JP2871754B2 - Nb Lower 3 Method for Manufacturing Sn Compound Superconducting Wire - Google Patents

Nb Lower 3 Method for Manufacturing Sn Compound Superconducting Wire

Info

Publication number
JP2871754B2
JP2871754B2 JP1298868A JP29886889A JP2871754B2 JP 2871754 B2 JP2871754 B2 JP 2871754B2 JP 1298868 A JP1298868 A JP 1298868A JP 29886889 A JP29886889 A JP 29886889A JP 2871754 B2 JP2871754 B2 JP 2871754B2
Authority
JP
Japan
Prior art keywords
wire
bronze
billet
superconducting wire
compound superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1298868A
Other languages
Japanese (ja)
Other versions
JPH03159013A (en
Inventor
大介 三浦
要 松本
靖三 田中
久樹 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1298868A priority Critical patent/JP2871754B2/en
Publication of JPH03159013A publication Critical patent/JPH03159013A/en
Application granted granted Critical
Publication of JP2871754B2 publication Critical patent/JP2871754B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、改良されたNb3Sn化合物超電導線の製造方
法に関し、臨界電流密度を向上させることを目的とする
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing an improved Nb 3 Sn compound superconducting wire, and an object thereof is to improve a critical current density.

〔従来の技術〕[Conventional technology]

Nb3Snのような化合物超電導材料は、硬く脆いため合
金材のように直接線材に加工することができず、表面拡
散法又は複合加工法(ブロンズ法)により実用線材が製
造されている。このうちブロンズ法はNb/Cu−Sn複合体
の固体間の拡散を利用するため、極細多芯線のような複
雑な断面構造の線材を製造できる。従来のブロンズ法に
よるNb3Sn化合物超電導線の製造方法は、おもにダブル
スタック方式という方法が用いられ、第3図(a)、
(b)、(c)に示すように、1本ないし複数本のNb棒
(1)をブロンズ管(2)中に挿入して、押出し、引抜
き、圧延などによる加工と、中間焼鈍を繰り返して製造
した1次素線(3)を同じ長さに切断し、このようにし
て得られた複数本の1次素線(3)をブロンズ管中に再
び挿入し、押出し、引抜き、圧延、伸線などの加工と中
間焼鈍を繰り返して2次素線(4)を製作し、再度複数
本の2次素線(4)をブロンズ管中に挿入して伸線する
工程を繰り返してブロンズ(6)中にNbフィラメント
(7)が分散した複合線(5)を製作し、最後に拡散熱
処理を施してNb3Sn超電導線を得る。このようにして得
られたNb3Sn超電導線はNbフィラメントの径を数μm程
度にまですることが可能であり、Nb3Snの超電導層はブ
ロンズマトリックスとNbフィラメントの界面にSnの拡散
により生成する。
Since compound superconducting materials such as Nb 3 Sn are hard and brittle, they cannot be processed directly into wires as alloy materials, and practical wires are produced by a surface diffusion method or a composite processing method (bronze method). Among them, the bronze method utilizes the diffusion between solids of the Nb / Cu-Sn composite, so that a wire having a complicated cross-sectional structure such as an ultrafine multifilamentary wire can be manufactured. In the conventional method of manufacturing a Nb 3 Sn compound superconducting wire by the bronze method, a method called a double stack method is mainly used, and FIG.
As shown in (b) and (c), one or a plurality of Nb rods (1) are inserted into a bronze tube (2), and processing such as extrusion, drawing, and rolling, and intermediate annealing are repeated. The manufactured primary element wire (3) is cut into the same length, and the plurality of primary element wires (3) thus obtained are reinserted into a bronze tube, and extruded, drawn, rolled and stretched. The secondary wire (4) is manufactured by repeating the processing of wire and the like and the intermediate annealing, and the process of inserting a plurality of secondary wires (4) into the bronze pipe and drawing again is repeated to obtain a bronze (6). 2), a composite wire (5) in which Nb filaments (7) are dispersed is manufactured, and finally a diffusion heat treatment is performed to obtain a Nb 3 Sn superconducting wire. The Nb 3 Sn superconducting wire obtained in this way can reduce the diameter of the Nb filament to about several μm, and the Nb 3 Sn superconducting layer is formed by diffusion of Sn at the interface between the bronze matrix and the Nb filament. I do.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上述のようにダブルスタック方式で複
合線を製作すると、複合線中のNbフィラメントの分布が
不均一になり、分布に粗密が生じる。その結果、一定温
度で一定時間加熱する拡散熱処理では、各Nbフィラメン
トに供給されるブロンズ中のSn量にバラツキが生じ、各
Nbフィラメントの反応層の厚さ、粒径、ストイキオメト
リーのバラツキが大きくなり、臨界電流密度が抑えられ
るという問題があった。この問題を解決する一方法とし
て、拡散熱処理として、例えば(700℃×4h+600℃×30
h)を多数回繰り返して施す多段熱処理が有効である
が、時間が長くなり量産の製造条件としては不適当であ
る。
However, when the composite wire is manufactured by the double stack method as described above, the distribution of the Nb filaments in the composite wire becomes non-uniform, and the distribution becomes uneven. As a result, in the diffusion heat treatment of heating at a certain temperature for a certain time, the amount of Sn in the bronze supplied to each Nb filament varies, and
Variations in the thickness, particle size, and stoichiometry of the reaction layer of the Nb filament are increased, and the critical current density is suppressed. As one method to solve this problem, for example, (700 ° C. × 4 h + 600 ° C. × 30)
Although multi-stage heat treatment in which h) is repeated a number of times is effective, it takes a long time and is unsuitable as a mass production condition.

