JPH053192A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH053192A
JPH053192A JP27924691A JP27924691A JPH053192A JP H053192 A JPH053192 A JP H053192A JP 27924691 A JP27924691 A JP 27924691A JP 27924691 A JP27924691 A JP 27924691A JP H053192 A JPH053192 A JP H053192A
Authority
JP
Japan
Prior art keywords
type
layer
region
epitaxial layer
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27924691A
Other languages
Japanese (ja)
Inventor
Takeshi Takanori
健 高乗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP27924691A priority Critical patent/JPH053192A/en
Publication of JPH053192A publication Critical patent/JPH053192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To enable an insulating film on a solid intersection of two conductive paths to be formed thick and the conductive paths to be lessened in resistance. CONSTITUTION:An N-type epitaxial layer 3 formed on a P-type silicon substrate 1 is separated into island regions 30 and 31 by a P-type isolating region 4. N-type buried layers 2 and 21 are selectively formed spreading over the P-type silicon substrate 1 in the island regions 30 and 31 and the N-type epitaxial layer 3, and an N-type high concentration region 12 is formed in the island region 30 as linked to the buried layer 2. Electrode wiring layers 7 and 71 are formed on contact widows located on both sides of the high concentration region 12, and a wiring layer 8 is arranged on the N-type high concentration region 12 through the intermediary of a silicon oxide film 17. The silicon oxide film 17 on the high concentration region 12 is formed as thick as a silicon oxide film 10 of the N-type epitaxial layer 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体基板内に作り
込まれた第1の導電路上に絶縁膜を設け、さらに、この
上に第2の導電路を形成し、両者を立体的に交差させた
場合の絶縁膜のサージ破壊を防ぐことができ、また、半
導体基板内に作り込まれる導電路を低抵抗とすることが
可能な半導体集積回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides an insulating film on a first conductive path formed in a semiconductor substrate, and further forms a second conductive path on the insulating film so as to three-dimensionally intersect the two. The present invention relates to a semiconductor integrated circuit capable of preventing a surge breakdown of an insulating film in the case of being made to have a low resistance and a conductive path formed in a semiconductor substrate.

【0002】[0002]

【従来の技術】半導体集積回路においては、2つの導電
路が交差することが多々あり、両者を立体的に交差させ
る場合、一方の導電路をトランジスタのエミッタと同時
にシリコン基板内に形成されるn形拡散層で形成し、他
方の導電路をn形拡散層の上を覆う酸化シリコン膜上に
配線層を設けて形成することにより両者を立体的に交差
させる構造が広く採用されている。
2. Description of the Related Art In a semiconductor integrated circuit, two conductive paths often cross each other. When the two conductive paths are crossed three-dimensionally, one conductive path is formed in a silicon substrate simultaneously with the emitter of a transistor. A structure in which the two conductive paths are three-dimensionally crossed by forming a wiring layer on the silicon oxide film covering the n-type diffusion layer and forming the other conductive path on the other side is widely adopted.

