JPH04133215A - Manufacture of nb3(al, ge) super conductive wire - Google Patents

Manufacture of nb3(al, ge) super conductive wire

Info

Publication number
JPH04133215A
JPH04133215A JP2254526A JP25452690A JPH04133215A JP H04133215 A JPH04133215 A JP H04133215A JP 2254526 A JP2254526 A JP 2254526A JP 25452690 A JP25452690 A JP 25452690A JP H04133215 A JPH04133215 A JP H04133215A
Authority
JP
Japan
Prior art keywords
alloy
composite
diffusion
core material
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2254526A
Other languages
Japanese (ja)
Inventor
Shigeyuki Toda
戸田 重行
Kazuyoshi Hayakawa
早川 数良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2254526A priority Critical patent/JPH04133215A/en
Publication of JPH04133215A publication Critical patent/JPH04133215A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To enable industrial production of super ultrafine multicore wires being essential for alternating current in a Nb3(Al, Ge) super conductor by using an Al-Ge alloy of a specified composition as a core material. CONSTITUTION:By substituting Al-38-62wt.% Ge alloys for a core material, presently used cold extrusion method or hydrostatic extrusion method can be applied as it is, and extremely short Nb/AlGe alloy diffusion pairs of submicron order can be easily manufactured, and diffusion treatment at a low temperature and for a shorter time becomes effective. Namely, super ultrafine multicore wires suitable for low alternating current loss in which filaments of submicron diameter are neatly isolated from each other at submicron spacings, can be industrially produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 超伝導応用機器の開発研究1例えば核融合炉用コイル導
体、電力用発電機、変圧器等の超伝導化において、高磁
界、バイパルス及び交流用として期待できる大容量Nb
、 (Al、 Ge )超伝導線材の工業的製造方法に
関する。
[Detailed description of the invention] [Field of industrial application] Research and development of superconducting applied equipment 1 For example, in superconducting coil conductors for nuclear fusion reactors, power generators, transformers, etc., high magnetic fields, bipulse and alternating current Large capacity Nb that can be expected for
, relates to an industrial manufacturing method of (Al, Ge) superconducting wire.

〔−従来の技術〕[-Conventional technology]

次期高磁界用材料として注目されているNb。 Nb is attracting attention as the next generation material for high magnetic fields.

Al及びNb、(Al; Ge)A15型化合物超伝導
体は、その正確な化学量論組成に等しい金属元素を拡散
又は溶解することにより得られるが、その安定な生成処
理温度はNb、Alでは1300℃以上、NbaGeで
は1900℃以上とそれぞれ高いので、生成された化合
物の結晶粒は粗大化し。
Al and Nb, (Al; Ge) A15 type compound superconductors can be obtained by diffusing or dissolving metal elements whose exact stoichiometry is equal to theirs, but the stable production temperature is Since the temperature is higher than 1300°C and 1900°C or higher for NbaGe, the crystal grains of the generated compound become coarse.

その結果、実用に供しうるだけの臨界電磁密度Jc(2
00A/−以上)が得られみい。このため。
As a result, the critical electromagnetic density Jc (2
00A/- or more) can be obtained. For this reason.

プラズマ溶射のスパッタリング・P V D、 (イオ
ンコーティング)処理等によりテープ面上での同時蒸着
と急冷する方法、Nb粉末とAl粉末をCuパイプに詰
めこれを圧延する粉末冶金法、あるいはNbとAlの薄
板をCuの芯棒に巻・き付け。
Co-deposition and rapid cooling on the tape surface using plasma spraying sputtering, PVD, (ion coating), etc., powder metallurgy method in which Nb powder and Al powder are packed into a Cu pipe and rolled, or Nb and Al A thin plate is wrapped around a Cu core rod.

これをCuパイプに挿入し縮径加工し、伸線加工するジ
エリロール法などにより、拡散界面の増大を図って、化
合物の生成促進、粗粒化抑制を実現し、臨界温度TC=
17°に以上(Nb、 Al)又は20”K以上(Nb
j Ge);上部臨界磁界Hc、 =207’(テスラ
)以上又は40 T以上が達成されている。
By inserting this into a Cu pipe, reducing its diameter, and drawing it using the Dieliroll method, we are able to increase the diffusion interface, promote the formation of compounds, suppress grain coarsening, and achieve the critical temperature TC=
17° or more (Nb, Al) or 20”K or more (Nb
j Ge); Upper critical magnetic field Hc, = 207' (Tesla) or more or 40 T or more has been achieved.

しかし、これらの製法はその仕組み上大答量実用導体の
生産手段として採用できない難点が多分にあることは周
知の事実である。
However, it is a well-known fact that these manufacturing methods have many drawbacks due to their mechanisms that prevent them from being adopted as a means of producing large-capacity practical conductors.

生成する化合物の結晶粒を粗大化させず、かつ工業的製
造が可能であるためには、NbとAl又はGeとの拡散
距離を、他のNb+SnやVxGa超伝導線材の場合に
おけるよりも更に短くして。
In order to prevent the crystal grains of the generated compound from becoming coarse and to enable industrial production, the diffusion distance between Nb and Al or Ge must be made shorter than in the case of other Nb+Sn or VxGa superconducting wires. do.

かつ拡散対が安定して得られること、即ち低温短時間の
熱処理によってNb+ Al、 Nb、 (A4゜Ge
)、、iるいはNbaGe相を拡散生成できることが必
要である。
In addition, diffusion pairs can be stably obtained, that is, Nb+ Al, Nb, (A4°Ge
), , or NbaGe phase must be able to be generated by diffusion.