〔課題を解決するための手段と作用〕[Means and actions for solving the problem]

本発明は上記間題点を解決したNb3Sn化合物超電導線
の製造方法を提供するもので、NbまたはNb合金素材とブ
ロンズ(Cu−Sn合金)マトリックスに複合加工を施し
て、ブロンズマトリックス中にNbまたはNb合金素材を分
散配置させ、次いで拡散熱処理を施すことによりNb3Sn
を生成するブロンズ法によるNb3Sn化合物超電導線の製
造方法において、ブロンズビレットに複数個の穴を等間
隔(d1)であけ、これらの穴の外接円と、前記ブロンズ
ビレット外周との間隔(d2)との関係が、d1=2d2とな
るようにし、これらの穴にNbまたはNb合金棒を挿入後、
前記ブロンズビレットを熱間押出および伸線加工によ
り、六角素線とした後、これらの六角素線の複数本をCu
ビレットに挿入し、再び、熱間押出および伸線加工を行
うことにより、ブロンズマトリックス中にNbまたはNb合
金素材を略均等に分散配置させることを特徴とするもの
である。
The present invention provides a method for producing an Nb 3 Sn compound superconducting wire that solves the above problems, and performs a composite process on an Nb or Nb alloy material and a bronze (Cu-Sn alloy) matrix to form a bronze matrix. By dispersing Nb or Nb alloy material and then performing diffusion heat treatment, Nb 3 Sn
In the method for producing a Nb 3 Sn compound superconducting wire by the bronze method for producing a superconducting wire, a plurality of holes are formed in the bronze billet at equal intervals (d 1 ), and relation between d 2) is set to be d 1 = 2d 2, after inserting the Nb or Nb alloy rods in the holes,
After the bronze billet is formed into hexagonal wires by hot extrusion and wire drawing, a plurality of these hexagonal wires are Cu
It is characterized in that Nb or Nb alloy material is substantially uniformly dispersed and arranged in a bronze matrix by inserting into a billet and performing hot extrusion and wire drawing again.

上述のように本発明方法によれば、NbまたはNb合金素
材とブロンズマトリックスに複合加工を施し、伸線し、
NbまたはNb合金フィラメントがブロンズマトリックス中
に略均等に分散配置された複合線の状態で拡散熱処理を
施すため、各フィラメントは均等にSnが供給され、各フ
ィラメントに生成する反応層の厚さ、粒径、ストイキオ
メトリーが均一になり、臨界電流密度が増大する。
According to the method of the present invention as described above, Nb or Nb alloy material and bronze matrix are subjected to composite processing, wire drawing,
Nb or Nb alloy filaments are subjected to diffusion heat treatment in the state of a composite wire in which the filaments are substantially uniformly dispersed in a bronze matrix, so that each filament is evenly supplied with Sn, and the thickness and granularity of the reaction layer generated in each filament are increased. The diameter and stoichiometry become uniform, and the critical current density increases.

〔実施例〕〔Example〕

以下、図面に示した実施例に基づいて本発明を説明す
る。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.