【0003】図5は、2つの導電路の立体交差部の従来
の構造例を示す断面図である。この構造はp形単結晶シ
リコン基板1に埋め込み層2を形成し、さらに、n形シ
リコンエピタキシャル層3を成長させ、この後n形シリ
コンエピタキシャル層3を貫通し、p形単結晶シリコン
基板1まで達する深さのp形分離層4を形成して、n形
シリコンエピタキシャル層を所定数の島領域とし、この
島領域の1つの中にトランジスタのベース領域を形成す
る工程で同時にp形拡散層5を形成し、さらに、このp
形拡散層の中にトランジスタのエミッタ領域を形成する
工程で、同時に高濃度のn形拡散層6を形成し、最後に
n形拡散層6の両側にコンタクト窓をあけて電極配線層
7と71の一端を接続するとともに、n形拡散層6の上
に位置する酸化シリコン膜9の上に、このn形拡散層6
と直交する関係で配線層8を形成する過程を経ることに
よって得られる。これにより、配線層7、n形拡散層6
および配線層71で形成される導電路と、配線層8で形
成される導電路を立体的に交差させた構造が得られてい
る。
FIG. 5 is a sectional view showing an example of a conventional structure of a three-dimensional intersection of two conductive paths. In this structure, a buried layer 2 is formed on a p-type single crystal silicon substrate 1, an n-type silicon epitaxial layer 3 is further grown, and then the n-type silicon epitaxial layer 3 is penetrated to reach the p-type single crystal silicon substrate 1. The p-type isolation layer 4 is formed to a depth reaching the n-type silicon epitaxial layer to form a predetermined number of island regions, and the p-type diffusion layer 5 is simultaneously formed in the step of forming the transistor base region in one of the island regions. To form p
In the step of forming the transistor emitter region in the n-type diffusion layer, the high-concentration n-type diffusion layer 6 is formed at the same time, and finally, contact windows are opened on both sides of the n-type diffusion layer 6 to form the electrode wiring layers 7 and 71. Of the n-type diffusion layer 6 on the silicon oxide film 9 located on the n-type diffusion layer 6.
It is obtained by going through the process of forming the wiring layer 8 in a relationship orthogonal to. As a result, the wiring layer 7 and the n-type diffusion layer 6
Further, a structure in which the conductive path formed by the wiring layer 71 and the conductive path formed by the wiring layer 8 are three-dimensionally intersected is obtained.

【0004】[0004]

【発明が解決しようとする課題】ところで、この構造で
は、n形拡散層6を作るとき、その上のシリコン表面を
覆っている酸化シリコン膜は除去され、n形拡散層6を
形成する過程で酸化シリコン膜9が形成されるため、n
形シリコンエピタキシャル層3の上にある酸化シリコン
膜10(厚さ約1μm)と比べてn形拡散層6を覆う酸
化シリコン膜9(厚さ0.1〜0.5μm)は薄くな
る。したがって酸化シリコン膜9で絶縁されている2つ
の導電路の間にサージ電圧がかかった場合、両者を絶縁
している酸化シリコン膜9にサージ破壊が起る不都合が
生じる。
By the way, in this structure, when the n-type diffusion layer 6 is formed, the silicon oxide film covering the silicon surface on the n-type diffusion layer 6 is removed, and in the process of forming the n-type diffusion layer 6. Since the silicon oxide film 9 is formed, n
The silicon oxide film 9 (thickness 0.1 to 0.5 μm) covering the n-type diffusion layer 6 becomes thinner than the silicon oxide film 10 (thickness about 1 μm) on the silicon epitaxial layer 3. Therefore, when a surge voltage is applied between the two conductive paths insulated by the silicon oxide film 9, the silicon oxide film 9 which insulates the two conductive layers from each other is inconveniently damaged by the surge.

【0005】本発明は、上記の不都合を排除することが
できる半導体集積回路、すなわち、2つの導電路の立体
的交差に関係している拡散層上の酸化シリコン膜の厚み
をサージ破壊の起り難い厚みとすることができ、さら
に、シリコン基板内に形成される半導体の抵抗値を低く
することができる半導体集積回路を提供するものであ
る。
The present invention is capable of eliminating the above-mentioned inconvenience, that is, the thickness of the silicon oxide film on the diffusion layer related to the three-dimensional intersection of two conductive paths is less likely to cause surge breakdown. (EN) Provided is a semiconductor integrated circuit which can have a thickness and can reduce the resistance value of a semiconductor formed in a silicon substrate.

【0006】[0006]

【課題を解決するための手段】本発明の半導体集積回路
は、一導電形のシリコン基板上に形成されたこれとは逆
導電形のエピタキシャル層が複数個の島領域に分離形成
され、前記シリコン基板と前記エピタキシャル層にまた
がって逆導電形の埋め込み層が選択的に形成され、同島
領域の少なくとも1つの中に逆導電形で、前記エピタキ
シャル層よりも濃度の高い高濃度領域が前記埋め込み層
に繋って形成され、前記高濃度領域の両側のコンタクト
窓に電極が、同高濃度領域の上に絶縁膜を介して配線層
が形成されるとともに、前記高濃度領域上の絶縁膜が前
記エピタキシャル層上の絶縁膜と同じ膜厚であるもので
ある。
According to the semiconductor integrated circuit of the present invention, an epitaxial layer of opposite conductivity type formed on a silicon substrate of one conductivity type is separately formed in a plurality of island regions. A buried layer having a reverse conductivity type is selectively formed over the substrate and the epitaxial layer, and a high concentration region having a reverse conductivity type and having a higher concentration than the epitaxial layer is formed in the buried layer in at least one of the island regions. Electrodes are formed in contact windows on both sides of the high concentration region, a wiring layer is formed on the high concentration region via an insulating film, and the insulating film on the high concentration region is epitaxially formed. It has the same film thickness as the insulating film on the layer.