短拡散対を得る従来法として9例えばNb5Sn超伝導
体ではNb管にブロンズ(Cu −S n合金)棒を挿
入したもの、あるいは逆にブロンズ管にNb棒を挿入し
たものを、又はさらにこれらを無酸素Cu管に挿入した
二又は三層の複合体ビレットを、加工と中間焼鈍の繰返
しにより線状化した後、拡散熱処理を施しNb5Sn超
伝導材料を得る複合法・拡散法がある。しかし、Nb、
Al系材料に関しては、Alは高純度(4N以上)なも
のを用いるため冷間加工時の変形抵抗がNbやCu合金
のそれと差がありすぎ、複合体としての冷間加工の適用
は殆んど不可能であることが知られている。Geについ
てはさらに脆弱であることが加わり、結局、極短拡散対
を実現することはできない。このため、最近ではA2に
Mg+ ZnあるいはCu等を添加しAl合金としたう
えでその時効硬化により、変形抵抗の増加を図り、複合
体としての加工性を改善し、極短拡散対を製作する新し
い製法が報告されている。
Conventional methods for obtaining short diffusion pairs 9 For example, in Nb5Sn superconductors, a bronze (Cu-Sn alloy) rod is inserted into an Nb tube, or conversely, a Nb rod is inserted into a bronze tube, or There is a composite method/diffusion method in which a two- or three-layer composite billet inserted into an oxygen-free Cu tube is linearized by repeated processing and intermediate annealing, and then subjected to diffusion heat treatment to obtain a Nb5Sn superconducting material. However, Nb,
Regarding Al-based materials, since Al is of high purity (4N or higher), its deformation resistance during cold working is too different from that of Nb or Cu alloys, and cold working is rarely applied to composites. It is known that this is impossible. Ge is also more fragile, and in the end, it is impossible to realize an ultrashort diffusion pair. For this reason, recently, Mg + Zn or Cu, etc. are added to A2 to make it into an Al alloy, and then age hardening is performed to increase the deformation resistance, improve the workability of the composite, and produce ultrashort diffusion pairs. A new manufacturing method has been reported.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

交流用の超伝導体として+ Cu/Cu−Ni合金/N
bTi合金三層構造のNbTi極細多芯線材が一般に製
造されているが、さらに交流損失を低減するためには、
超伝導フィラメント径をサブミクロンにまで小さくシ、
素線径をできるだけ小さくしてツイストピッチを短くす
ることが必要である。N bs S n化合物超伝導体
の場合でも同様の理由で、上記の改良が求められること
は勿論であるが、更にブロンズ中の超伝導フィラメント
群と安定化Cuを電気抵抗の高いCu−Ni合金(キュ
プロニッケル)マトリックスとNbの拡散バリヤ層で分
割、遮蔽された構造を採る必要がある。このように化合
物系における複雑な断面構造の極細多芯線の製造では、
断面を構成する異種金属間の加工性及び密着性を向上さ
せ。
+Cu/Cu-Ni alloy/N as a superconductor for AC
NbTi ultrafine multicore wires with a three-layer bTi alloy structure are generally manufactured, but in order to further reduce AC loss,
By reducing the diameter of superconducting filaments to submicrons,
It is necessary to shorten the twist pitch by making the wire diameter as small as possible. Of course, the above-mentioned improvements are required in the case of the N bs S n compound superconductor for the same reason, but in addition, the superconducting filaments in bronze and the stabilized Cu are replaced by a Cu-Ni alloy with high electrical resistance. It is necessary to adopt a structure divided and shielded by a (cupronickel) matrix and a Nb diffusion barrier layer. In this way, in the production of ultra-fine multifilamentary wires with complex cross-sectional structures using compound systems,
Improves workability and adhesion between dissimilar metals that make up the cross section.

均一な押出、引抜加工を行なうことが必須である。It is essential to perform uniform extrusion and drawing processes.

Nb、Al化合物超伝導線材の量産を考えた場合。When considering mass production of Nb and Al compound superconducting wires.

AlとNb及びCu−Ni合金との変形抵抗の差に相当
する硬さや引張強さの差が、第2図で示すように大きす
ぎるため、導体製作における従来の加工方法が適用でき
ないという不具合がある。
The difference in hardness and tensile strength, which corresponds to the difference in deformation resistance between Al and Nb and Cu-Ni alloys, is too large as shown in Figure 2, so there is a problem that conventional processing methods for manufacturing conductors cannot be applied. be.

第2図において、 Nbの硬さ2は高いが、加工率に対
する加工硬化が小さく、加工性は良い。引張強さ31#
f /−のCu−Cu−2O%Ni合金の硬さ3は、N
bに比べ低いが、加工率に対する加工硬化が大きく加工
率60チ以上でNbの硬さを追越す。
In FIG. 2, although the hardness 2 of Nb is high, the work hardening relative to the working rate is small and the workability is good. Tensile strength 31#
The hardness 3 of the Cu-Cu-2O%Ni alloy with f/- is N
Although the hardness is lower than that of b, the work hardening relative to the working rate is large and exceeds that of Nb at working rates of 60 inches or more.

