向に平行に1本
、或いは数本の貫通孔を設け、その中にNbまたはTa
の棒を挿入したものを複数本束ね、その周囲をNbまた
はTaで被覆し、次いでこれを純Cu管に封じ熱間押出
した複合材を素線とし、該素線を複数本束ねて純Cu管
または純Al管に挿入、密封後熱間押出することを特徴
とするCuまたはAl安定化超電導線の製造方法。
(5) One or several through holes are provided in the Nb-Ti alloy rod in parallel to its longitudinal direction, and Nb or Ta is inserted into the rod.
A plurality of rods are inserted into a bundle, the surrounding area is coated with Nb or Ta, this is then sealed in a pure Cu tube, and the composite material is hot-extruded, and the composite material is made into a wire. A method for producing a Cu- or Al-stabilized superconducting wire, which comprises inserting it into a tube or pure Al tube, sealing it, and then hot extruding it.
(6)Nb−Ti合金棒の複数本と、NbまたはTa棒
の複数本を、NbまたはTa棒の複数本が相互に接触し
合わないように束ね、その周囲をNbまたはTaで被覆
し次いでこれを純Cu管に封じ熱間押出した複合材を素
線とし、該素線を複数本束ねて純Cu管または純Al管
に挿入・密封後熱間押出することを特徴とするCuまた
はAl安定化超電導線の製造方法。
(6) A plurality of Nb-Ti alloy rods and a plurality of Nb or Ta rods are bundled together so that the plurality of Nb or Ta rods do not touch each other, and the periphery is coated with Nb or Ta. The composite material is sealed in a pure Cu tube and hot extruded as a wire, and a plurality of the wires are bundled, inserted into a pure Cu tube or pure Al tube, sealed, and then hot extruded. Method for producing stabilized superconducting wire.
JP2044142A 1990-02-23 1990-02-23 Cu or Al stabilized superconducting wire and method for producing the same Expired - Lifetime JP2931020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2044142A JP2931020B2 (en) 1990-02-23 1990-02-23 Cu or Al stabilized superconducting wire and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2044142A JP2931020B2 (en) 1990-02-23 1990-02-23 Cu or Al stabilized superconducting wire and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03246822A true JPH03246822A (en) 1991-11-05
JP2931020B2 JP2931020B2 (en) 1999-08-09

Family

ID=12683392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2044142A Expired - Lifetime JP2931020B2 (en) 1990-02-23 1990-02-23 Cu or Al stabilized superconducting wire and method for producing the same

Country Status (1)

Country Link
JP (1) JP2931020B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116475263A (en) * 2023-06-25 2023-07-25 西安聚能超导线材科技有限公司 Preparation method of distributed artificial pinning NbTi superconducting wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116475263A (en) * 2023-06-25 2023-07-25 西安聚能超导线材科技有限公司 Preparation method of distributed artificial pinning NbTi superconducting wire
CN116475263B (en) * 2023-06-25 2023-09-05 西安聚能超导线材科技有限公司 Preparation method of distributed artificial pinning NbTi superconducting wire

Also Published As

Publication number Publication date
JP2931020B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
JP6155253B2 (en) Compound superconducting wire and manufacturing method thereof
JP2007214002A (en) Method of manufacturing nb3sn superconductive wire rod and precursor for it
US4094059A (en) Method for producing composite superconductors
US9390839B2 (en) Composite conductive cable comprising nanotubes and nanofibers, coaxial microstructure including a copper matrix and said nanotubes and nanofibers, and method for manufacturing said microstructure
JPH03246822A (en) Cu or al stabilized superconducting wire and manufacture thereof
JP3212596B2 (en) Cu or Al stabilized superconducting wire and method for producing the same
JPH08180752A (en) Nb3sn superconductive wire and manufacture thereof
EP3745428A1 (en) Blank for manufacturing a superconducting composite wire based on nb3sn
JP5100459B2 (en) NbTi superconducting wire and method for manufacturing the same
JPH0714442A (en) Nbti superconducting wire for palse or ac
JPH04277416A (en) Manufacture of nb3sn superconducting wire
Young et al. Fabrication and properties of an aluminum-stabilized nbti multifilament superconductor
JP3050580B2 (en) Method for producing Nb-Ti alloy superconducting wire
JP3061208B2 (en) Method for producing copper-stabilized multi-core Nb-Ti superconducting wire
JPS61101913A (en) Manufacture of nbti very fine multicore superconducting wire
JP3603535B2 (en) Method for producing Nb3Al-based superconducting conductor
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
JPH0559527B2 (en)
JPH09245539A (en) Superconductive wire
JPH0696627A (en) Nbti superconductive wire
JPH1012057A (en) Nb3al-type superconductive wire material and manufacture thereof
JP2006100150A (en) Manufacturing method for multi-core wire of hard-to-process superconducting alloy
JPH06150737A (en) Nb multicore superconducting cable and manufacture thereof
JPH03196418A (en) Extra fine multiple core superconductor for ac and its manufacture
JPH04133215A (en) Manufacture of nb3(al, ge) super conductive wire