JPH0834244B2 - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH0834244B2
JPH0834244B2 JP60133391A JP13339185A JPH0834244B2 JP H0834244 B2 JPH0834244 B2 JP H0834244B2 JP 60133391 A JP60133391 A JP 60133391A JP 13339185 A JP13339185 A JP 13339185A JP H0834244 B2 JPH0834244 B2 JP H0834244B2
Authority
JP
Japan
Prior art keywords
layer
region
buried layer
type
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60133391A
Other languages
Japanese (ja)
Other versions
JPS61290735A (en
Inventor
邦夫 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP60133391A priority Critical patent/JPH0834244B2/en
Publication of JPS61290735A publication Critical patent/JPS61290735A/en
Publication of JPH0834244B2 publication Critical patent/JPH0834244B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は半導体集積回路(IC)に用いられる埋込層の
改良に関する。
Description: (a) Field of Industrial Application The present invention relates to an improvement in a buried layer used in a semiconductor integrated circuit (IC).

(ロ) 従来の技術 埋込層は例えば特開昭59−189665号公報第6図に示さ
れているように、ICの寄生効果を防止する手段として良
く用いられている。
(B) Conventional Technology The buried layer is often used as a means for preventing the parasitic effect of IC as shown in FIG. 6 of JP-A-59-189665.

第3図はこのような埋込層を備えたNPNトランジスタ
を示し、P型半導体基板(1)上に形成したN型エピタ
キシャル層(2)と、基板(1)とエピタキシャル層
(2)との間に選択的に設けられたN+型埋込層(3)
と、この埋込層(3)を囲むようにエピタキシャル層
(2)を貫通したP+型の分離領域(4)と、分離領域
(4)により島状に分離された島領域(5)と、島領域
(5)表面に形成したP型のベース領域(6)と、ベー
ス領域(6)表面に形成したN+型のエミッタ領域(7)
と、N+型のコレクタコンタクト領域(8)と、エピタキ
シャル層(2)表面を被覆する酸化膜(9)と、この酸
化膜(9)の電極孔を介して各領域とオーミック接触す
る電極(10)とで構成されている。
FIG. 3 shows an NPN transistor having such a buried layer, which comprises an N-type epitaxial layer (2) formed on a P-type semiconductor substrate (1), a substrate (1) and an epitaxial layer (2). N + type buried layer selectively provided between (3)
A P + -type isolation region (4) penetrating the epitaxial layer (2) so as to surround the buried layer (3), and an island region (5) isolated by the isolation region (4) in an island shape. , A P-type base region (6) formed on the surface of the island region (5) and an N + -type emitter region (7) formed on the surface of the base region (6)
An N + -type collector contact region (8), an oxide film (9) covering the surface of the epitaxial layer (2), and an electrode (which makes ohmic contact with each region through the electrode hole of the oxide film (9) ( 10) and are composed of.

斯る構造の埋込層(3)は、基板(1)にあらかじめ
N型不純物をドープしておいてからエピタキシャル層
(2)を形成し、後の分離領域(4)拡散工程により、
先にドープしたN型不純物を上下方向に拡散させて形成
する。従って埋込層(3)内における濃度プロファイル
は基板(1)表面部(図示破線部)が最も高くなり、埋
込層(3)底部又はエピタキシャル層(2)と接する上
面部が最も低くなる。そして斯上した構造における分離
耐圧は、その接合が他の接合より高い不純物濃度領域ど
うしの接合になるので、基板(1)と埋込層(3)との
接合により決まっていた。
In the buried layer (3) having such a structure, the substrate (1) is doped with N-type impurities in advance, and then the epitaxial layer (2) is formed.
It is formed by diffusing the previously doped N-type impurities in the vertical direction. Therefore, the concentration profile in the buried layer (3) is highest at the surface portion of the substrate (1) (shown by the broken line in the figure), and lowest at the bottom portion of the buried layer (3) or the top surface in contact with the epitaxial layer (2). The isolation breakdown voltage in the above structure is determined by the junction between the substrate (1) and the buried layer (3) because the junction is a junction between the impurity concentration regions having a higher concentration than the other junctions.