Al−47wt−1pGe合金の硬さ1は上記両者の硬
さの中間に位する。なお2点線はヌーグ硬さの圧痕によ
り割れを生じるため、真の硬さ測定が不能であり9割れ
を伴なったときの硬さで表示している。これらに対し、
 Alの硬さ4は非常に低くかつ加工硬化が見られない
。したがって、加工方法又は変形抵抗のいずれかを改善
しなければならないことになるが、前者の改善は後者に
比べ非常にむずかしい面が多く現実的でない。
The hardness 1 of the Al-47wt-1pGe alloy is located between the above two hardnesses. Note that the two-dot line indicates the hardness when cracking occurs due to the Noog hardness indentation, making it impossible to measure the true hardness. For these,
Hardness 4 of Al is very low and no work hardening is observed. Therefore, it is necessary to improve either the processing method or the deformation resistance, but the former is much more difficult and impractical than the latter.

そこで、後者に関して材料の改質に主眼をおいた。かつ
Nb、Al及びNb3Ga本来の超伝導特性を損なわな
い新しい技術の開発が課題となってきた。
Therefore, regarding the latter, we focused on modifying the material. In addition, the development of new technology that does not impair the inherent superconducting properties of Nb, Al, and Nb3Ga has become an issue.

〔課題を解決するための手段〕[Means to solve the problem]

Nb、Al超伝導体の製法として+ Nb3Si化合物
導体の製造(ブロンズマトリックス中にNbを埋め込ん
で細線化後拡散熱処理する。)とはy同様に、フィラメ
ントとなるNb管にAl棒を挿入した芯棒を、マトリッ
クヌとなるCu−10又は20wt。
As for the manufacturing method of Nb, Al superconductor, + The manufacturing method of Nb3Si compound conductor (embedding Nb in a bronze matrix and performing diffusion heat treatment after thinning) is similar to y, a core in which an Al rod is inserted into an Nb tube that becomes a filament. The rod is Cu-10 or 20wt which becomes the matrix.

%N1合金管に挿入したものを単芯複合体に押出加工し
、これをさらに数十〜数百本束ね再度Cu−Ni合金管
に包んで加工し、多芯複合体としあるいは更にこの複合
体加工を反復し、これを超伝導素線径まで押出・引抜加
工することが考えられる。そこで、Al又はGeの芯材
を硬くて脆いAl−47wt−%Ge二元共晶合金に替
え、押出加工を可能にすること、また破砕した粒塊が囲
りのNb管内壁に突き刺さったり、侵入したりして境界
(管/芯)に比較的広い幅の二層混在帯を生ぜしめ、密
着性を向上させると同時に、粉末化の起らない従来の圧
着加工のみに依存する短拡散対を更に短くした極短拡散
対が得られることを考えた。
The material inserted into the %N1 alloy tube is extruded into a single-core composite, which is further bundled into several tens to hundreds of pieces, wrapped in a Cu-Ni alloy tube again, and processed to form a multi-core composite, or further processed into a multi-core composite. It is conceivable to repeat the processing and extrude and draw the superconducting strands to the diameter. Therefore, we changed the Al or Ge core material to a hard and brittle Al-47wt-%Ge binary eutectic alloy to enable extrusion processing, and also to prevent the crushed granules from penetrating the inner wall of the surrounding Nb pipe. This creates a relatively wide two-layer mixed zone at the boundary (tube/core), improving adhesion, and at the same time eliminating short diffusion pairs that rely only on conventional crimping processes that do not cause powdering. We considered that it is possible to obtain an extremely short diffusive pair by further shortening .

第1図に押出加工によるAl−47Ge合金の粉末メカ
ニズムの概念図を示す。なお、これは後工程の引抜加工
にも言えるものである。同図において5は加工前の三層
単芯複合体用ビレットで。
FIG. 1 shows a conceptual diagram of the powder mechanism of Al-47Ge alloy produced by extrusion processing. Note that this also applies to the subsequent drawing process. In the figure, 5 is a three-layer single-core composite billet before processing.

6はその芯材、7は純Nb製管、8は後に素線の母材と
なるCu=2ONi合金管、9は単芯複合体用ビレット
の中を真空にし、かっ押出加工のステムエ1がビレット
に対し−様な変形を与えるように両端部に電子ビーム溶
接されたCu−2ONi合金の蓋、10は押出加工のコ
ンテナ、12は押出加工のダイス、13は芯材の破砕領
域(割れ・粒塊発生部)、14は芯材の粉砕領域(細粒
・微粒化部)15は単芯複合体であり、混在帯は工3及
び工4における6と7との境界で形成される。また、 
Al−47wt、%Ge合金は後の拡散熱処理でNb、
 (AlO,75Ge O,25)化合物となる組成に
相当しており、超伝導特性はN b、 Alよりかなり
優れp NbmGeに近いものになることが考えられる
6 is the core material, 7 is a pure Nb tube, 8 is a Cu=2ONi alloy tube that will later become the base material of the wire, 9 is a single-core composite billet, and the inside of the billet is evacuated. A Cu-2ONi alloy lid is electron beam welded at both ends to give the billet a similar deformation, 10 is an extrusion container, 12 is an extrusion die, and 13 is a core material fracture area (cracks and 14 is a core material pulverization area (fine grain/atomization part) 15 is a single-core composite, and a mixed zone is formed at the boundary between 6 and 7 in Steps 3 and 4. Also,
Al-47wt, %Ge alloy is Nb,
This corresponds to the composition of the (AlO,75GeO,25) compound, and the superconducting properties are considered to be considerably superior to Nb and Al and close to pNbmGe.

