JPH01321032A - Manufacture of multi-core superconducting wire - Google Patents
Manufacture of multi-core superconducting wireInfo
- Publication number
- JPH01321032A JPH01321032A JP63154484A JP15448488A JPH01321032A JP H01321032 A JPH01321032 A JP H01321032A JP 63154484 A JP63154484 A JP 63154484A JP 15448488 A JP15448488 A JP 15448488A JP H01321032 A JPH01321032 A JP H01321032A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- wires
- diameter
- reduced
- superconducting wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 239000002887 superconductor Substances 0.000 claims abstract description 11
- 230000006835 compression Effects 0.000 claims abstract description 5
- 238000007906 compression Methods 0.000 claims abstract description 5
- 230000005484 gravity Effects 0.000 claims abstract description 4
- 239000002184 metal Substances 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 20
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052709 silver Inorganic materials 0.000 abstract description 3
- 239000004332 silver Substances 0.000 abstract description 3
- 239000011800 void material Substances 0.000 abstract description 3
- 239000002131 composite material Substances 0.000 description 6
- 239000010949 copper Substances 0.000 description 5
- 241001226615 Asphodelus albus Species 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000005491 wire drawing Methods 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Wire Processing (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、複合加工法による多芯の超電導線の製造方法
の改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an improvement in a method for manufacturing a multicore superconducting wire using a composite processing method.
従来の複合加工法による多芯の超電導線の製造方法は、
まず、例えば第3図(d)に示すような、NbTiなど
の超電導体(1)が多数本CuやCu合金の母材(2)
中に分散して埋込まれた六角素線(34)を、第4図に
示すように、金属管(41)中に六角の金属棒(6a)
のまわりに稠密に配列する。あるいは、第5図に示すよ
うに、金属管(41)の中心に丸い金属棒(6b)を置
き、その回りに六角素線(34)を周密に配列する0次
に、六角素線(34)と金属管(41)とからなる複合
体を押出し、抽伸、伸線及び圧延などにより縮径し、所
望の形状の複合多芯超電導線に加工する。The manufacturing method of multi-core superconducting wire using the conventional composite processing method is as follows:
First, as shown in FIG. 3(d), a large number of superconductors (1) such as NbTi are formed in a base material (2) of Cu or Cu alloy.
As shown in FIG. 4, the hexagonal wires (34) dispersed and embedded in the metal tube (41) are inserted into hexagonal metal rods (6a).
densely arranged around. Alternatively, as shown in FIG. 5, a round metal rod (6b) is placed in the center of the metal tube (41), and hexagonal wires (34) are arranged closely around it. ) and a metal tube (41) is extruded and reduced in diameter by drawing, wire drawing, rolling, etc., and processed into a composite multifilamentary superconducting wire of a desired shape.
しかしながら、上記のような製造方法には次のような問
題点がある。すなわち、
イ)第4図及び第5図に示されるように、金属管(41
)と該金属管内に挿入配列した六角素線(34)群間、
あるいは、挿入配列した六角素線(34)群と丸い金属
棒(6b)間に不定形の空隙(51)、(52)が生じ
、この空隙部に起因して得られる複合線材中の超電導体
の占積率に限界が生じる。However, the above manufacturing method has the following problems. That is, a) As shown in Figures 4 and 5, metal tubes (41
) and a group of hexagonal wires (34) inserted and arranged in the metal tube,
Alternatively, irregularly shaped voids (51) and (52) are generated between the inserted and arranged hexagonal wires (34) and the round metal rod (6b), and the superconductor in the composite wire obtained due to these voids. There is a limit to the space factor.
口)縮径加工中に、複合体の外皮をなす金属管の厚さが
不均一になり、外皮に包まれる基材である素線の加工率
も不均一になるため、加工歩留りが低下し、生産性が上
がらない。During diameter reduction processing, the thickness of the metal tube that forms the outer skin of the composite becomes uneven, and the processing rate of the wire that is the base material wrapped in the outer skin also becomes uneven, resulting in a decrease in processing yield. , productivity does not increase.
本発明は以上のような点にかんがみてなされたもので、
その目的とするところは、金属管中の超電導素線の形状
と配列を工夫して超電導線の密度を上げ、臨界電流密度
の高い多芯超電導線を加工性よく製造する方法を堤供す
ることにある。The present invention has been made in view of the above points.
The aim is to improve the shape and arrangement of the superconducting wires in the metal tube to increase the density of the superconducting wire, and to provide a method for manufacturing multicore superconducting wires with high critical current density with good workability. be.
