JP2931020B2 - Cu or Al stabilized superconducting wire and method for producing the same - Google Patents

Cu or Al stabilized superconducting wire and method for producing the same

Info

Publication number
JP2931020B2
JP2931020B2 JP2044142A JP4414290A JP2931020B2 JP 2931020 B2 JP2931020 B2 JP 2931020B2 JP 2044142 A JP2044142 A JP 2044142A JP 4414290 A JP4414290 A JP 4414290A JP 2931020 B2 JP2931020 B2 JP 2931020B2
Authority
JP
Japan
Prior art keywords
pure
superconducting wire
tube
hot
filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2044142A
Other languages
Japanese (ja)
Other versions
JPH03246822A (en
Inventor
壮 遠藤
京太 須齋
實 石川
博 小野口
欽也 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2044142A priority Critical patent/JP2931020B2/en
Publication of JPH03246822A publication Critical patent/JPH03246822A/en
Application granted granted Critical
Publication of JP2931020B2 publication Critical patent/JP2931020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Nb−Tiフィラメント中のピンニングセンタ
ーを人工的に導入したCuまたはAl安定化超電導線とその
製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a Cu or Al-stabilized superconducting wire in which a pinning center in an Nb-Ti filament is artificially introduced, and a method for producing the same.

〔従来の技術〕[Conventional technology]

Nb−Ti超電導線は、その用途により超電導特性の異な
るものが要求され、製造されている。Nb−Ti超電導線の
臨界電流密度特性をコントロールする方法として、一般
的には熱間押出後のNb−Ti超電導線を冷間加工すること
により加工歪を加えていき、逐次多段時時効熱処理を加
えることで冷間加工により生じた転位近傍に微細なα−
Tiを析出させる方法がとられており、この冷間加工率や
時効熱処理条件により得られる臨界電流密度特性をコン
トロールする方法が行われている。この方法によれば、
冷間加工率を大きくとり、多段時効熱処理の回数を増や
したり時間を長くすることでより高い臨界電流密度が得
られることが明らかであるが、Nb−Ti自身の加工性が著
しく低下する為、Nb−Tiフィラメントの断線を招いて超
電導特性を劣化させたり、線材自身の断線に至る場合も
珍しくない。特に粒子加速器用大型マグネットなど高磁
場対応の要求される極細多芯型のNb−Ti超電導線にあっ
ては、著しい加工性の低下につながり、断線が多発する
問題があった。
Nb-Ti superconducting wires are required to have different superconducting properties depending on the application, and are manufactured. As a method for controlling the critical current density characteristics of the Nb-Ti superconducting wire, generally, a working strain is added by cold working the Nb-Ti superconducting wire after hot extrusion, and successive multi-stage aging heat treatment is performed. In addition, fine α-
A method of precipitating Ti has been adopted, and a method of controlling a critical current density characteristic obtained by the cold working ratio and the aging heat treatment condition has been performed. According to this method,
It is clear that a higher critical working density can be obtained by increasing the cold working ratio and increasing the number of times of the multi-stage aging heat treatment or lengthening the time, but since the workability of Nb-Ti itself is significantly reduced, It is not uncommon for the Nb-Ti filament to break, resulting in deterioration of superconducting characteristics or even breakage of the wire itself. In particular, in the case of ultra-fine multi-core Nb-Ti superconducting wires that are required to cope with high magnetic fields, such as large magnets for particle accelerators, there has been a problem that workability is remarkably reduced and disconnection occurs frequently.