〔作用〕[Effect]

Nb、 (A4 Ge)超伝導体では、 Al−38〜
62wt。
For Nb, (A4Ge) superconductors, Al-38~
62wt.

%Ge組成において最も高いJc及びHC2を示すこと
が認められている。Alに対するGeの固溶限は7.2
wt、%、またGeに対するAlの固溶限はQ、5wt
、%であり、 fi、1−38〜62wt、%Ge組成
の合金では、共晶組織の占有率は尚いことが状態図上わ
かる。水沫ではその平均的組成としてNb5(Al0.
75GeO,25)を選び、Al−47wt、%Ge合
金を芯材組成の代表値としている。上記の共晶は硬いが
、ラメラ(層)状を呈し脆い性質がある。
%Ge composition is observed to exhibit the highest Jc and HC2. The solid solubility limit of Ge in Al is 7.2
wt, %, and the solid solubility limit of Al in Ge is Q, 5wt
, %, fi, 1-38 to 62 wt, % It can be seen from the phase diagram that the occupation rate of the eutectic structure is still low in the alloy having the Ge composition. The average composition of water droplets is Nb5 (Al0.
75GeO, 25) is selected, and Al-47wt, %Ge alloy is used as a representative value for the core material composition. Although the above-mentioned eutectic is hard, it exhibits a lamellar (layer) shape and is brittle.

例えば、既述のようにAlの硬さは約Hv20. 弓張
強さ約4#f/−であるのに対し、 Al−2,5wt
、%Ge合金では硬さがHv36.引張強さが12#f
 /d。
For example, as mentioned above, the hardness of Al is about Hv20. The bow strength is about 4#f/-, while Al-2.5wt
, %Ge alloy has a hardness of Hv36. Tensile strength is 12#f
/d.

そしてAl−47wt、%Ge合金では硬さがHv 7
9〜83と高いが、引張強さは13〜14却f/−と硬
さの向上の割合に低い。しかし、 Nb及びCu−Ni
合金を相手材とする複合体等の冷間加工には支障のない
特性であり、むしろ、以下のような作用が期待できる好
適な芯材と考えられる。
And in Al-47wt, %Ge alloy, the hardness is Hv 7
Although the tensile strength is high at 9-83, the tensile strength is 13-14 f/-, which is low compared to the improvement in hardness. However, Nb and Cu-Ni
It has properties that do not impede cold working of composites and the like using an alloy as a mating material, and is rather considered to be a suitable core material that can be expected to have the following effects.

(1)  本合金の硬さは主に初期の加工で必要な変形
抵抗を実現し、また、細線工程では超微粒(0,01μ
mレベル)、高密度化しているので、ソーセージング(
異常変形)や断線を起きない。
(1) The hardness of this alloy is mainly to achieve the deformation resistance required in the initial processing, and also to achieve the ultrafine grain (0.01 μm) in the fine wire process.
m level), and because of its high density, sausaging (
No abnormal deformation) or wire breakage.

(2)  中間焼鈍により球状化した共晶は、加工中に
Nb管状層内で細粒化と破砕を進行せしめ。
(2) The eutectic spheroidized by intermediate annealing progresses to grain refinement and crushing within the Nb tubular layer during processing.

微粒塊は囲りのNb管に侵入し密着性を上げて行く。The fine particles invade the surrounding Nb tube and improve the adhesion.

(3)硬さ及び密着性の向上は、複合体の均一加工を改
善し、ダイスとの摩擦による発熱を低減する。
(3) Improved hardness and adhesion improve uniform processing of the composite and reduce heat generation due to friction with the die.

(4)  10−’以下に縮径加工された段階ではサブ
ミクロ/サイズ(0,1μm以下)の微粒子となり。
(4) At the stage where the diameter is reduced to 10-' or less, the particles become submicro/sized (0.1 μm or less) fine particles.

サブミクロンの極短拡散対の形成に寄与する。Contributes to the formation of submicron ultrashort diffusion pairs.

(5)拡散熱処理により、拡散対のうち圧粉体の方は溶
融し、 Nbと拡散し合う。そして1以上の芯材特性と
メカニズムによって、量産可能な技術的条件が整えられ
る。
(5) Due to the diffusion heat treatment, the compact of the diffusion pair melts and diffuses with Nb. The technical conditions for mass production are established by one or more core material properties and mechanisms.

このように芯材をAl−38〜62wt、%Ge合金に
置き換えることにより、現状の冷間押出や静水圧押出法
がそのま\適用でき、サブミクロンオーダのきわめて短
いNb/Al−Ge合金拡散対が容易に製作され、低温
短時間の拡散処理が有効となる。即ち、サブミクロン径
のフィラメントがサブミクロンのスペーシングで整然と
分離された低交流損失に好適な超極細多芯線材の工業的
製造が可能となる。
By replacing the core material with Al-38~62wt%Ge alloy, the current cold extrusion and hydrostatic extrusion methods can be applied as is, and extremely short Nb/Al-Ge alloy diffusion on the submicron order can be achieved. The pair is easily manufactured, and low-temperature, short-time diffusion treatment is effective. That is, it becomes possible to industrially manufacture an ultra-fine multifilamentary wire suitable for low AC loss in which filaments of submicron diameter are neatly separated with submicron spacing.