〔課題を解決するための手段とその作用〕すなわち本発
明方法は、金属管に超電導体を含む素線を複数本挿入し
、この金属管に圧縮加工を施して多芯超電導線を製造す
る方法において、多角形の素線を該素線の横断面の幾何
学的重心が同心円状に位置し、かつ、横断面が同心円の
中心に対して同じ向きであるように、配列し金属管に挿
入することを特徴とするものである。[Means for Solving the Problems and Their Effects] That is, the method of the present invention is a method of manufacturing a multicore superconducting wire by inserting a plurality of strands containing a superconductor into a metal tube and subjecting the metal tube to compression processing. , polygonal wires are arranged and inserted into a metal tube so that the geometric centers of gravity of the cross sections of the wires are located in concentric circles, and the cross sections are oriented in the same direction with respect to the center of the concentric circles. It is characterized by:
本発明の製造方法では、多角形の素線は同心円状に対し
て等方的に配置されているため、不定形な空隙はなくな
り、定形な空隙は別形状の素線を同心円状に配置して埋
め、複合体中の超電導体の占積率を高めることができる
。また、圧縮加工時には、同心円上には均等な加工歪が
加わるため、断線などの事故も減少し、加工歩留り及び
生産性が向上する。In the manufacturing method of the present invention, polygonal wires are arranged isotropically with respect to concentric circles, so there are no irregularly shaped voids, and regular voids are replaced by wires of different shapes arranged concentrically. This can increase the space factor of the superconductor in the composite. Furthermore, during compression processing, uniform processing strain is applied on the concentric circles, which reduces accidents such as wire breakage and improves processing yield and productivity.
以下図面に示した実施例に基づいて本発明を説明する。 The present invention will be described below based on embodiments shown in the drawings.
実施例1
外径25III11の銀棒に内径18Mの孔を開け、そ
の中にY:B’a:Cu=1:2:3に配合された酸化
物超電導体原料粉末を充填し、これを約50■長さに切
断して素線とし、この素線に縮径加工を施して2.5
m X 2.5 mの四角線とした。この四角線を約5
0m長さに切断して素線とし、第1図に示すように再び
外径36Illl、内径33III11の銀の管(42
)内に直径13m5の銀棒(6C)の回りに同心円状に
挿入配列し、これに縮径加工を施して外径0.5閣の丸
線を得た。比較のため素線の断面積が上記実施例の2.
5 ym X 2.5閣の四角線と同じである六角形状
の素線を作製し、第5図に示すように、外径36+os
、内径33mの根管(41)内に直径13■の銀棒(6
b)を配置し、その回りにこの六角素線を稠密配置し、
空隙部には直径1ffi11の銀棒を充填し、これに縮
径加工を行って外径0.5−の丸線を得た。上記の実施
例及び比較例の多芯超電導線材を各々150■長ずつと
り、850°Cの酸素雰囲気中で15時間加熱後室温ま
で冷却して測定試料とした。これらの試料に電流端子、
電圧端子を取付け、液体窒素中で臨界電流、臨界電流密
度を測定した。その結果を第1表に示す。Example 1 A hole with an inner diameter of 18M was made in a silver rod with an outer diameter of 25III11, and an oxide superconductor raw material powder containing Y:B'a:Cu=1:2:3 was filled in the hole, and this Cut the wire into a length of 50cm and reduce the diameter of the wire to 2.5mm.
It was made into a square wire of m x 2.5 m. Draw this square line about 5
The wire was cut into a length of 0 m, and as shown in Figure 1, it was cut into a silver tube (42
) were inserted and arranged concentrically around a silver rod (6C) with a diameter of 13 m5, and this was subjected to diameter reduction processing to obtain a round wire with an outer diameter of 0.5 mm. For comparison, the cross-sectional area of the wire is 2. of the above example.
A hexagonal wire, which is the same as the square wire of 5 ym
, a silver rod with a diameter of 13 cm (6
b), and densely arrange this hexagonal wire around it,
The void was filled with a silver rod having a diameter of 1ffi11, and the diameter of the rod was reduced to obtain a round wire with an outer diameter of 0.5-. The multicore superconducting wires of the above Examples and Comparative Examples were each taken in lengths of 150 cm, heated in an oxygen atmosphere at 850° C. for 15 hours, and then cooled to room temperature to prepare measurement samples. Current terminals on these samples,
A voltage terminal was attached, and the critical current and critical current density were measured in liquid nitrogen. The results are shown in Table 1.
なお、測定時の外部磁界はゼロであった。Note that the external magnetic field during the measurement was zero.
第 1 表
以上の結果より、超電導体の臨界電流密度は本実施例と
比較例においてほぼ同じであるが、超電導線全体の電流
密度は本実施例の方が優れている。From the results shown in Table 1, the critical current density of the superconductor is almost the same in this example and the comparative example, but the current density of the entire superconducting wire is superior in this example.