【0007】[0007]

【作用】この構造によれば、高濃度領域と埋め込み層の
両方を用いてクロス配線を形成するため抵抗値を小さく
することができるとともに、交差する二つの導電路間の
絶縁膜の厚さを厚くしているため、この絶縁膜をサージ
破壊等から守ることができる。
According to this structure, since the cross wiring is formed by using both the high-concentration region and the buried layer, the resistance value can be reduced and the thickness of the insulating film between two intersecting conductive paths can be reduced. Since it is thick, this insulating film can be protected from surge damage or the like.

【0008】[0008]

【実施例】本発明の半導体集積回路の一実施例の断面図
を図1の左側に示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A cross-sectional view of one embodiment of the semiconductor integrated circuit of the present invention is shown on the left side of FIG.

【0009】この構造は、p形単結晶シリコン基板1の
上に形成されたn形シリコンエピタキシャル層3が、p
形単結晶シリコン基板1に到達するp形分離領域4によ
り島領域30と31に分離され、p形単結晶シリコン基
板1とn形シリコンエピタキシャル層3にまたがってn
形埋め込み層2と21が選択的に形成され、島領域30
の中にn形の高濃度領域12が埋め込み層2に繋って形
成され、高濃度領域12の両側のコンタクト窓に電極配
線層7と71が形成され、n形の高濃度領域12の上に
酸化シリコン膜17を介して配線層8が形成されるとと
もに、高濃度領域12の上の酸化シリコン膜17がn形
シリコンエピタキシャル層3の上の酸化シリコン膜10
と同じ膜厚であるものである。
In this structure, the n-type silicon epitaxial layer 3 formed on the p-type single crystal silicon substrate 1 is p-type.
Is separated into island regions 30 and 31 by the p-type isolation region 4 reaching the p-type single crystal silicon substrate 1, and n is formed across the p-type single crystal silicon substrate 1 and the n-type silicon epitaxial layer 3.
Shaped buried layers 2 and 21 are selectively formed to form island regions 30.
An n-type high-concentration region 12 is connected to the buried layer 2, and electrode wiring layers 7 and 71 are formed in contact windows on both sides of the high-concentration region 12. And the wiring layer 8 is formed via the silicon oxide film 17, and the silicon oxide film 17 on the high concentration region 12 is formed on the n-type silicon epitaxial layer 3.
It has the same film thickness as.

【0010】次に上記の構造を得るための製造方法を図
2〜図4の工程断面図を参照して具体的に説明する。
Next, a manufacturing method for obtaining the above structure will be specifically described with reference to process sectional views of FIGS.