以上のような問題から、条件の厳しい冷間加工や時効
熱処理を要さずにピン止め力を向上させる方法として、
人工的にピンニングセンターを導入する方法が検討され
てきている。この方法では、Nb−Tiフィラメント中にあ
る程度加工性の良好な常電導物質を素線形成の段階で予
め導入し、以降の減面加工により数〜十数nm程度まで微
細化させてピンニングセンターとするものである。例え
ばNb−Ti細棒に所定の厚さの純Cuのシートを巻いたもの
を複数本束ねてCu或いはCu合金の管内に挿入・嵌合し、
熱間押出した複合材を素線として多芯超電導線を形成す
る場合、Cuがピンニングセンターとなる。Cuは液体He温
度でも常電導体である為、ピンニングセンターとして機
能する。この方法によれば、条件の厳しい冷間加工や時
効熱処理を要さずにピンニングセンターを生成させるこ
とができ、ピンニングセンターの数も、素線の設計によ
り自由にコントロールができる為、臨界電流密度特性を
より正確にコントロールでき、要求特性によって異なっ
た超電導線が設計・製造できるという利点がある。
From the above problems, as a method of improving the pinning force without the need for severe cold working and aging heat treatment,
A method of artificially introducing a pinning center has been studied. In this method, a normal conducting material having good workability to some extent in the Nb-Ti filament is introduced in advance at the stage of element wire formation, and is reduced to about several to several tens of nm by subsequent surface reduction processing to form a pinning center. Is what you do. For example, a bundle of a plurality of Nb-Ti thin rods wound with a sheet of pure Cu having a predetermined thickness is inserted and fitted into a Cu or Cu alloy tube,
When a multi-filamentary superconducting wire is formed by using a hot-extruded composite material as a strand, Cu serves as a pinning center. Since Cu is a normal conductor even at liquid He temperature, it functions as a pinning center. According to this method, pinning centers can be generated without the need for severe cold working or aging heat treatment, and the number of pinning centers can be freely controlled by the design of the strands. There is an advantage that characteristics can be controlled more accurately, and different superconducting wires can be designed and manufactured depending on required characteristics.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら上記のように、人工ピンニングセンター
としてCuを対象に採り上げた場合、Nb−Tiと変形抵抗が
大きく異なる為複合加工性に問題があり、また中間熱処
理等によって、Nb−TiとCuとの界面に、加工性の著しく
乏しいCu−Ti化合物を生成してしまう為、減面加工の途
中でフィラメントの断線が発生して超電導特性を著しく
劣化させたり、最悪の場合には線材自身の断線に至るな
どの問題があった。
However, as described above, when Cu is used as an artificial pinning center, there is a problem in composite workability due to a large difference in deformation resistance from Nb-Ti, and an interface between Nb-Ti and Cu due to intermediate heat treatment or the like. In addition, since a Cu-Ti compound with extremely poor workability is generated, breakage of the filament occurs during the surface reduction processing and the superconductivity is significantly deteriorated, and in the worst case, the wire itself breaks There was such a problem.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は上記の点に鑑み、鋭意検討の結果為されたも
のであり、その目的とするところは、Nb−Tiフィラメン
ト中に人工的にピンニングセンターを導入したNb−Ti超
電導線に於いて、人工的にピンニングセンターを導入し
たことで、実用上有害となる二次的な反応生成物が生じ
て超電導特性が劣化するようなことのない、且つ加工性
の良好なCu又はAl安定化超電導線、及びその製造方法を
提供するものである。
In view of the above, the present invention has been made as a result of diligent studies, and its purpose is to provide an Nb-Ti superconducting wire in which a pinning center is artificially introduced into an Nb-Ti filament. Cu or Al-stabilized superconducting wire with good workability without artificially introducing a pinning center to produce secondary reaction products that are harmful in practical use and not deteriorating superconducting characteristics. , And a method of manufacturing the same.

