JPS62272412A - High strength superconductor - Google Patents

High strength superconductor

Info

Publication number
JPS62272412A
JPS62272412A JP61115632A JP11563286A JPS62272412A JP S62272412 A JPS62272412 A JP S62272412A JP 61115632 A JP61115632 A JP 61115632A JP 11563286 A JP11563286 A JP 11563286A JP S62272412 A JPS62272412 A JP S62272412A
Authority
JP
Japan
Prior art keywords
superconducting wire
strength
superconducting
wire
stabilizing metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61115632A
Other languages
Japanese (ja)
Inventor
目黒 信一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP61115632A priority Critical patent/JPS62272412A/en
Publication of JPS62272412A publication Critical patent/JPS62272412A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 5、 発明の詳細な説明 〔産業上の利用分野〕 本発明は高強度超電導線に関するものである。[Detailed description of the invention] 5. Detailed description of the invention [Industrial application field] The present invention relates to high strength superconducting wire.

〔従来の技術〕[Conventional technology]

従来高強度超電導線を得る為には、超電導線の構造に応
じて下記(1)〜(5)の方法がとられていたつ(1)
第5図に示す様に、Cu1O中にNb −Tiフィラメ
ント2を埋込んだ構造の超電導線においては、最終焼鈍
後1〜20係の冷間加工を行ない、安定化金属であるC
u  1 f% H−1/2 Hの状態にして強度を持
たせる方法。
Conventionally, in order to obtain high-strength superconducting wire, the following methods (1) to (5) were used depending on the structure of the superconducting wire.
As shown in Fig. 5, in a superconducting wire having a structure in which Nb-Ti filaments 2 are embedded in Cu1O, cold working of 1 to 20 times is performed after the final annealing.
U 1 f% H - 1/2 A method to give strength to the state of H.

(2)第4図に示す様に、Gu / Nb −Ti超電
導線を複数本撚線にして使用する場合においては、Cu
 −N1  合金線6の周囲に超電導線7を撚線して強
度を持たせる方法。
(2) As shown in Figure 4, when multiple Gu/Nb-Ti superconducting wires are used as twisted wires, Cu
-N1 A method of twisting superconducting wires 7 around alloy wires 6 to provide strength.

(5)第5図に示す様に、Cu / Nb −Ti超電
導線7を安定化金属である高純度Ag5の中に埋込んで
使用する場合においては、ステンレス線8を平行に埋込
んで強度を持たせる方法。
(5) As shown in Fig. 5, when Cu/Nb-Ti superconducting wires 7 are embedded in high purity Ag5, which is a stabilizing metal, stainless steel wires 8 are embedded in parallel to improve strength. How to have it.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記(1)の方法においては、安定化金属がV4H〜1
4Hの状態になるため強度は高くなるが、安定化金属が
本来具備すべき電気伝導率、熱伝導率が損われ、安定性
の点で問題があった。
In the method (1) above, the stabilizing metal is V4H~1
Since it is in the 4H state, the strength is increased, but the electrical conductivity and thermal conductivity that the stabilizing metal should originally have are impaired, and there is a problem in terms of stability.

上記(2)の方法においては、全体としての平均強度は
確保されるが、撚線構造であるため局部的応力に弱く、
巻線された超電導コイルの剛性が損われ、又引張、圧縮
応力に対しては補強されるが、超電導通電時にコイル線
材に直角方向に作用するフープ力に対しては補強が充分
でない等強度面で問題があった。
In method (2) above, the average strength as a whole is ensured, but due to the twisted wire structure, it is vulnerable to local stress.
The rigidity of the wound superconducting coil is impaired, and although it is reinforced against tensile and compressive stress, the reinforcement is not sufficient against the hoop force that acts perpendicularly to the coil wire when superconducting current is applied. There was a problem.

上記(3)の方法においては、高純度A115&Cu/
Nb −Ti  超電導線7とステンレス線8を同時押
出する製造方法が通常行なわれているが、押出ダイス形
状が複雑になり、ダイスの寿命が短くて長尺線の製造に
適していなく、更に押出時のCu /Nb −Ti  
超電導線7およびステンレス線8の位置の制御が困難で
均一な複合超電導線が得られない等製造技術上問題が多
かっ念。
In the method (3) above, high purity A115&Cu/
A manufacturing method in which the Nb-Ti superconducting wire 7 and the stainless steel wire 8 are co-extruded is usually carried out, but the shape of the extrusion die is complicated and the life of the die is short, making it unsuitable for manufacturing long wires. Cu/Nb-Ti
There are many manufacturing technology problems, such as difficulty in controlling the positions of the superconducting wire 7 and the stainless steel wire 8, making it impossible to obtain a uniform composite superconducting wire.