〔実施例〕〔Example〕

本発明の製造法の実用性を確認するため、実験の規模、
技術等を勘案の上1次の導体諸元を計画し、同導体素線
の試作、断面構造の観察並びにT c + Hc x及
びJcの測定を行なった。
In order to confirm the practicality of the production method of the present invention, the scale of the experiment,
The specifications of the primary conductor were planned in consideration of the technology, etc., and the conductor strand was prototyped, the cross-sectional structure was observed, and T c + Hc x and Jc were measured.

(1)  導体素線の諸元 素?fM(ストランド)径0.15+m、 Nb、 (
Al、 Ge)超伝導体のフィラメント径0.40μm
、フィラメント本数7686.スペーシング0.20 
μml Cu安定化材径及び本数6.70μm・61本
、素線外皮(Cu−2ON1合金)の厚さ23μm、 
Cu安定化材のスペーシング(Nb拡散バリヤ)0.0
2μm以上、 Nb。
(1) Elements of conductor wire? fM (strand) diameter 0.15+m, Nb, (
Al, Ge) superconductor filament diameter 0.40 μm
, number of filaments 7686. spacing 0.20
μml Cu stabilizing material diameter and number 6.70 μm, 61 pieces, wire sheath (Cu-2ON1 alloy) thickness 23 μm,
Spacing of Cu stabilizer (Nb diffusion barrier) 0.0
2 μm or more, Nb.

(AlO,75Ge0.25):Cu:Cu−2ONi
合金の体積占有率は1 : 2.2 :14.4.フィ
ラメントとCu安定化材集合領域の体積占有率は1.0
 : 2.2 : 5.4’、  フィラメントのツイ
ストピッチ1.5W+。
(AlO,75Ge0.25):Cu:Cu-2ONi
The volume occupancy of the alloy is 1:2.2:14.4. The volume occupancy of the filament and Cu stabilizing material gathering area is 1.0
: 2.2 : 5.4', filament twist pitch 1.5W+.

(2)  導体試作 Al−47wt0%Ge(以下Al−47Geと略記す
る)合金をAr(アルゴン)雰囲気中で溶解、水冷銅鋳
型に鋳造し2それを外周研削により第1図6に示す直径
30.9mの丸棒に加工し、外径61.4+m−内径3
1.0mのNb管7に挿入し、さらにこの管を外径89
.0mn・内径51.5wのCu−2ONi合金管8に
挿入し、最後に両端にCu−2ONi合金の蓋9を真空
電子ビーム溶接して、第1図A−A断面で示す三層構造
断面のビレット5を製作した。これに冷間押出により縮
径加工を施し、続いて異形引抜ローラダイスにより第3
図で示す対辺距離a9 a+:、05 閣の正六角棒と
し、 Al−47Ge合金/ Nb/Cu−2ONi合
金から成る三層構造単芯複合体とした。同図における1
6はAJ!−47Ge合金粉末(点描部)19とNbエ
フとの混在帯を意味し、18はCu−2ONi合金管8
の六角成形体に対応している。次に同年芯複合体を軸方
向に矯正したf、  120τの長さに切断し、この切
断棒61本を第、4図で示す外径89.0fi−内径7
2.のCu−2ONi合金管20の中で集束し、間管を
両端部で真空溶接し管内を密封し、−次の多芯複合体用
ビレットとした。
(2) Conductor prototype Al-47wt0%Ge (hereinafter abbreviated as Al-47Ge) alloy was melted in an Ar (argon) atmosphere and cast into a water-cooled copper mold.The outer periphery of the mold was ground to a diameter of 30 mm as shown in Figure 1. Processed into a 9m round bar, outer diameter 61.4 + m - inner diameter 3
Insert it into a 1.0 m Nb pipe 7, and further extend this pipe with an outer diameter of 89 mm.
.. It is inserted into a Cu-2ONi alloy tube 8 with a diameter of 0 mm and an inner diameter of 51.5W, and finally a Cu-2ONi alloy lid 9 is vacuum electron beam welded to both ends to form a three-layer structure cross section shown in the A-A cross section of Fig. 1. Billet 5 was produced. This is subjected to diameter reduction processing by cold extrusion, and then a third
A regular hexagonal bar with a distance across sides a9 a+:, 05 mm as shown in the figure was used, and a three-layer structure single-core composite consisting of Al-47Ge alloy/Nb/Cu-2ONi alloy was used. 1 in the same figure
6 is AJ! -47Ge alloy powder (stippling part) 19 means a mixed zone of Nb F, 18 means Cu-2ONi alloy tube 8
Compatible with hexagonal molded bodies. Next, the core composite of the same year was cut into a length of f, 120τ, which was corrected in the axial direction, and the 61 cutting rods were cut into an outer diameter of 89.0fi - an inner diameter of 7 as shown in Figure 4.
2. The pipes were bundled in a Cu-2ONi alloy tube 20, and the tube was vacuum welded at both ends to seal the inside of the tube to form the billet for the next multicore composite.