第1図は本発明の第1の実施例に用いたブロンズビレ
ットの断面図であり、45.3mmφのブロンズ(Cu−14.3wt
%Sn)ビレット(11)にガンドリルで9mmφの7個の穴
(12)をd1=6mmの間隔であけ、これらの穴(12)の外
接円(13)は径39.3mmφとしてビレット(11)の外周と
外接円(13)との間隔d2を3mm(d1=2d2)とし、これ
らの穴(12)にNb棒を埋め込んだ。第2の実施例として
は、上記のビレットの穴の径を10mmφとし(各穴の中心
位置は第1の実施例の場合と同じ)、それらの穴に外径
10mmφ、内径9mmφのCuパイプにNb棒を挿入した複合棒
を埋め込んだ。なお、比較例として、第1の実施例にお
けるビレットの外径を51.3mmφとし、穴の外接円とビレ
ット外周との間隔d2を6mmにしたビレットを用意した。
上記3種の複合ビレットに700℃で熱間押出しを施し、
伸線および焼鈍工程を経て対辺間隔2mmの6角素線(11
´)を製作した。次に、第2図に示すように、この素線
(11′)300本を、内側に厚さ3mmのTaバリア(14)を有
する外径45.3mmφ、内径40mmφのCuビレット(15)に挿
入し、700℃で熱間押し出しを行い、次いで伸線工程と
中間焼鈍を繰り返して径約1μmのNbフィラメントを有
する外径0.5mmφの複合線を製作した。実施例1,2のビレ
ット(11)においては、d1=2d2を満足する様にNb棒が
配置されているので、これを加工して得られる6角素線
(11′)の所定本数を第2図に示す様に内側にTaバリア
(14)を有するCuビレット(15)中に挿入した場合、隣
接する6角素線(11′)の間の相対するNbフィラメント
の間隔はそれぞれの6角素線(11′)内のNbフィラメン
ト間隔とほぼ等しくなり、従ってこれを加工して得られ
る複合線はNbフィラメントがほぼ均等に分散配置されて
いる。一方比較例のビレット(11)においては、d1=d2
の関係にあるので、Cuビレット(15)中に挿入された6
角素線(11′)において、隣接する6角素線(11′)間
の相対するNbフィラメントの間隔はそれぞれの6角素線
(11′)内のNbフィラメント間隔よりも大きくなってお
り、これを加工して得られる複合線はNbフィラメントの
配置が不均一になっている。この線材に650℃×5daysの
拡散熱処理を施し、Nbフィラメントについての臨界電流
密度を測定した結果を第1表に示す。
FIG. 1 is a sectional view of a bronze billet used in the first embodiment of the present invention.
% Sn) A 9mmφ hole (12) is drilled in the billet (11) with a gun drill at an interval of d 1 = 6mm. periphery and the spacing d 2 of the circumscribed circle (13) and 3mm (d 1 = 2d 2) of, embedded Nb rods in these holes (12). In the second embodiment, the diameter of the billet hole is 10 mmφ (the center position of each hole is the same as in the first embodiment), and the outside diameters of the holes are changed.
A composite rod having an Nb rod inserted therein was embedded in a Cu pipe having a diameter of 10 mm and an inner diameter of 9 mm. As a comparative example, the outer diameter of the billet in the first embodiment and 51.3Mmfai, was prepared billet spacing d 2 between the circumscribed circle and the billet periphery of the hole to 6 mm.
The above three types of composite billets are subjected to hot extrusion at 700 ° C.
After drawing and annealing, hexagonal wire (11mm
´). Next, as shown in FIG. 2, 300 wires (11 ') are inserted into a Cu billet (15) having an outer diameter of 45.3 mmφ and an inner diameter of 40 mmφ having a Ta barrier (14) having a thickness of 3 mm inside. Then, hot extrusion was performed at 700 ° C., and then a wire drawing step and intermediate annealing were repeated to produce a composite wire having an outer diameter of 0.5 mmφ and having an Nb filament having a diameter of about 1 μm. In the billets (11) of Examples 1 and 2, Nb bars are arranged so as to satisfy d 1 = 2d 2 , so that a predetermined number of hexagonal strands (11 ′) obtained by processing the Nb bars are provided. When inserted into a Cu billet (15) having a Ta barrier (14) on the inside as shown in FIG. 2, the distance between the adjacent Nb filaments between adjacent hexagonal strands (11 ') is The spacing between the Nb filaments in the hexagonal wire (11 ') is substantially equal to the spacing between the Nb filaments. Therefore, in the composite wire obtained by processing the Nb filaments, the Nb filaments are almost uniformly dispersed. On the other hand, in the billet (11) of the comparative example, d 1 = d 2
, The 6 inserted in the Cu billet (15)
In the cubic strands (11 '), the spacing between opposing Nb filaments between adjacent hexagonal strands (11') is larger than the Nb filament spacing in each hexagonal strand (11 '); The composite wire obtained by processing this has a non-uniform arrangement of Nb filaments. This wire was subjected to a diffusion heat treatment at 650 ° C. × 5 days, and the critical current density of the Nb filament was measured.