以上の様に高強度超電導線を得るために従来性なわれて
きた方法は超電導線の安定性、強度或いは製造技術の点
で問題があり、高強度で安定性に優れておりかつ通常の
製造工程で製造が可能な超電導線の開発が切望されてい
次。
As mentioned above, conventional methods for obtaining high-strength superconducting wires have problems in terms of stability, strength, or manufacturing technology. There is an urgent need for the development of superconducting wires that can be manufactured through a process.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は以上の問題点を解決するために安定化金属マト
リックス中に超電導性フィラメントと安定化金属よりも
強度の高い複数の金属フィラメントを長手方向に連続し
た状態で埋込んだ断面構造を有することを特徴とする高
強度超電導線を開発したものである。
In order to solve the above problems, the present invention has a cross-sectional structure in which a superconducting filament and a plurality of metal filaments having higher strength than the stabilizing metal are embedded continuously in the longitudinal direction in a stabilizing metal matrix. This is a high-strength superconducting wire that has been developed.

〔作 用〕[For production]

第1図に示す様に、安定化金属であるCu  Lのマト
リックス中にNb −Ti  フィラメント2とステン
レス、Cu −N1  合金線等の補強フィラメント3
をフィラメント状に配置する事により、安定性に優れた
高強度超電導線が得られた。
As shown in Figure 1, a Nb-Ti filament 2 and a reinforcing filament 3 such as stainless steel or Cu-N1 alloy wire are present in a matrix of Cu L, which is a stabilizing metal.
By arranging them in the form of filaments, a high-strength superconducting wire with excellent stability was obtained.

上記構造の超電導線を得る為には、第5図に示した従来
の超電導線ビレットを組立てる工程において、Hb −
Ti  棒を挿入するかわりに所望本数の補強材を挿入
すればよく、特別な製造工程を必要としない。又各々の
フィラメントの配置および本数は任意であり何ら制限を
加えるものではない。
In order to obtain a superconducting wire with the above structure, in the process of assembling the conventional superconducting wire billet shown in FIG.
Instead of inserting Ti rods, a desired number of reinforcing members may be inserted, and no special manufacturing process is required. Further, the arrangement and number of each filament are arbitrary and are not limited in any way.

更に第2図に示す様に本発明の超電導線4を別の安定化
金属である高純度A15の中に半田付や同時押出により
埋込んだ複合超電導線を得る事も可能である。或いは同
じく本発明の超電導線1+i複数本撚線した超電導線の
製造も可能である。
Furthermore, as shown in FIG. 2, it is also possible to obtain a composite superconducting wire in which the superconducting wire 4 of the present invention is embedded in high-purity A15, which is another stabilizing metal, by soldering or coextrusion. Alternatively, it is also possible to manufacture a superconducting wire in which a plurality of superconducting wires 1+i of the present invention are twisted.