これを加工$R〔(加工前の断面積S〇−加工稜の断面
積S ) /5oX100%〕=75%毎に1O−5T
orr以下の真空中で410℃2h 加熱の中間炉3.
46+005mの正六角多芯複合体とした。次に一〇 この−法覆合体126本を、及び第6図に示すように9
表面に厚さ6μmのNb PVD (イオンブレーティ
ング)層24を付与した対辺距離3.46 +o、os
■の正六角OFC(無酸素鋼)棒23を別途に製作し、
その61本を第5図で示すように外径890m・内径6
1.5mのCu−2ONi合金管22の管内に、 OF
G棒は中央部に、−次多芯複合体21はその囲りに配し
た状態で集束、真空封入し、二次多芯複合体用ビレット
を製作した。
Process this $R [(Cross-sectional area S before processing - Cross-sectional area S of processed edge) /5oX100%] = 1O-5T for every 75%
Intermediate furnace heated at 410°C for 2 hours in a vacuum below orr3.
It was made into a regular hexagonal multicore composite of 46+005 m. Next, add 126 pieces of this method cover, and 9 pieces as shown in Figure 6.
Opposite distance 3.46 + o, os with Nb PVD (ion blating) layer 24 of 6 μm thickness provided on the surface
Separately manufacture the regular hexagonal OFC (oxygen-free steel) rod 23,
As shown in Figure 5, the 61 pieces have an outer diameter of 890 m and an inner diameter of 6.
Inside the 1.5 m Cu-2ONi alloy tube 22, OF
The G rod was arranged in the center and the -order multicore composite 21 was arranged around it, and the mixture was bundled and vacuum sealed to produce a billet for a second order multicore composite.

−法覆合体用ビレットと同様に同ビレットを押出、引抜
及び軟化焼鈍を繰返し、最終素線径0.15aの擬複合
体線材を得た。
- The billet was repeatedly extruded, drawn, and softened in the same manner as the billet for method covering, and a pseudo-composite wire rod with a final wire diameter of 0.15a was obtained.

以上の工程を経た線材について、SEM(走査型電子顕
微鏡)により横断面を観察した結果、第7図で示すよう
に、二次複合体及び安定化材の集合領域25に、6〜7
μm径の二次多芯複合体26が1.2〜13μmの間隔
で均等にCu−2ONi合金母材(マトリックス)に分
離。
As a result of observing the cross section of the wire rod through the above steps using a scanning electron microscope (SEM), as shown in FIG.
A secondary multicore composite 26 with a diameter of μm is evenly separated into a Cu-2ONi alloy matrix at intervals of 1.2 to 13 μm.

配列しているのが認められた。同図において27は安定
化材のCu、2aji、そのNbコーティング層、29
は27及び28:りなる拡散バリヤが設けられたCu安
定化材である。第8図は二次複合体26の断面を更に拡
大観察した様子を模式的に示したもので、計画諸元通り
の直径0.4μmのAl−47Ge合金19とNb17
の環゛状層がrCu−2ONi合金母材(マトリックス
)に約0.2μmのスペーシングで埋め込まれているの
が見られ、超極細多芯線の断面構造を保っていることが
確認された。
It was observed that they were arranged. In the same figure, 27 is the stabilizing material Cu, 2aji, its Nb coating layer, 29
27 and 28: Cu stabilizing materials provided with different diffusion barriers. FIG. 8 schematically shows a further enlarged observation of the cross section of the secondary composite 26, showing the Al-47Ge alloy 19 and Nb17 with a diameter of 0.4 μm according to the planned specifications.
It was observed that the annular layer was embedded in the rCu-2ONi alloy base material (matrix) with a spacing of about 0.2 μm, and it was confirmed that the cross-sectional structure of the ultrafine multifilamentary wire was maintained.

以上の確認の彼、所要長さの線材を切離し。After confirming the above, he cut the wire to the required length.

これに撚り線機を用いて15■ピツチのツイストをかけ
た彼、真空炉を用い10−’ Torr以下の真空中で
960℃に加熱し、同温度で24 h保持した後真空の
ま\室温まで自然冷却した。
He twisted it to 15cm using a wire twisting machine, heated it to 960℃ in a vacuum of 10-' Torr or less using a vacuum furnace, kept it at the same temperature for 24 hours, and then left it in a vacuum at room temperature. Naturally cooled until

(3)  超伝導性の確認 以上の拡散熱処理を施した素線(ストランド)について
、再度SEM観察を行なった結果。
(3) Results of another SEM observation of the strands that were subjected to diffusion heat treatment beyond confirmation of superconductivity.

第9図で示すように単芯複合体のAl−47Ge合金/
Nb環状層及び単芯複合体マドIJックスの境界30が
共に解消され、均一なマドvックス中にNb、 (Al
、 Ge)化合物とみられるフィラメント導体31の配
列が確認された。
As shown in Figure 9, single-core composite Al-47Ge alloy/
Both the Nb annular layer and the boundary 30 of the single-core composite Mad Vx are dissolved, and Nb, (Al
, Ge) The arrangement of the filament conductors 31, which appears to be a compound, was confirmed.

次いで、この導体素線の超伝導特性を明らかにするため
、約50cmの素線試料を切離し。
Next, in order to clarify the superconducting properties of this conductor wire, a wire sample of about 50 cm was cut.

試料端に電圧リード及び電流リードを半田付けし、4.
2Kから最高17Kまでの温度における臨界電流Icを
四端子抵抗法により測定した。
4. Solder the voltage lead and current lead to the sample end.
The critical current Ic at temperatures ranging from 2K to a maximum of 17K was measured by a four-terminal resistance method.

Icは素線に垂直に印加した定常磁界中で試料電流を増
加させ、電流対電圧曲線をチャートに採り、Nb及びA
l 47Ge合金の全てがNb。
For Ic, increase the sample current in a steady magnetic field applied perpendicular to the wire, chart the current vs. voltage curve, and
l All of the 47Ge alloy is Nb.