即ち本発明に於ける超電導線とは、安定化材上に埋め
込まれた複数のNb−Tiフィラメントの各々が、実用上、
安定化材やNb−Tiと反応生成物を生じない材質Bで被覆
された超電導線であって、当該Nb−Tiフィラメントが、
実用上、Nb−Tiや材質Bと金属間化合物を生成しない材
質Aが複数散在している断面構造を持ち、かつ前記Nb−
Tiフィラメント中に散在した材質Aは、当該Nb−Tiフィ
ラメント中における磁束のピンニングセンターとなって
いる、ことを特徴とするCuまたはAl安定化超電導線であ
って、材質AとしてはNbまたはTa、材質BとしてはNbま
たはTaが好適である。またその製造方法とは、Nb−Ti
合金棒に、その長手方向に平行に複数の貫通孔を設け、
その中にNbまたTaの棒を挿入した後、該Nb−Ti合金棒の
周囲をNbまたはTaで被覆し、次いでこれを純Cu管に封じ
熱間押出した複合材を素線とする場合、Nb−Ti合金棒
に、その長手方向に平行に1本、或いは数本の貫通孔を
設け、その中にNbまたはTaの棒を挿入したものを複数本
束ね、その周囲をNbまたはTaで被覆し、次いでこれを純
Cu管に封じ、熱間押出したものを素線とする場合、Nb
−Ti合金棒の複数本と、NbまたはTa棒の複数本を、Nbま
たはTa棒の複数本が相互に接触し合わないように束ね、
その周囲をNbまたはTaで被覆し、次いでこれを純Cu管に
封じ、熱間押出した複合材を素線とする場合の各々につ
いて、その素線を複数本束ねて純Cu管または純Al管に挿
入・密封後熱間押出することを特徴とするCuまたはAl安
定化超電導線の製造方法である。
That is, the superconducting wire in the present invention, each of a plurality of Nb-Ti filaments embedded on the stabilizing material, practically,
A superconducting wire coated with a material B that does not generate a reaction product with a stabilizer or Nb-Ti, wherein the Nb-Ti filament is
Practically, it has a cross-sectional structure in which a plurality of materials A that do not generate an intermetallic compound with Nb-Ti or material B have a cross-sectional structure, and the Nb-Ti
The material A scattered in the Ti filament is a Cu or Al stabilized superconducting wire, which is a pinning center of magnetic flux in the Nb-Ti filament, and the material A is Nb or Ta, Nb or Ta is suitable as the material B. In addition, the manufacturing method refers to Nb-Ti
In the alloy rod, a plurality of through holes are provided in parallel with the longitudinal direction,
After inserting a rod of Nb or Ta into it, coating the periphery of the Nb-Ti alloy rod with Nb or Ta, and then sealing this in a pure Cu tube to obtain a hot-extruded composite material as a strand, One or several through-holes are provided in the Nb-Ti alloy rod in parallel with the longitudinal direction, Nb or Ta rods are inserted in the through-holes, and a plurality of bundles are bundled, and the periphery is covered with Nb or Ta. And then clean this
When sealed in a Cu tube and hot-extruded as a strand, Nb
-Ti alloy rods and Nb or Ta rods are bundled together so that Nb or Ta rods do not contact each other,
The surrounding area is coated with Nb or Ta, and then sealed in a pure Cu tube. For each of the cases where the composite material obtained by hot extrusion is used as a strand, a plurality of the strands are bundled to form a pure Cu pipe or a pure Al pipe. A method for producing a Cu or Al-stabilized superconducting wire, characterized in that the superconducting wire is subjected to hot extrusion after being inserted into and sealed in a wire.

〔作用〕[Action]

本発明に於いては、1本のNb−Tiフィラメントの断面
内に散在する複数の材質Aが、実用上Nb−Tiと金属間化
合物を生成しない為、人工的にピンニングセンターを導
入したことで塑性加工上有害となる二次的な反応生成物
は生成されず、健全に加工することができる。更にこの
材質Aとして例えばNbまたはTaのようにNb−Tiと変形抵
抗の差の大きくない材質を用いることで複合加工性も向
上するので好ましい。ここで人工ピンニングセンターに
NbやTaを用いた場合これらも液体He温度に於いては超電
導性を示すが、Nb−Tiの超電導特性はこれらよりも優れ
る為、実用上はこれらの臨界磁場や臨界電流密度以上の
条件で使用され、この条件下ではNbやTaの超電導性は破
れて常電導状態となる為、実用上問題なくピンニング効
果が得られる。また、人工ピンニングセンターの導入さ
れた各Nb−Tiフィラメントを、実用上、安定化材やNb−
Ti、材質Aと反応生成物を生じない材質Bで被覆してお
くことで、安定化材とNb−Ti或いは/及び材質Aと反応
することを防止でき、且つ塑性加工上有害となる二次的
な反応生成物も生成しない為、健全に加工することがで
きる。
In the present invention, since a plurality of materials A scattered in the cross section of one Nb-Ti filament do not produce Nb-Ti and an intermetallic compound for practical use, a pinning center is artificially introduced. Secondary reaction products that are harmful to plastic working are not generated, and processing can be performed soundly. Further, it is preferable to use a material having a small difference in deformation resistance from Nb-Ti, such as Nb or Ta, for example, as the material A, since the composite workability is improved. Here at the artificial pinning center
When Nb or Ta is used, they also show superconductivity at liquid He temperature, but since the superconductivity of Nb-Ti is superior to these, in practice, it is necessary to use these materials under conditions above their critical magnetic field and critical current density. Under these conditions, the superconductivity of Nb or Ta is broken and the state of normal conduction is obtained, so that the pinning effect can be obtained without any practical problem. In addition, each Nb-Ti filament introduced with an artificial pinning center can be used as a stabilizer or Nb-
By coating with Ti, material A and material B that does not produce a reaction product, it is possible to prevent the stabilizing material from reacting with Nb-Ti and / or material A, and to make secondary work harmful to plastic working. Since no natural reaction product is produced, it can be processed soundly.