〔実施例1〕 外径200M、内径166mmの無酸素鋼管の中に、対
辺距離157111111の六角形状断面で内径17醜
の穴を有する無酸素鋼管55本を挿入し、上記穴の中に
外径166閣のNb −Ti  棒を19本、同じく外
径16.6.mmのCu −50%N1合金棒56本を
配置した超電導ビレットを作製した。上記ビレットを熱
間押出により外径50簡に押出した後、圧延、伸線、熱
処理、ツイストを施し直径1饋の超電導線4を得た。こ
の超電導線14t−3000で2時間焼鈍後引張試験を
行ない、39KI!f/−の強度を得た。これに対して
、Cu −Ni  合金棒のかわりに無酸素銅を用いた
従来構造の超電導線7を作製し、500℃で2時間焼鈍
後引張試験を行なっ次が、21に9f/−の強度しか得
られなかった。そこで焼鈍後さらに15%の冷間加工を
加えて引張試験を行なったところ38に4r/−の強度
が得られた。次に超電導線の安定性を評価する為残留抵
抗の測定を行なったところ、本発明の超電導線4では1
73μΩ/mであったが、従来構造の超電導線7に15
%の冷間加工を加えた物では510μΩ/mであり、後
者は安定性の点で劣っていた。更に従来構造の超電導線
7を焼鈍後6%冷間加工したところ残留抵抗は175μ
Ω/mとなったが、強度は51に9f/−と本発明の超
電導線より低い値しか得られなかった。
[Example 1] Into an oxygen-free steel pipe with an outer diameter of 200M and an inner diameter of 166mm, 55 oxygen-free steel pipes having a hexagonal cross section with a distance across flats of 157111111 and a hole with an inner diameter of 17 mm were inserted, and the outer diameter was 19 Nb-Ti rods with a diameter of 166mm, also with an outer diameter of 16.6mm. A superconducting billet was prepared in which 56 mm Cu-50%N1 alloy rods were arranged. The billet was extruded by hot extrusion into an outer diameter of 50 mm, followed by rolling, wire drawing, heat treatment, and twisting to obtain a superconducting wire 4 with a diameter of 1 mm. A tensile test was performed on this 14t-3000 superconducting wire after annealing for 2 hours, and the result was 39KI! An intensity of f/- was obtained. On the other hand, we fabricated a superconducting wire 7 with a conventional structure using oxygen-free copper instead of the Cu-Ni alloy rod, annealed it at 500°C for 2 hours, and then conducted a tensile test. I could only get it. Therefore, after annealing, 15% cold working was added and a tensile test was conducted, and a strength of 4r/- was obtained for 38. Next, in order to evaluate the stability of the superconducting wire, residual resistance was measured, and it was found that the superconducting wire 4 of the present invention had a
73 μΩ/m, but 15
% cold working was 510 μΩ/m, and the latter was inferior in stability. Furthermore, when superconducting wire 7 with a conventional structure was cold-worked by 6% after annealing, the residual resistance was 175μ.
Ω/m, but the strength was only 51 to 9 f/-, which is lower than the superconducting wire of the present invention.

〔実施例2〕 実施例1で得られた直径1諷の超電導線4と99995
%の純度を有する高純度A1!5を同時押出し、厚さ1
5m、幅5taaのM安定化超電導線を得た。この線材
を引張試験したところ7.5KIif/Jの強度が得ら
れた。これに対して実施例1における従来構造の超電導
線7を用いてM安定化超電導線を製造したところL)、
 5 K9 f /−の強度しか得られなかった。
[Example 2] Superconducting wire 4 and 99995 with a diameter of 1 length obtained in Example 1
Co-extruded high purity A1!5 with purity of %, thickness 1
An M-stabilized superconducting wire with a width of 5 m and a width of 5 taa was obtained. When this wire was subjected to a tensile test, a strength of 7.5 KIif/J was obtained. On the other hand, when an M-stabilized superconducting wire was manufactured using the superconducting wire 7 of the conventional structure in Example 1, L)
Only an intensity of 5 K9 f /- was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明により、従来構造の超電導線7と同一の製造工程
で製造され次にもかかわらず、著しく強度が高くかつ安
定性に優れた超電導線4が得られる。父上記超電導線ヰ
は内部に補強材料を含んでおり、更に別の安定化金属5
に埋込む工程が非常に簡略化された。
According to the present invention, a superconducting wire 4 having extremely high strength and excellent stability can be obtained despite being manufactured in the same manufacturing process as the superconducting wire 7 having a conventional structure. The above superconducting wire contains a reinforcing material inside, and further contains another stabilizing metal 5.
The embedding process has been greatly simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の超電導線の構造を示す断面図
である。 第5図は従来の高強度超電導線及び通常強度の超電導線
の構造を示す断面図、第4図、第5図は従来の高強度超
電導線の構造を示す断面図である。 1・・・Cu 、  2・・・超電導性(Nb−Ti)
フィラメント、5・・・補強フィラメント(ステンレス
、C:u −N1 合金線等)、4 ・−Cu / N
b −Ti超電導線、5・・・高純度/d、  6・・
・Gu −Ni 合金線、7・・・CU/ Nb −T
i超電導線、8・・・ステンレス線第1図     第
2図 第3図  第4図 第5図 8=ステンレス
1 and 2 are cross-sectional views showing the structure of the superconducting wire of the present invention. FIG. 5 is a cross-sectional view showing the structure of a conventional high-strength superconducting wire and a normal-strength superconducting wire, and FIGS. 4 and 5 are cross-sectional views showing the structure of a conventional high-strength superconducting wire. 1...Cu, 2...Superconductivity (Nb-Ti)
Filament, 5... Reinforcement filament (stainless steel, C:u-N1 alloy wire, etc.), 4 -Cu/N
b -Ti superconducting wire, 5...high purity/d, 6...
・Gu-Ni alloy wire, 7...CU/Nb-T
i Superconducting wire, 8... Stainless steel wire Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 8 = Stainless steel