第1表より、Nbフィラメントが均一に分散している本
実施例1,2の方が比較例よりも臨界電流密度が大きくな
っている。また、NbフィラメントがCuによってシースさ
れている実施例2では、伸線工程における中間焼鈍で有
害なNb3Snを生成しないため、実施例1よりも臨界電流
密度が大きくなっている。なお、本発明のNb3Sn化合物
超電導線の製造方法は、Nb3Sn以外のA15型構造を有する
化合物超電導線にも適用できることはいうまでもない。
Table 1 shows that the critical current densities of Examples 1 and 2 in which the Nb filaments are uniformly dispersed are larger than those of Comparative Examples. Further, in Example 2 in which the Nb filament was sheathed with Cu, harmful Nb 3 Sn was not generated by the intermediate annealing in the wire drawing step, and thus the critical current density was higher than in Example 1. Needless to say, the method for producing an Nb 3 Sn compound superconducting wire of the present invention can be applied to a compound superconducting wire having an A15 type structure other than Nb 3 Sn.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、ブロンズマトリ
ックス中にNbまたはNb合金材を略均等に分散配置させる
ため、臨界電流密度が向上するという優れた効果があ
る。
As described above, according to the present invention, since the Nb or Nb alloy material is substantially uniformly dispersed in the bronze matrix, there is an excellent effect that the critical current density is improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明にかかるNb3Sn化合物超電導線の製造方
法の一実施例に用いたブロンズビレットの断面図、第2
図は同実施例に用いたCuビレット(15)の断面図、第3
図(a)、(b)、(c)は従来のNb3Sn化合物超電導
線の製造方法における1次素線、2次素線および複合線
の断面図である。 1…Nb棒、2…ブロンズ管、3…1次素線、4…2次素
線、5…複合線、6…ブロンズ、7…Nbフィラメント、
11…ビレット、11′…6角素線、12…穴、13…外接円、
14…Taバリア、15…Cuビレット。
FIG. 1 is a cross-sectional view of a bronze billet used in one embodiment of the method for producing an Nb 3 Sn compound superconducting wire according to the present invention.
The figure is a cross-sectional view of the Cu billet (15) used in the example.
(A), (b), and (c) are cross-sectional views of a primary wire, a secondary wire, and a composite wire in a conventional method for manufacturing an Nb 3 Sn compound superconducting wire. 1 ... Nb rod, 2 ... Bronze tube, 3 ... Primary wire, 4 ... Secondary wire, 5 ... Compound wire, 6 ... Bronze, 7 ... Nb filament,
11: billet, 11 ': hexagonal wire, 12: hole, 13: circumscribed circle,
14 ... Ta barrier, 15 ... Cu billet.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−212710(JP,A) 特開 昭61−279661(JP,A) 特開 昭53−102694(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01B 13/00 565 F H01B 12/10 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-57-212710 (JP, A) JP-A-61-279661 (JP, A) JP-A-53-102694 (JP, A) (58) Field (Int.Cl. 6 , DB name) H01B 13/00 565 F H01B 12/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】NbまたはNb合金素材とブロンズ(Cu−Sn合
金)マトリックスに複合加工を施して、ブロンズマトリ
ックス中にNbまたはNb合金素材を分散配置させ、次いで
拡散熱処理を施すことによりNb3Snを生成するブロンズ
法によるNb3Sn化合物超電導線の製造方法において、ブ
ロンズビレットに複数個の穴を等間隔(d1)であけ、こ
れらの穴の外接円と、前記ブロンズビレット外周との間
隔(d2)との関係が、d1=2d2となるようにし、これら
の穴にNbまたはNb合金棒を挿入後、前記ブロンズビレッ
トを熱間押出および伸線加工により、六角素線とした
後、これらの六角素線の複数本をCuビレットに挿入し、
再び、熱間押出および伸線加工を行うことにより、ブロ
ンズマトリックス中にNbまたはNb合金素材を略均等に分
散配置させることを特徴とするNb3Sn化合物超電導線の
製造方法。
1. A is subjected to compound processing in the Nb or Nb alloy material and bronze (Cu-Sn alloy) matrix, the Nb or Nb alloy material in the bronze matrix is distributed, then Nb 3 by applying the diffusion heat treatment Sn In the method for producing a Nb 3 Sn compound superconducting wire by the bronze method for producing a superconducting wire, a plurality of holes are formed in the bronze billet at equal intervals (d 1 ), and The relationship with d 2 ) is set to d 1 = 2d 2, and after inserting an Nb or Nb alloy rod into these holes, the bronze billet is formed into a hexagonal wire by hot extrusion and wire drawing. , Insert a plurality of these hexagonal wires into Cu billet,
A method for producing an Nb 3 Sn compound superconducting wire, wherein Nb or an Nb alloy material is substantially uniformly dispersed and arranged in a bronze matrix by performing hot extrusion and wire drawing again.
JP1298868A 1989-11-17 1989-11-17 Nb Lower 3 Method for Manufacturing Sn Compound Superconducting Wire Expired - Lifetime JP2871754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1298868A JP2871754B2 (en) 1989-11-17 1989-11-17 Nb Lower 3 Method for Manufacturing Sn Compound Superconducting Wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1298868A JP2871754B2 (en) 1989-11-17 1989-11-17 Nb Lower 3 Method for Manufacturing Sn Compound Superconducting Wire