その理由は超電導体が均一加工されたことと超電導素線
の素綿密度が本実施例の方においてより高かったためで
あると考えられる。The reason for this is thought to be that the superconductor was uniformly processed and the fiber density of the superconducting wire was higher in this example.
実施例2
第2図は、本実施例における超電導素線の金属管内にお
ける配列を示す断面図である。すなわち、外径36Ii
II、内径33IIImの銅製管(43)内に第3図(
e)に示す、対辺8mの六角素線(35) 1本を中心
として、その外側に第3図(d)に示す対辺6III1
1の六角素線(34)を8本配置し、さらにその外側に
、第3図(C)に示す対辺6閣の三角素線(33) 8
本と、第3図Q))に示す対辺5閣の四角素tIA(3
2)8本を配置する。さらに、この金属管(43)の外
側に対辺4■の四角素線(32) 28本、第3図(a
)に示す一辺6mmの三角素線(31) 24本、最外
部に一辺6閣の逆三角素線(31)24本を配置し、外
径62閤、内径59閣の鋼管(44)に収納した。これ
らの多角素線は、第3図(a)〜(e)に示すように銅
製母材(2)中に径約120PMのNbT iフィラメ
ントの超電導体(1)が複数本埋め込まれたものである
。一方、比較例としては、第4図に示すように、外径6
21111.内径59m+*の銅管(41)に対辺6圓
の六角素線(34) 55本を配置し、空隙(51)に
は径1+mの銅線を充填した。これらの外径62ffI
11の金属管を外径50mmまでスェージャで加工後、
引抜き加工し、外径0.5躯とした後、350°C12
4時間の熱処理を施し、その後、外径0.3 餉に仕上
げた。これらの線材についての加工性及び超電導特性は
第2表に示すような結果であった。Example 2 FIG. 2 is a cross-sectional view showing the arrangement of superconducting strands in a metal tube in this example. That is, the outer diameter is 36Ii
II, Fig. 3 (
Centering on one hexagonal element wire (35) with the opposite side of 8m shown in e), the opposite side 6III1 shown in Fig. 3(d) is placed on the outside.
Eight hexagonal strands (34) of No. 1 are arranged, and further outside the hexagonal strands (34) of 8 are the triangular strands (33) of six opposite sides shown in Fig. 3 (C).
book and the square element tIA (3
2) Place 8 pieces. Furthermore, on the outside of this metal tube (43), there are 28 square wires (32) with opposite sides of 4 cm, as shown in Fig. 3(a).
), 24 triangular wires (31) each 6 mm on a side, and 24 inverted triangular wires (31) with 6 mm on each side are arranged at the outermost side, and are stored in a steel pipe (44) with an outer diameter of 62 mm and an inner diameter of 59 mm. did. These polygonal wires are composed of a plurality of NbTi filament superconductors (1) with a diameter of about 120 PM embedded in a copper base material (2), as shown in Figures 3(a) to (e). be. On the other hand, as a comparative example, as shown in FIG.
21111. Fifty-five hexagonal wires (34) each having an opposite side of 6 circles were placed in a copper tube (41) with an inner diameter of 59 m+*, and the void (51) was filled with copper wires with a diameter of 1+ m. These outer diameters are 62ffI
After processing the 11 metal tubes with a swager to an outer diameter of 50 mm,
After drawing and making the outer diameter 0.5, it was heated at 350°C12
Heat treatment was performed for 4 hours, and then the outer diameter of the porcelain was 0.3. The workability and superconducting properties of these wires were as shown in Table 2.
以上の結果より、本実施例においては、伸線中の断線及
びNbTiフィラメントの断線がほとんどなく、NbT
iフィラメントの直径変動もきわめて小さく、加工性が
よいことがわかる。また、本実施例の方がNbTiフィ
ラメントの複合数が多いため、超電導線のJcが高くな
るとともに、NbTiフィラメントそのもののJ、も高
くなっている。From the above results, in this example, there was almost no wire breakage during wire drawing and almost no wire breakage of the NbTi filament.
It can be seen that the diameter variation of the i-filament is also extremely small, indicating good workability. Further, in this example, since the number of combined NbTi filaments is larger, the Jc of the superconducting wire is higher, and the J of the NbTi filament itself is also higher.
以上説明したように本発明によれば、多角形の超電導素
線が、横断面の幾何学的重心が同心円状に位置し、かつ
、横断面が同心円の中心に対して同一方向を向くように
、金属管中に配列されて圧縮加工を受けるため、電流密
度が向上するとともに、加工性もよくなるという優れた
効果がある。As explained above, according to the present invention, polygonal superconducting strands are arranged so that the geometric centers of gravity of their cross sections are located in concentric circles, and the cross sections are oriented in the same direction with respect to the center of the concentric circles. Since they are arranged in a metal tube and subjected to compression processing, they have the excellent effect of improving current density and workability.