〔実施例〕〔Example〕

Nb−Ti棒の長手方向に平行に220本の貫通孔をあけ、
その中にNb棒を挿入、充填した後、該Nb−Ti棒の周囲を
Nbシートで被覆し、次いでこれをCu−0.5wt%Mnの管に
挿入・嵌合した複合材を押出温度900℃で熱間押出し、
伸線して最終六角形状に成形した後整直、切断したもの
を1次素線とし、該1次素線を130本整然と束ねて純Cu
管に挿入し、純Cuフタで両端を密封した複合材を押出温
度500℃で熱間押出した後、伸線し最終六角形状に成形
し整直・切断したものを2次素線とし、該2次素線を22
2本整然と束ねて純Cu管に挿入し、純Cuフタで両端を密
閉して100mmφ×500mmlのケーブルビレットを作製し
た。このケーブルビレットを押出温度500℃で15mmφに
熱間押出した後、総加工率約52%ごとに時効熱処理380
℃×24hrを加える操作を4回繰返しながら3.44mmφ(as
−annealed)まで伸線し、その後は無焼鈍で0.520mmφ
まで伸線し、最後にアニーラーで500℃×20m/minの走間
焼鈍を行った。この時、Nb−Tiフィラメント1本当たり
の径は約1.065μmであり、更にこのフィラメント中に
は、太さ約5.8nmφのNbが約64.9nmの間隔で散在してい
る断面構造となっている。この0.520mmφの線材につい
て液体Heで冷却し、5Tの磁場中で臨界電流値・IC(A)
を測定し、臨界電流密度、JC(A/mm2)を計算により求
めた。測定は0.520mmφの長尺線から任意にサンプリン
グしたn=20について行った。その結果、3080〜3220
(A/mm2)と高い臨界電流密度が安定して得られている
ことがわかった。比較材として、Nb−Ti棒にNbシートを
巻き付けたものをCu−0.5wt%Mnの管に挿入・嵌合した
複合材を押出温度900℃で熱間押出し、伸線して最終六
角形状に成形した後整直・切断したものを1次素線とし
て、上記と同一構成の100mmφ×500mmlのケーブルビレ
ット(素線数28860本)を作製し、同一の加工条件で0.5
20mmφまで伸線加工し、最後にアニーラーで500℃×20m
/minの走間焼鈍を行った。この時のNb−Tiフィラメント
1本当たりの径は約1.065μmであり、断面には特に何
も埋設されていない。この0.520mmφの線材について上
記と同一の測定方法、測定条件により、IC(A)を測定
し、JC(A/mm2)を計算により求めたところ、5Tで2520
〜2680(A/mm2)と高いJC値ではあったものの、Nb人工
ピンニングセンターを導入した実施例の場合よりもやや
劣る結果となった。また、もう一種の比較材として先の
Nbの人工ピンニングセンターを導入した構成に対し、こ
れを純Cuに置き換えた構成にして、つまりCuを人工ピン
ニングセンターとして考える構成にした線材を作製し
た。ところがこの場合、最終加工工程0.520mmφまで縮
径する以前に線材表面にくびれが見られたり、断線が多
発した。この線材の断線部をHNO3に浸漬してCu部を溶解
除去し、Nb−Tiフィラメントを摘出して走査電子顕微
鏡、及び電子線マイクロアナライザーにより調べたとこ
ろ、Nb−Tiフィラメント表面、或いは内部のいたるとこ
ろにCu−Ti化合物の粒が生成しており、これが原因とな
って断線に至ったものと考えられる。
Open 220 through holes parallel to the longitudinal direction of the Nb-Ti rod,
After inserting and filling the Nb rod into it, the periphery of the Nb-Ti rod is
A composite material coated with an Nb sheet and then inserted and fitted into a Cu-0.5 wt% Mn tube was hot-extruded at an extrusion temperature of 900 ° C.
After drawing and shaping into the final hexagonal shape, straightening and cutting the material into a primary strand, bundle the 130 primary strands neatly into pure Cu
After inserting into a tube and extruding the composite material with both ends sealed with a pure Cu lid at an extrusion temperature of 500 ° C., the wire was drawn, formed into a final hexagonal shape, straightened and cut to form a secondary element wire. 22 secondary wires
Two cables were neatly bundled and inserted into a pure Cu tube, and both ends were sealed with a pure Cu lid to produce a cable billet of 100 mmφ × 500 mml. This cable billet is hot-extruded to a diameter of 15 mm at an extrusion temperature of 500 ° C, and then subjected to an aging heat treatment every 380% of the total processing rate.
3.44mmφ (as
−annealed) and then 0.520mmφ without annealing
Wire, and finally, annealing at 500 ° C. × 20 m / min was performed with an annealer. At this time, the diameter per Nb-Ti filament is about 1.065 μm, and the filament has a cross-sectional structure in which Nb having a thickness of about 5.8 nmφ is scattered at an interval of about 64.9 nm. . The wires of this 0.520mmφ cooled by liquid He, the critical current value in a magnetic field of 5T · I C (A)
Was measured, and the critical current density, J C (A / mm 2 ), was determined by calculation. The measurement was performed for n = 20 arbitrarily sampled from a long line of 0.520 mmφ. As a result, 3080-3220