(ハ) 発明が解決しようとする問題点 しかしながら、前記した如く埋込層(1)内おいては
図示点線部が最も高濃度になるので、分離耐圧は埋込層
(3)側面の基板(1)表面部(図示A部)で決められ
てしまい、埋込層(3)自身の不純物濃度を下げても高
い分離耐圧が得られないという欠点があった。
(C) Problems to be Solved by the Invention However, as described above, in the buried layer (1), the dotted line portion in the drawing has the highest concentration. 1) The surface portion (A portion in the drawing) is determined, and there is a drawback that a high isolation breakdown voltage cannot be obtained even if the impurity concentration of the buried layer (3) itself is lowered.

(ニ) 問題点を解決するための手段 本発明は斯上した欠点に鑑みてなされ、分離耐圧を向
上した半導体集積回路装置を得ることを目的とし、第1
の埋込層(13)の側面を覆う様に、第1の埋込層(13)
より低不純物濃度の第2の埋込層(14)を設けたことを
特徴とする。
(D) Means for Solving Problems The present invention has been made in view of the above drawbacks, and an object thereof is to obtain a semiconductor integrated circuit device having an improved isolation breakdown voltage.
The first buried layer (13) so as to cover the side surface of the buried layer (13) of
The second buried layer (14) having a lower impurity concentration is provided.

(ホ) 作用 本発明によれば、分離耐圧を決める接合の中で最も耐
圧の低い部分に第1の埋込層(13)より低不純物濃度の
第2の埋込層(14)を設けているので、この部分では空
乏層が広がりやすくなり、その幅が広がった分だけ耐圧
が向上する。
(E) Operation According to the present invention, the second buried layer (14) having a lower impurity concentration than the first buried layer (13) is provided in the portion having the lowest breakdown voltage in the junction that determines the isolation breakdown voltage. Therefore, the depletion layer easily spreads in this portion, and the breakdown voltage improves as the width increases.

(ヘ) 実施例 以下本発明を図面を参照しながら詳細に説明する。(F) Examples The present invention will be described in detail below with reference to the drawings.

第1図は本発明による埋込層を用いたNPNトランジス
タを示し、P型半導体基板(1)上に形成したN型エピ
タキシャル層(2)と、基板(1)とエピタキシャル層
(2)との間に埋込まれたN+型の第1の埋込層(13)
と、第1の埋込層(13)の側面を覆う様に設けたN-型の
第2の埋込層(14)と、第1及び第2の埋込層(13)
(14)を囲む様にエピタキシャル層(2)を貫通したP+
型分離領域(4)と、分離領域(4)により島状に分離
された島領域(5)と、島領域(5)表面に形成したP
型のベース領域(6)と、ベース領域(6)表面に形成
したN+型のエミッタ領域(7)と、N+のコレクタコンタ
クト領域(8)と、エピタキシャル層(2)表面を被覆
する酸化膜(9)と、酸化膜(9)の電極孔を介して各
領域とオーミック接触する電極(10)とで構成されてい
る。
FIG. 1 shows an NPN transistor using a buried layer according to the present invention, which comprises an N-type epitaxial layer (2) formed on a P-type semiconductor substrate (1), a substrate (1) and an epitaxial layer (2). First buried layer of N + type buried between (13)
And an N -type second burying layer (14) provided so as to cover the side surface of the first burying layer (13), and the first and second burying layers (13)
P + penetrating the epitaxial layer (2) so as to surround (14)
The mold separation region (4), the island region (5) separated into islands by the separation region (4), and the P formed on the surface of the island region (5).
-Type base region (6), N + -type emitter region (7) formed on the surface of the base region (6), N + collector contact region (8), and oxidation covering the surface of the epitaxial layer (2) It is composed of a film (9) and an electrode (10) which makes ohmic contact with each region through the electrode hole of the oxide film (9).