における超電導線の加工初期状態の一実施例の断面図、
第2図は他の実施例の断面図、第3図(a)〜(e)は
多角形超電導素線の断面図、第4図及び第5図は超電導
線の加工初期状態の従来例の断面図である。A cross-sectional view of an example of the initial processing state of a superconducting wire in
Figure 2 is a cross-sectional view of another embodiment, Figures 3(a) to (e) are cross-sectional views of a polygonal superconducting wire, and Figures 4 and 5 are of a conventional example of the initial state of superconducting wire processing. FIG.
■・・・超電導体、 2・・・母材、 6a、6b、6
C・・・棒、 31・・・三角素線、 32F・・四角
素線、33・・・三角素線、 34・・・六角素線、
35・・・六角素線、 41,42,43.44・・
・管、 51゜52・・・空隙。■...Superconductor, 2...Base material, 6a, 6b, 6
C... Rod, 31... Triangular wire, 32F... Square wire, 33... Triangular wire, 34... Hexagonal wire,
35...Hexagonal wire, 41,42,43.44...
・Pipe, 51°52... air gap.
Claims (1)
管に圧縮加工を施して多芯超電導線を製造する方法にお
いて、多角形の素線を、該素線の横断面の幾何学的重心
が同心円状に位置し、かつ、横断面が同心円の中心に対
して同じ向きであるように、配列し金属管に挿入するこ
とを特徴とする多芯超電導線の製造方法。In a method of manufacturing a multicore superconducting wire by inserting a plurality of strands containing a superconductor into a metal tube and subjecting the metal tube to compression processing, polygonal strands are 1. A method for producing a multicore superconducting wire, which comprises arranging and inserting the superconducting wire into a metal tube so that the centers of gravity of the wires are located in concentric circles and the cross sections are oriented in the same direction with respect to the center of the concentric circles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63154484A JPH01321032A (en) | 1988-06-22 | 1988-06-22 | Manufacture of multi-core superconducting wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63154484A JPH01321032A (en) | 1988-06-22 | 1988-06-22 | Manufacture of multi-core superconducting wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01321032A true JPH01321032A (en) | 1989-12-27 |
Family
ID=15585254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63154484A Pending JPH01321032A (en) | 1988-06-22 | 1988-06-22 | Manufacture of multi-core superconducting wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01321032A (en) |
-
1988
- 1988-06-22 JP JP63154484A patent/JPH01321032A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3699647A (en) | Method of manufacturing long length composite superconductors | |
CN102265420B (en) | Metal assembly constituting precursor for superconductor and method suitable for production of superconductor | |
JPH07105753A (en) | Oxide superconducting wire and its manufacture, and oxide superconducting coil | |
EP2099080A1 (en) | Nb3Sn superconducting wire manufactured by internal Sn process and precursor for manufacturing the same | |
JP2007227148A (en) | METHOD OF MANUFACTURING Nb3Sn SUPERCONDUCTIVE WIRE, AND PRECURSOR THEREFOR | |
JPS62170111A (en) | Manufacture of multicore fine wire super conductor | |
JPH01321032A (en) | Manufacture of multi-core superconducting wire | |
JP3520699B2 (en) | Oxide superconducting wire and manufacturing method thereof | |
RU171955U1 (en) | SUPERCONDUCTING COMPOSITE WIRE BASED ON MAGNESIUM DIBORIDE | |
JPH09167530A (en) | Oxide multi-core superconductive conductor and its manufacture | |
JP3127181B2 (en) | Method for manufacturing composite superconducting wire and method for manufacturing composite superconducting coil | |
JPH0765646A (en) | Oxide superconducting cable and manufacture of strand | |
JP2516642B2 (en) | Method for producing multi-core oxide superconducting wire | |
JPH03141515A (en) | Manufacture of nb-ti ac superconductive cable | |
JPH05266726A (en) | Oxide superconducting wire | |
JP4203313B2 (en) | Bi-based rectangular oxide superconductor | |
JPH065130A (en) | Composite multi-core nbti superconductive wire | |
JPH06309964A (en) | Superconducting composite billet | |
WO1999052157A1 (en) | Superconducting wires | |
JP2001006455A (en) | Ceramics compound superconducting wire | |
JPH04289615A (en) | Manufacture of compound superconducting rod | |
JPH06223653A (en) | Manufacture of nb 3 sn compound superconducting wire | |
JPS62272412A (en) | High strength superconductor | |
JPH03134917A (en) | Manufacture of ceramic superconductor | |
JPH09171727A (en) | Manufacture of metal-based superconductive wire |