(A / mm 2 ), indicating that a high critical current density was obtained stably. As a comparative material, a Nb-Ti rod wrapped with an Nb sheet was inserted into and fitted with a Cu-0.5wt% Mn tube, and the composite material was hot-extruded at an extrusion temperature of 900 ° C, drawn to a final hexagonal shape. The molded, straightened and cut pieces are used as primary strands to produce a cable billet (number of strands: 28860) of 100 mmφ × 500 mml with the same configuration as above, and 0.5 mm under the same processing conditions.
Wire drawing to 20mmφ, and finally 500 ℃ × 20m with annealer
/ min running annealing was performed. At this time, the diameter per one Nb-Ti filament was about 1.065 μm, and nothing was buried in the cross section. I C (A) was measured for this 0.520 mmφ wire according to the same measurement method and measurement conditions as above, and J C (A / mm 2 ) was calculated.
~2680 (A / mm 2) and although there was a high J C values became slightly inferior result than in the example of the introduction of Nb artificial pinning center. Also, as another kind of comparative material,
A wire rod with a configuration in which the artificial pinning center of Nb was introduced was replaced with pure Cu, that is, a configuration in which Cu was considered as an artificial pinning center, was manufactured. However, in this case, before the diameter was reduced to 0.520 mmφ in the final processing step, constriction was observed on the surface of the wire rod, and disconnection occurred frequently. Cu portion was dissolved and removed disconnection of the wire was immersed in HNO 3, were examined scanning electron microscope excised Nb-Ti filaments, and an electron beam microanalyzer, Nb-Ti filaments surface or internal It is considered that grains of the Cu-Ti compound were generated everywhere, and this led to disconnection.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明によれば、Nb−Tiフィラメ
ント中に人工的にピンニングセンターを導入するに際
し、Nb−Tiと塑性加工上有害となる二次的な反応生成物
を実用上生じない材質を人工ピンニングセンターとする
ことで、加工性を劣化させることなく、目的とする線材
が加工でき、且つ、人工ピンニングセンターを導入しぃ
たことにより、超電導特性を向上せしめるという工業上
優れた効果がある。
As described above, according to the present invention, when artificially introducing a pinning center into Nb-Ti filaments, Nb-Ti and secondary reaction products that are harmful to plastic working do not practically occur. By using an artificial pinning center as the material, the target wire can be processed without deteriorating the workability, and by introducing the artificial pinning center, the industrially superior effect of improving superconductivity can be achieved. is there.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明CuまたはAl安定化超電導線の構造を示す
説明図である。第1図において(a)が集合して(b)
となり(b)が集合して(c)となる。 1……Nb−Ti、2……材質A、3……材質B、4……安
定化材、5……素線、6……ケーブル。
FIG. 1 is an explanatory view showing the structure of a Cu or Al stabilized superconducting wire of the present invention. In FIG. 1, (a) gathers and (b)
And (b) gathers to become (c). 1 ... Nb-Ti, 2 ... Material A, 3 ... Material B, 4 ... Stabilizer, 5 ... Strand, 6 ... Cable.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 欽也 東京都千代田区丸の内2丁目6番1号 古河電気工業株式会社内 審査官 小山 満 (56)参考文献 特開 昭63−124310(JP,A) 特開 昭60−100307(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01B 12/10 H01B 13/00 563 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kinya Ogawa 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Examiner at Furukawa Electric Co., Ltd. Mitsuru Koyama (56) Reference JP-A-63-124310 (JP, A JP, A 60-100307 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01B 12/10 H01B 13/00 563