Claims (2)

【特許請求の範囲】[Claims] (1)安定化金属マトリックス中に超電導性フィラメン
トと安定化金属よりも強度の高い複数の金属フィラメン
トを長手方向に連続した状態で埋込んだ断面構造を有す
ることを特徴とする高強度超電導線。
(1) A high-strength superconducting wire characterized by having a cross-sectional structure in which a superconducting filament and a plurality of metal filaments having higher strength than the stabilizing metal are embedded continuously in the longitudinal direction in a stabilizing metal matrix.
(2)上記安定化金属マトリックスが内部層と外部層か
らなり、そのいずれかの層に上記両フィラメントが埋込
まれていることを特徴とする特許請求の範囲第1項記載
の高強度超電導線。
(2) The high-strength superconducting wire according to claim 1, wherein the stabilizing metal matrix consists of an inner layer and an outer layer, and both of the filaments are embedded in one of the layers. .
JP61115632A 1986-05-20 1986-05-20 High strength superconductor Pending JPS62272412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61115632A JPS62272412A (en) 1986-05-20 1986-05-20 High strength superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61115632A JPS62272412A (en) 1986-05-20 1986-05-20 High strength superconductor

Publications (1)

Publication Number Publication Date
JPS62272412A true JPS62272412A (en) 1987-11-26

Family

ID=14667450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61115632A Pending JPS62272412A (en) 1986-05-20 1986-05-20 High strength superconductor

Country Status (1)

Country Link
JP (1) JPS62272412A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203703A (en) * 2002-12-26 2004-07-22 Chubu Electric Power Co Inc Bi BASED OXIDE SUPERCONDUCTOR
US8173901B2 (en) * 2007-04-18 2012-05-08 European Advanced Superconductor Gmbh & Co. Kg Multifilament superconductor, as well as method for its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004203703A (en) * 2002-12-26 2004-07-22 Chubu Electric Power Co Inc Bi BASED OXIDE SUPERCONDUCTOR
US8173901B2 (en) * 2007-04-18 2012-05-08 European Advanced Superconductor Gmbh & Co. Kg Multifilament superconductor, as well as method for its production

Similar Documents

Publication Publication Date Title
US4959279A (en) Superconducting wire containing multifilamentary superconducting alloy
JPS61194155A (en) Production of nb3sn superconductive wire
JPS62170111A (en) Manufacture of multicore fine wire super conductor
US4447946A (en) Method of fabricating multifilament intermetallic superconductor
JPS62272412A (en) High strength superconductor
JPH08180752A (en) Nb3sn superconductive wire and manufacture thereof
JP3520699B2 (en) Oxide superconducting wire and manufacturing method thereof
JPH06325634A (en) Multi-core oxide superconducting wire
JPH09167531A (en) Manufacture of multi-conductor nb3sn superconducting wire
JPH09282953A (en) Niobium 3 aluminum superconductive wire rod and manufacture thereof
JPH0773757A (en) Manufacture of oxide superconductor
JP3602151B2 (en) Method for producing Nb (3) Sn compound superconducting wire
JP3701349B2 (en) Superconducting wire manufacturing method and superconducting wire
JPH0896633A (en) Manufacture of nb3sn superconducting wire
JPS58169712A (en) Method of producing composite superconductive wire
JPH1012057A (en) Nb3al-type superconductive wire material and manufacture thereof
JPH09171727A (en) Manufacture of metal-based superconductive wire
JPH04289615A (en) Manufacture of compound superconducting rod
JPH09153310A (en) High-strength superconducting wire
JPS6113508A (en) Method of producing low copper ratio nb3sn superconductive wire
JPH0559527B2 (en)
JPH03230422A (en) Manufacture of aluminium stabilized superconducting wire
JPH09120722A (en) Manufacture of metal superconductive wire
JPS6050012B2 (en) Manufacturing method of composite superconducting wire
JPS62268008A (en) Ultrafine superconductor