(A4 Ge)化合物に相変態しているものと見做し、
フィラメントの総断面積Sに換算して抵抗率が10慴Ω
mとなる電流を以ってIcとし。
(A4 Ge) It is assumed that the phase has transformed into a compound,
The resistivity is 10Ω when converted to the total cross-sectional area S of the filament.
Let the current equal to m be Ic.

臨界電流密度JcはSでIcを除した値とした。The critical current density Jc was the value obtained by dividing Ic by S.

温度T及び磁界Hも種々変えて測定した結果。Results of measurements with various temperature T and magnetic field H.

本導体の臨界温度Tcは21.OK、臨界磁界Hc+は
41.0T(42K)、 Jcは1980A/−(4,
2に、 l0T)及び205A/−(4,2に、 17
T)であった。
The critical temperature Tc of this conductor is 21. OK, critical magnetic field Hc+ is 41.0T (42K), Jc is 1980A/- (4,
2, l0T) and 205A/-(4,2, 17
T).

以上のように試作の素線はNb、Al又はNb5Ge導
体に匹敵する十分な超伝導特性を有していることが明ら
かになった。また、同時に本製法は超伝導線材の量産手
段として問題ないことが認められた。
As described above, it has been revealed that the prototype wire has sufficient superconducting properties comparable to Nb, Al, or Nb5Ge conductors. At the same time, it was confirmed that this manufacturing method has no problems as a means of mass-producing superconducting wires.

〔発明の効果〕〔Effect of the invention〕

Nb、Al又はN b s G e化合物超伝導体の交
流用極細多芯線を、複合体・拡散法を基本とする現行の
工業生産手段において製造可能ならしめるには、芯材と
なるAl又はGeの変形抵抗、即ち硬さや引張強さをN
b及びCu−Ni合金のそれに相応した特性に改質し、
極短拡散対を得ることが必要である。しかし、これらの
金属元素は純度の高い状態では、照射等特殊な方法を除
き一般の方法での改質は無理である。
In order to be able to manufacture AC ultrafine multifilamentary wires made of Nb, Al or Nb s Ge compound superconductors using current industrial production methods based on composite/diffusion methods, it is necessary to use Al or Ge as the core material. The deformation resistance, that is, the hardness and tensile strength of
Modified to properties corresponding to those of b and Cu-Ni alloy,
It is necessary to obtain extremely short diffusion pairs. However, when these metal elements are in a highly pure state, it is impossible to modify them by general methods except for special methods such as irradiation.

そこで+Geに比ベコスト的に有利なAlの芯材をAl
−47Ge二元合金の芯材に置き換え、その硬さ及び脆
さを利用することにより、即ち、引張強さを14#f/
−前後に保ちながら、硬さをHv 80に改善できるこ
とに立脚し、 Al−47Ge/Nb/Cu−2ONi
合金の三層構造複合体の冷間押出及び伸線加工を試みた
。その結果、 Nb=(A4 Ge)超伝導体において
交流用に不可欠な超極細多芯線が工業的に製造できるこ
と\なった。
Therefore, the core material of Al, which is advantageous in terms of cost compared to +Ge, is
- By replacing the core material with 47Ge binary alloy and utilizing its hardness and brittleness, the tensile strength can be increased to 14#f/
- Based on the fact that the hardness can be improved to Hv 80 while maintaining the same, Al-47Ge/Nb/Cu-2ONi
Cold extrusion and wire drawing of a three-layer alloy composite were attempted. As a result, it has become possible to industrially produce ultra-fine multifilamentary wires essential for alternating current applications in Nb=(A4Ge) superconductors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法に係る押出加工によるAl−
47Ge合金の細粒化機構の概念図、第2図はAl−4
7Ge合金+ N b r Cu−20N i合金及び
Alの冷間加工率と硬さとの関係を示した図、第3図は
異形引抜ローラダイスにより正六角棒に縮径加工された
単芯複合体の断面構造、第4図は61本の単芯複合体を
Cu−2ONi合金管に充填した法覆合体用ビレットの
断面模式図、第5図は二次複合体とCu安定化材でCu
−2ONi合金管を充填した二次複合体用ビレットの断
面模式図、第6図は二次複合体加工前の正六角棒Cu安
定化材の断面図、第7図は二次複合体断面における一次
複合体と安定化材の集合配列状況を部分的に示した図、
第8図は二次複合体の中に埋込まれている一次複合体に
おける単芯複合体の断面模式図、第9図は拡散熱処理に
より単芯複合体がN bs (Al 、 G e )化
合物の単層に変ったときの断面模式図)あ3゜ 5・・・ビレット、6・・・芯材、7・・・純Nb製管
、8・・・Cu 2ONi合金管、9・・・蓋、10・
・コンテナ、11・・・ステム、12・・・ダイス、1
3・・・芯材の破砕領域。 14−・・芯材の粉砕領域、15−Al−Ge合金Nb
/Cu−Ni合金三層構造単芯複合体、21・・・ロー
ラタ゛イス引抜により加工された正六角断面の多芯複合
体。 31・・・Nb、 (Al、 Ge )化合物系超伝導
体。
Figure 1 shows Al-
Conceptual diagram of grain refinement mechanism of 47Ge alloy, Figure 2 is Al-4
A diagram showing the relationship between cold working rate and hardness of 7Ge alloy + N b r Cu-20N i alloy and Al, Figure 3 is a single core composite whose diameter was reduced into a regular hexagonal bar using a modified drawing roller die. Fig. 4 is a cross-sectional schematic diagram of a billet for method encasing in which 61 single-core composites are filled in a Cu-2ONi alloy tube, and Fig. 5 is a cross-sectional diagram of a billet for method encasing in which 61 single-core composites are filled in a Cu-2ONi alloy tube.
-A schematic cross-sectional view of a billet for a secondary composite filled with 2ONi alloy tubes, Figure 6 is a cross-sectional view of a regular hexagonal bar Cu stabilizing material before processing into a secondary composite, and Figure 7 is a cross-sectional view of the secondary composite billet. A diagram partially showing the aggregate arrangement of the primary composite and the stabilizing material,
Fig. 8 is a schematic cross-sectional view of a single-core composite in a primary composite embedded in a secondary composite, and Fig. 9 shows that the single-core composite has been converted into an N bs (Al, Ge) compound by diffusion heat treatment. Schematic cross-sectional diagram when changed to a single layer) A3゜ 5... Billet, 6... Core material, 7... Pure Nb tube, 8... Cu 2ONi alloy tube, 9... Lid, 10・
・Container, 11... Stem, 12... Dice, 1
3... Core material crushing area. 14--Crushing area of core material, 15-Al-Ge alloy Nb
/Cu-Ni alloy three-layer structure single-core composite, 21... Multi-core composite with regular hexagonal cross section processed by roller tice drawing. 31...Nb, (Al, Ge) compound-based superconductor.