Publications (2)

Publication Number Publication Date
JPH03159013A JPH03159013A (en) 1991-07-09
JP2871754B2 true JP2871754B2 (en) 1999-03-17

Family

ID=17865228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1298868A Expired - Lifetime JP2871754B2 (en) 1989-11-17 1989-11-17 Nb Lower 3 Method for Manufacturing Sn Compound Superconducting Wire

Country Status (1)

Country Link
JP (1) JP2871754B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6078501B2 (en) * 2014-07-18 2017-02-08 ジャパンスーパーコンダクタテクノロジー株式会社 Precursor for manufacturing Nb3Sn superconducting wire
CN114864177B (en) * 2022-05-23 2024-07-23 合肥夸夫超导科技有限公司 Internal tin method Nb3Preparation method of Sn precursor wire

Also Published As

Publication number Publication date
JPH03159013A (en) 1991-07-09

Similar Documents

Publication Publication Date Title
EP1702084B1 (en) METHOD FOR PRODUCING (Nb, Ti)<SB>3</SB>SN WIRE BY USE OF Ti SOURCE RODS
JPS62188110A (en) Superconducting wire and manufacture of the same
US3919764A (en) Method of making metallic composite materials
US4224735A (en) Method of production multifilamentary intermetallic superconductors
JP2871754B2 (en) Nb Lower 3 Method for Manufacturing Sn Compound Superconducting Wire
US4447946A (en) Method of fabricating multifilament intermetallic superconductor
US11990251B2 (en) Methods for manufacturing a superconductor
JP3813260B2 (en) Oxide multi-core superconducting conductor and method for producing the same
DE2835974A1 (en) METHOD OF MANUFACTURING A MULTI-WIRE INTERMETALLIC SUPRAL CONDUCTOR
JP3445307B2 (en) Superconducting composite billet
JP3273953B2 (en) Method for producing niobium-tin superconducting wire
JP3124448B2 (en) Method for manufacturing Nb (3) Sn superconducting wire
JP3602151B2 (en) Method for producing Nb (3) Sn compound superconducting wire
JP2562435B2 (en) Superfine superconducting wire
JPS6029165B2 (en) Superconducting compound wire and its manufacturing method
JPH0554731A (en) Multicore ceramics superconducting wire rod and manufacture thereof
JPH04277409A (en) Compound superconducting wire and manufacture thereof
JPH06139841A (en) Nb3sn superconducting wire rod
JP2599138B2 (en) Method for producing oxide-based superconducting wire
JPH0432111A (en) Manufacture of compound superconductive wire
JPH0251808A (en) Manufacture of nb3al superconducting wire rod
JPH04129106A (en) Manufacture of superconductive wire material made of nb3-sn compound
JPH06325633A (en) Multi-core oxide superconducting wire
JPH07282650A (en) Compound superconductor
JPH06150738A (en) Compound superconducting cable