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】安定化材上に埋め込まれた複数のNb−Tiフ
ィラメントの各々が、実用上、安定化材やNb−Tiと反応
生成物を生じない材質Bで被覆された超電導線であっ
て、当該Nb−Tiフィラメントが、実用上、Nb−Tiや材質
Bと金属間化合物を生成しない材質Aが複数散在してい
る断面構造を持ち、かつ前記Nb−Tiフィラメント中に散
在した材質Aは、当該Nb−Tiフィラメント中における磁
束のピンニングセンターとなっている、ことを特徴とす
るCuまたはAl安定化超電導線。
A plurality of Nb-Ti filaments embedded in a stabilizing material are superconducting wires coated with a material B that does not generate a reaction product with the stabilizing material or Nb-Ti in practical use. The Nb-Ti filament has, in practice, a cross-sectional structure in which a plurality of materials A that do not generate an intermetallic compound with Nb-Ti or material B are scattered, and the material A that is scattered in the Nb-Ti filament Is a pinning center for magnetic flux in the Nb-Ti filament, wherein the Cu or Al-stabilized superconducting wire is provided.
【請求項2】材質AがNbまたはTaであることを特徴とす
る請求項1記載のCuまたはAl安定化超電導線。
2. The Cu or Al stabilized superconducting wire according to claim 1, wherein the material A is Nb or Ta.
【請求項3】材質BがNbまたはTaであることを特徴とす
る請求項1記載のCuまたはAl安定化超電導線。
3. The Cu or Al stabilized superconducting wire according to claim 1, wherein the material B is Nb or Ta.
【請求項4】Nb−Ti合金棒に、その長手方向に平行に複
数の貫通孔を設け、その中に、NbまたはTaの棒を挿入し
た後、該Nb−Ti合金棒の周囲をNbまたはTaで被覆し、次
いでこれを純Cu管に封じ、熱間押出した複合素材を素線
とし、該素線を複数本束ねて純Cu管または純Al管に挿入
・密封後熱間押出することを特徴とするCuまたはAl安定
化超電導線の製造方法。
4. An Nb-Ti alloy rod is provided with a plurality of through-holes parallel to the longitudinal direction thereof, and a Nb or Ta rod is inserted therein. Then, the periphery of the Nb-Ti alloy rod is Nb or Ti. Coating with Ta, then sealing this in a pure Cu tube, making the extruded composite material a strand, bundling a plurality of these strands, inserting into a pure Cu pipe or a pure Al pipe, sealing and extruding hot A method for producing a Cu or Al-stabilized superconducting wire, characterized in that:
【請求項5】Nb−Ti合金棒に、その長手方向に平行に1
本、或いは数本の貫通孔を設け、その中にNbまたはTaの
棒を挿入したものを複数本束ね、その周囲をNbまたはTi
で被覆し、次いでこれを純Cu管に封じ熱間押出した複合
材を素線とし、該素線を複数本束ねて純Cu管または純Al
管に挿入、密封後熱間押出することを特徴とするCuまた
はAl安定化超電導線の製造方法。
5. An Nb-Ti alloy rod is attached to a rod in parallel with its longitudinal direction.
Or a plurality of through-holes into which a plurality of Nb or Ta rods are inserted are bundled, and the surrounding area is Nb or Ti
The composite material was sealed in a pure Cu tube and extruded by hot extrusion to obtain a strand.
A method for producing a Cu or Al-stabilized superconducting wire, characterized in that it is inserted into a tube, sealed and then extruded hot.
【請求項6】Nb−Ti合金棒の複数本と、NbまたはTa棒の
複数本を、NbまたはTa棒の複数本が相互に接触し合わな
いように束ね、周囲をNbまたはTaで被覆し次いでこれを
純Cu管に封じ熱間押出した複合材を素線とし、該素線を
複数本束ねて純Cu管または純Al管に挿入・密封後熱間押
出することを特徴とするCuまたはAl安定化超電導線の製
造方法。
6. A plurality of Nb-Ti alloy rods and a plurality of Nb or Ta rods are bundled so that the Nb or Ta rods do not contact each other, and the periphery is covered with Nb or Ta. Next, a composite material obtained by sealing this in a pure Cu tube and hot extruding is used as a strand, and a plurality of the strands are bundled, inserted into a pure Cu tube or a pure Al tube, sealed, and then hot-extruded, Cu or Manufacturing method of Al-stabilized superconducting wire.
JP2044142A 1990-02-23 1990-02-23 Cu or Al stabilized superconducting wire and method for producing the same Expired - Lifetime JP2931020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2044142A JP2931020B2 (en) 1990-02-23 1990-02-23 Cu or Al stabilized superconducting wire and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2044142A JP2931020B2 (en) 1990-02-23 1990-02-23 Cu or Al stabilized superconducting wire and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03246822A JPH03246822A (en) 1991-11-05
JP2931020B2 true JP2931020B2 (en) 1999-08-09