【0011】まず、p形単結晶シリコン基板1の中に、
酸化シリコン膜をマスクとしてアンチモン(Sb)ある
いは砒素(As)をスピンオン法やイオン注入法あるい
はカプセル法により選択的にドープしてn形埋め込み層
2と21を形成し、こののち表面の酸化シリコン膜をす
べて除去し、引き続いて表面全域に比抵抗が0.5〜5
Ωcmのn形シリコンエピタキシャル層3を0.5〜10
μmの厚さに成長させる。次いで、n形シリコンエピタ
キシャル層3の表面全域に厚さが0.3〜2μmの酸化
シリコン膜11を形成する。n形埋め込み層2と21の
周囲を取りまくようにして酸化シリコン膜11を選択的
に除去し、露出させたn形シリコンエピタキシャル層3
の中へ、熱拡散法あるいはイオン注入法によりボロン
(B)をドープしてp形分離領域4を形成し、n形シリ
コンエピタキシャル層3を島領域30と31に分離する
(図2)。
First, in the p-type single crystal silicon substrate 1,
Using the silicon oxide film as a mask, antimony (Sb) or arsenic (As) is selectively doped by the spin-on method, the ion implantation method, or the encapsulation method to form the n-type buried layers 2 and 21, and then the silicon oxide film on the surface. Are removed, and the specific resistance is continuously 0.5 to 5 over the entire surface.
0.5-10 n-type silicon epitaxial layer 3 of Ωcm
Grow to a thickness of μm. Then, a silicon oxide film 11 having a thickness of 0.3 to 2 μm is formed on the entire surface of the n-type silicon epitaxial layer 3. The exposed n-type silicon epitaxial layer 3 is formed by selectively removing the silicon oxide film 11 so as to surround the n-type buried layers 2 and 21.
Then, a p-type isolation region 4 is formed by doping boron (B) by a thermal diffusion method or an ion implantation method, and the n-type silicon epitaxial layer 3 is separated into island regions 30 and 31 (FIG. 2).

【0012】次に、導電路の立体的交差部を形成するn
形シリコンエピタキシャル層の島領域30のほぼ全域お
よびトランジスタを形成するn形シリコンエピタキシャ
ル層の島領域31の一部の表面の酸化シリコン膜11を
除去し、熱拡散法あるいはイオン注入法により、リン
(P)をドープし、n形埋め込み層2と21に達する深
さまでリンを拡散させ高濃度のn形領域12と13を形
成する。なお、高濃度n形領域13は、トランジスタ形
成時のn形埋め込み層21に繋るコレクタウォール拡散
領域である(図3)。
Next, n forming a three-dimensional intersection of the conductive paths.
The silicon oxide film 11 on almost the entire area of the island region 30 of the silicon epitaxial layer and a part of the surface of the island region 31 of the n-type silicon epitaxial layer forming a transistor is removed, and phosphorus () is formed by a thermal diffusion method or an ion implantation method. P) is doped and phosphorus is diffused to a depth reaching the n-type buried layers 2 and 21 to form high-concentration n-type regions 12 and 13. The high-concentration n-type region 13 is a collector wall diffusion region connected to the n-type buried layer 21 during transistor formation (FIG. 3).

【0013】次に酸化シリコン膜11をすべて除去した
後、新たに表面上に厚さが0.8〜2μmの酸化シリコ
ン膜10を形成する。そしてトランジスタ形成用のn形
シリコンエピタキシャル層の島領域31の中にベース領
域14とエミッタ領域15を形成する。この工程で酸化
シリコン膜には断差が生じる(図4)。
Next, after all the silicon oxide film 11 is removed, a silicon oxide film 10 having a thickness of 0.8 to 2 μm is newly formed on the surface. Then, the base region 14 and the emitter region 15 are formed in the island region 31 of the n-type silicon epitaxial layer for forming a transistor. In this process, a difference occurs in the silicon oxide film (FIG. 4).

【0014】この後、高濃度n形領域12の両側および
トランジスタのエミッタ領域15、ベース領域14、コ
レクタ領域となる高濃度n形領域13に、コンタクト窓
を形成し、コンタクト部分および高濃度n形領域12を
覆う酸化シリコン膜17上に高純度のアルミニウム(A
l)あるいは、シリコンを重量比で1〜2%含んだアル
ミニウムを用いて電極配線層7,71,16および配線
層8を形成することにより図1で示すように、電極配線
7,高濃度n形領域12および電極配線層71で形成さ
れる第1の導電路と、配線層8で形成される第2導電路
が厚い酸化シリコン膜17で絶縁されて交差する構造を
もつ半導体集積回路が形成される。
Thereafter, contact windows are formed on both sides of the high-concentration n-type region 12 and in the high-concentration n-type region 13 serving as the emitter region 15, the base region 14, and the collector region of the transistor, and the contact portion and the high-concentration n-type region are formed. On the silicon oxide film 17 covering the region 12, high-purity aluminum (A
l) Alternatively, as shown in FIG. 1, the electrode wiring layers 7, 71, 16 and the wiring layer 8 are formed by using aluminum containing silicon in an amount of 1 to 2% by weight. A semiconductor integrated circuit having a structure in which the first conductive path formed by the shaped region 12 and the electrode wiring layer 71 and the second conductive path formed by the wiring layer 8 are insulated by the thick silicon oxide film 17 and intersect with each other is formed. To be done.