Claims (1)

【特許請求の範囲】[Claims] Al−Ge合金/純Nb/Cu−Ni合金から構成され
る三層構造単芯複合体又はこれを集合した多芯複合体を
製造する場合に、芯材として62〜38Wt.%Al−
38〜62Wt.%Ge組成の合金を導入しての冷間押
出及び引抜加工に依る超伝導線材の製法で、上記組成の
Al−Ge合金を芯材として用いることを特徴とする超
伝導線材の製造方法。
When producing a three-layer single-core composite composed of Al-Ge alloy/pure Nb/Cu-Ni alloy or a multi-core composite made of these, 62 to 38 Wt. %Al-
38-62Wt. A method for producing a superconducting wire by cold extrusion and drawing with the introduction of an alloy having a composition of %Ge, characterized in that an Al-Ge alloy having the above composition is used as a core material.
JP2254526A 1990-09-25 1990-09-25 Manufacture of nb3(al, ge) super conductive wire Pending JPH04133215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2254526A JPH04133215A (en) 1990-09-25 1990-09-25 Manufacture of nb3(al, ge) super conductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2254526A JPH04133215A (en) 1990-09-25 1990-09-25 Manufacture of nb3(al, ge) super conductive wire

Publications (1)

Publication Number Publication Date
JPH04133215A true JPH04133215A (en) 1992-05-07

Family

ID=17266266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2254526A Pending JPH04133215A (en) 1990-09-25 1990-09-25 Manufacture of nb3(al, ge) super conductive wire

Country Status (1)

Country Link
JP (1) JPH04133215A (en)

Similar Documents

Publication Publication Date Title
Takeuchi Nb3Al conductors for high-field applications
EP0073128B1 (en) Superconducting composite wire
US10741309B2 (en) Diffusion barriers for metallic superconducting wires
Takeuchi Nb/sub 3/Al conductors-rapid-heating, quenching and transformation process
JPS6215967B2 (en)
Scanlan et al. Progress and plans for the US HEP conductor development program
US10128428B2 (en) Ternary molybdenum chalcogenide superconducting wire and manufacturing thereof
US4094059A (en) Method for producing composite superconductors
Abdyukhanov et al. Production of ${\rm Nb} _ {3}{\rm Sn} $ Bronze Route Strands With High Critical Current and Their Study
EP3961658B1 (en) Blank for producing a long nb3 sn-based superconducting wire
KR940006616B1 (en) Super conductive wire
US7887644B2 (en) Superconductive elements containing copper inclusions, and a composite and a method for their production
US5160794A (en) Superconductor and process of manufacture
JPH04133215A (en) Manufacture of nb3(al, ge) super conductive wire
JP4013335B2 (en) Nb3Sn compound superconductor precursor wire and method for manufacturing the same, Nb3Sn compound superconductor conductor manufacturing method, and Nb3Sn compound superconductor coil manufacturing method
Sudyev et al. Recent progress in a development of Nb3Sn internal tin strand for fusion application
Otubo et al. Submicron multifilamentary high performance Nb3Sn produced by powder metallurgy processing of large powders
US20220051833A1 (en) Diffusion barriers for metallic superconducting wires
KR101017779B1 (en) APPARATUS AND METHOD FOR MANUFACTURING MgB2 SUPERCONDUCTING MULTI-CORE WIRE/TAPES AND MgB2 SUPERCONDUCTING MULTI-CORE WIRE/TAPES THEREOF
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
EP0582565A4 (en) Superconductor and process of manufacture.
RU2647483C2 (en) Method for obtaining long-dimensional superconducting composite wire based on magnesium diboride (options)
JPH04277409A (en) Compound superconducting wire and manufacture thereof
JP2006100150A (en) Manufacturing method for multi-core wire of hard-to-process superconducting alloy
JPH0419919A (en) Manufacture of nb3sn superconductor wire