本発明の最も特徴とする点は、第1の埋込層(13)の
側面に第2の埋込層(14)を設けた点にある。すなわ
ち、従来最も耐圧が低かった部分に第1の埋込層(13)
より低不純物濃度の第2の埋込層(14)を設けているの
で、この部分では空乏層が広がりやすくなり、幅が広が
った分だけ耐圧が向上する。従ってこの構造によれば、
分離耐圧は第1の埋込層(13)側面部では決まらず、図
示破線部よりも不純物濃度が低い第1の埋込層(13)底
部と基板(1)との接合により決まるので、従来より高
い分離耐圧を得ることができる。
The most characteristic point of the present invention is that the second burying layer (14) is provided on the side surface of the first burying layer (13). That is, the first buried layer (13) is formed in the portion where the breakdown voltage is the lowest in the past.
Since the second buried layer (14) having a lower impurity concentration is provided, the depletion layer easily expands in this portion, and the breakdown voltage improves as the width increases. Therefore, according to this structure,
The isolation breakdown voltage is not determined by the side surface of the first buried layer (13), but is determined by the junction between the bottom of the first buried layer (13) and the substrate (1) whose impurity concentration is lower than the broken line in the figure. A higher isolation breakdown voltage can be obtained.

以下本発明の製造方法の一例を第2図(イ)〜(ニ)
を用いて説明する。先ず第2図(イ)に示す如く、P型
基板(1)表面の第1の埋込層(13)となるべき領域に
酸化膜(9)をススクとしてN型不純物、例えばリン
(P)をドープしてN+型ドープ領域(15)を形成する。
次に第2図(ロ)に示す如く、酸化膜(9)を第1の埋
込層(13)より大きく開口し、N型不純物を例えばイオ
ン注入法によりドープしてN-型ドープ領域(16)を形成
する。続いて第2図(ハ)に示す如く、周知の気相成長
法によりエピタキシャル層(2)を形成する。さらに第
2図(ニ)に示す如く、選択拡散法を用いてP型不純
物、例えばボロン(B)を拡散してP+型分離領域(4)
を形成する。そしてこの時の熱拡散により、先に形成し
ていたN+型ドープ領域(15)及びN-型ドープ領域(16)
が最も上下方向に拡散され、第1及び第2の埋込層(1
3)(14)が形成される。第2の埋込層(14)は第1の
埋込層(13)まり低不純物濃度であるため、拡散速度の
違いから第1の埋込層(13)より拡散深さが浅くなる。
そうして島領域(5)表面にベース領域(6)、エミッ
タ領域(7)及びコレクタコンタクト領域(8)を選択
拡散し、各領域上に電極(10)を配設して完了する。
Hereinafter, an example of the manufacturing method of the present invention will be described with reference to FIGS.
Will be explained. First, as shown in FIG. 2 (a), an N-type impurity such as phosphorus (P) is formed on the surface of the P-type substrate (1) using the oxide film (9) as a mask in a region to be the first buried layer (13). To form an N + -type doped region (15).
Next, as shown in FIG. 2B, the oxide film (9) is opened larger than the first buried layer (13), and N type impurities are doped by, for example, an ion implantation method to form an N type doped region ( 16) to form. Subsequently, as shown in FIG. 2C, an epitaxial layer (2) is formed by a known vapor phase growth method. Further, as shown in FIG. 2D, a P type impurity such as boron (B) is diffused by a selective diffusion method to form a P + type isolation region (4).
To form. Then, due to thermal diffusion at this time, the N + -type doped region (15) and the N -type doped region (16) that were previously formed
Are diffused most vertically, and the first and second buried layers (1
3) (14) is formed. The second buried layer (14) has a lower impurity concentration than the first buried layer (13) and therefore has a smaller diffusion depth than the first buried layer (13) due to the difference in diffusion speed.
Then, the base region (6), the emitter region (7) and the collector contact region (8) are selectively diffused on the surface of the island region (5), and the electrode (10) is arranged on each region to complete the process.

尚、上記実施例では第2の埋込層(14)をN型領域と
してあるが、P型領域で構成しても実施可能である。
Although the second buried layer (14) is an N-type region in the above-mentioned embodiment, it can be implemented with a P-type region.