【0015】[0015]

【発明の効果】本発明によれば、シリコン基板中の拡散
層を利用して形成される第1の導電路と、この拡散層の
上部に位置する配線層で形成される第2の導電路との間
にあって、両者を絶縁する絶縁膜の厚さがn形シリコン
エピタキシャル層上を覆う絶縁膜の厚さと等しいため、
従来の構造により形成される絶縁膜よりも極めて厚くな
るためサージ電圧による破壊の問題を排除する効果が奏
される。
According to the present invention, the first conductive path formed by utilizing the diffusion layer in the silicon substrate and the second conductive path formed by the wiring layer located above the diffusion layer. And the thickness of the insulating film that insulates the two is equal to the thickness of the insulating film that covers the n-type silicon epitaxial layer.
Since it is much thicker than the insulating film formed by the conventional structure, it is effective in eliminating the problem of breakdown due to surge voltage.

【0016】また、導電路を形成する拡散層は、高濃度
領域を埋め込みにより形成されるのでその不純物濃度が
高く、かつ、拡散深さが深いためシート抵抗が5〜15
Ω/□となり、シート抵抗が15〜20Ω/□のエミッ
タ拡散層を導電路とする従来の構造にくらべて導電路の
抵抗値が低い交差部を実現する効果も奏される。
Further, since the diffusion layer forming the conductive path is formed by burying the high concentration region, the impurity concentration is high and the diffusion depth is deep, so that the sheet resistance is 5 to 15.
Ω / □, and the effect of realizing an intersection where the resistance value of the conductive path is lower than that of the conventional structure in which the emitter diffusion layer having a sheet resistance of 15 to 20 Ω / □ is used as the conductive path.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例にかかる二つの導電路の立体
交差部およびトランジスタの断面図
FIG. 1 is a cross-sectional view of a three-dimensional intersection of two conductive paths and a transistor according to an embodiment of the present invention.

【図2】本発明の構造を得るための製造工程の断面図FIG. 2 is a sectional view of a manufacturing process for obtaining the structure of the present invention.

【図3】本発明の構造を得るための製造工程の断面図FIG. 3 is a sectional view of a manufacturing process for obtaining the structure of the present invention.

【図4】本発明の構造を得るための製造工程の断面図FIG. 4 is a sectional view of a manufacturing process for obtaining the structure of the present invention.

【図5】従来のエミッタ拡散層を導電路とする二つの導
電路の立体交差部の断面構造図
FIG. 5 is a cross-sectional structure diagram of a three-dimensional intersection of two conventional conductive paths using a conventional emitter diffusion layer as a conductive path.

【符号の説明】[Explanation of symbols]

1 p形単結晶シリコン基板 2,21 n形埋め込み層 3 n形シリコンエピタキシャル層 4 p形分離領域 5 p形拡散層 6 n形拡散層 7,71 電極配線層 8 配線層 9 n形拡散層の上の酸化シリコン膜 10 n形エピタキシャル層上の酸化シリコン膜 11 酸化シリコン膜 12 高濃度n形領域 13 高濃度n形領域(コレクタウォール) 14 ベース領域 15 エミッタ領域 16 トランジスの電極 17 高濃度領域上の酸化シリコン膜 30,31 島領域 1 p-type single crystal silicon substrate 2,21 n-type buried layer 3 n-type silicon epitaxial layer 4 p-type isolation region 5 p-type diffusion layer 6 n-type diffusion layer 7,71 electrode wiring layer 8 wiring layer 9 n-type diffusion layer Upper silicon oxide film 10 Silicon oxide film on n-type epitaxial layer 11 Silicon oxide film 12 High concentration n-type region 13 High concentration n-type region (collector wall) 14 Base region 15 Emitter region 16 Transistor electrode 17 On high concentration region Oxide silicon film 30, 31 Island region