Family

ID=12683392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2044142A Expired - Lifetime JP2931020B2 (en) 1990-02-23 1990-02-23 Cu or Al stabilized superconducting wire and method for producing the same

Country Status (1)

Country Link
JP (1) JP2931020B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116475263B (en) * 2023-06-25 2023-09-05 西安聚能超导线材科技有限公司 Preparation method of distributed artificial pinning NbTi superconducting wire

Also Published As

Publication number Publication date
JPH03246822A (en) 1991-11-05

Similar Documents

Publication Publication Date Title
JP2003217370A (en) Magnesium diboride superconductive wire
JP2931020B2 (en) Cu or Al stabilized superconducting wire and method for producing the same
JP3212596B2 (en) Cu or Al stabilized superconducting wire and method for producing the same
JPH08180752A (en) Nb3sn superconductive wire and manufacture thereof
US4860431A (en) Fabrication of multifilament intermetallic superconductor using strengthened tin
JP3724128B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
JP3050580B2 (en) Method for producing Nb-Ti alloy superconducting wire
WO2023089919A1 (en) Niobium-aluminum precursor wire, niobium-aluminum precursor twisted wire, niobium-aluminum superconducting wire, and niobium-aluminum superconducting twisted wire
JP3603535B2 (en) Method for producing Nb3Al-based superconducting conductor
JP2993986B2 (en) Manufacturing method of aluminum stabilized superconducting wire
JP3061208B2 (en) Method for producing copper-stabilized multi-core Nb-Ti superconducting wire
JPH07282650A (en) Compound superconductor
JPH06150737A (en) Nb multicore superconducting cable and manufacture thereof
JPS61101913A (en) Manufacture of nbti very fine multicore superconducting wire
JPH065130A (en) Composite multi-core nbti superconductive wire
JPH02126519A (en) Superconducting conductor
JPH0465032A (en) Nb-ti superconducting wire
JPH0430124B2 (en)
JPH1012057A (en) Nb3al-type superconductive wire material and manufacture thereof
JPH06150738A (en) Compound superconducting cable
JPH09171727A (en) Manufacture of metal-based superconductive wire
JPH03241619A (en) Manufacture of copper-stabilized superconducting wire
JPH0559527B2 (en)
JPH063693B2 (en) NbTi Extra-fine multi-core superconducting wire manufacturing method
JPH04315706A (en) Manufacture of superconducting multiple core compound billet