Claims (1)

【特許請求の範囲】 【請求項1】一導電形のシリコン基板上に形成されたこ
れとは逆導電形のエピタキシャル層が複数個の島領域に
分離形成され、前期シリコン基板とエビタキシャル層に
またがって逆導電形の埋め込み層が選択的に形成され、
同島領域の少なくとも1つの中に逆導電形で、前記エピ
タキシャル層よりも濃度の高い高濃度領域が前記埋め込
み層に繋って形成され、前記高濃度領域の両側のコンタ
クト窓に電極が、同高濃度領域の上に絶縁膜を介して配
線層が形成されるとともに、前記高濃度領域上の絶縁膜
が、前記エピタキシャル層上の絶縁膜と同じ膜厚である
ことを特徴とする半導体集積回路。
Claims: What is claimed is: 1. An epitaxial layer of opposite conductivity type formed on a silicon substrate of one conductivity type is separately formed into a plurality of island regions, and is formed on the silicon substrate and the epitaxial layer in the first half. A buried layer of opposite conductivity type is selectively formed over
A high-concentration region having a reverse conductivity type and a concentration higher than that of the epitaxial layer is formed in at least one of the island regions so as to be connected to the buried layer, and electrodes are formed in contact windows on both sides of the high-concentration region at the same height. A wiring layer is formed on the concentration region via an insulating film, and the insulating film on the high concentration region has the same thickness as the insulating film on the epitaxial layer.
JP27924691A 1991-10-25 1991-10-25 Semiconductor integrated circuit Pending JPH053192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27924691A JPH053192A (en) 1991-10-25 1991-10-25 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27924691A JPH053192A (en) 1991-10-25 1991-10-25 Semiconductor integrated circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20458683A Division JPS6095939A (en) 1983-10-31 1983-10-31 Manufacture of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH053192A true JPH053192A (en) 1993-01-08

Family

ID=17608477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27924691A Pending JPH053192A (en) 1991-10-25 1991-10-25 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH053192A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5153491A (en) * 1974-09-10 1976-05-11 Philips Nv
JPS5758338A (en) * 1980-09-26 1982-04-08 Hitachi Ltd Semiconductor integrated device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5153491A (en) * 1974-09-10 1976-05-11 Philips Nv
JPS5758338A (en) * 1980-09-26 1982-04-08 Hitachi Ltd Semiconductor integrated device

Similar Documents

Publication Publication Date Title
US4051506A (en) Complementary semiconductor device
US3617822A (en) Semiconductor integrated circuit
JP2605030B2 (en) Quadrature bipolar transistor
JPH058582B2 (en)
JPS6224944B2 (en)
JP2002190593A (en) Insulated gate fet and method of manufacturing the same
JPS5811743B2 (en) Handout Taisouchino Seizouhouhou
US4692784A (en) Dielectric insulation type semiconductor integrated circuit having low withstand voltage devices and high withstand voltage devices
JPH053192A (en) Semiconductor integrated circuit
JPS6095969A (en) Manufacture of semiconductor integrated circuit
JPS6245710B2 (en)
JPS6095939A (en) Manufacture of semiconductor integrated circuit
JPH0312782B2 (en)
JP3150420B2 (en) Bipolar integrated circuit and manufacturing method thereof
KR900000826B1 (en) Semiconductor ic manufacturing method
KR900000818B1 (en) Complemental transistor manufacturing method
JPS61284961A (en) Semiconductor device
JPH0834244B2 (en) Semiconductor integrated circuit device
JPS6174361A (en) Buried resistance semiconductor device
JPS58212159A (en) Semiconductor integrated circuit device
JP3135615B2 (en) Semiconductor device and manufacturing method thereof
JP3158404B2 (en) Method for manufacturing semiconductor device
JPH0653310A (en) Semiconductor device and its manufacture method
JPS6031105B2 (en) semiconductor equipment
JPH02232929A (en) Semiconductor device with buried layer