(ト) 発明の効果 以上説明した如く、本発明によれば従来最も耐圧が低
かった部分に第2の埋込層(14)を設けているので、従
来より高い分離耐圧が得られるという利点を有する。ま
た高い分離耐圧が得られるので、高耐圧を要とする半導
体集積回路が容易に設計できるという利点を有する。
(G) Effect of the Invention As described above, according to the present invention, the second buried layer (14) is provided in the portion having the lowest breakdown voltage in the related art. Have. Further, since a high isolation breakdown voltage can be obtained, there is an advantage that a semiconductor integrated circuit requiring a high breakdown voltage can be easily designed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を説明するための断面図、第2図(イ)
乃至第2図(ニ)はその製造方法を説明するための断面
図、第3図は従来例を説明するための断面図である。 主な図番の説明 (1)は半導体基板、(2)はエピタキシャル層、(1
3)は第1の埋込層、(14)は第2の埋込層、(15)はN
+型ドープ領域、(16)はN-型ドープ領域である。
FIG. 1 is a sectional view for explaining the present invention, and FIG. 2 (a).
2 (d) is a sectional view for explaining the manufacturing method, and FIG. 3 is a sectional view for explaining the conventional example. Description of main drawing numbers (1) is semiconductor substrate, (2) is epitaxial layer, (1
3) is the first buried layer, (14) is the second buried layer, and (15) is N
The + type doped region, (16) is the N type doped region.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一導電型の半導体基板上に形成した逆導電
型のエピタキシャル層と、 前記基板と前記エピタキシャル層との間に埋め込まれ前
記基板表面から上下方向に拡散された高濃度逆導電型の
第1の埋め込み層と、 前記第1の埋め込み層を取り囲み前記エピタキシャル層
を貫通して島状の島領域を形成する一導電型の分離領域
とを具備する半導体集積回路装置において、 前記第1の埋め込み層の側面を覆う様に、前記分離領域
とは離間して、前記基板表面から上下方向に拡散された
前記第1の埋め込み層より低不純物濃度の第2の埋め込
み層を具備したことを特徴とする半導体集積回路装置。
1. An epitaxial layer of opposite conductivity type formed on a semiconductor substrate of one conductivity type, and a high-concentration inverse conductivity type buried between the substrate and the epitaxial layer and diffused vertically from the surface of the substrate. A semiconductor integrated circuit device comprising: a first buried layer; and an isolation region of one conductivity type that surrounds the first buried layer and penetrates the epitaxial layer to form an island-shaped island region. A second burying layer having a lower impurity concentration than the first burying layer diffused vertically from the substrate surface so as to cover the side surface of the burying layer. A characteristic semiconductor integrated circuit device.
JP60133391A 1985-06-19 1985-06-19 Semiconductor integrated circuit device Expired - Lifetime JPH0834244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60133391A JPH0834244B2 (en) 1985-06-19 1985-06-19 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60133391A JPH0834244B2 (en) 1985-06-19 1985-06-19 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS61290735A JPS61290735A (en) 1986-12-20
JPH0834244B2 true JPH0834244B2 (en) 1996-03-29

Family

ID=15103645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60133391A Expired - Lifetime JPH0834244B2 (en) 1985-06-19 1985-06-19 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0834244B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093707A (en) * 1988-04-27 1992-03-03 Kabushiki Kaisha Toshiba Semiconductor device with bipolar and cmos transistors
JP3031117B2 (en) * 1993-06-02 2000-04-10 日産自動車株式会社 Method for manufacturing semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50113476A (en) * 1974-02-18 1975-09-05
JPS50143476A (en) * 1974-05-08 1975-11-18
JPS61208235A (en) * 1985-03-13 1986-09-16 Toshiba Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS61290735A (en) 1986-12-20

Similar Documents

Publication Publication Date Title
US4089021A (en) Semiconductor device capable of withstanding high voltage and method of manufacturing same
GB1393123A (en) Semiconductor device manufacture
KR0171128B1 (en) A vertical bipolar transistor
JPS6229904B2 (en)
JP2700487B2 (en) Bipolar integrated circuit and manufacturing method thereof
GB1310412A (en) Semiconductor devices
JP2002190593A (en) Insulated gate fet and method of manufacturing the same
JPH0834244B2 (en) Semiconductor integrated circuit device
JPS61245573A (en) Semiconductor device
JP2890509B2 (en) Method for manufacturing semiconductor device
JPH0521442A (en) Semiconductor device
JP3135615B2 (en) Semiconductor device and manufacturing method thereof
JP2538599B2 (en) Semiconductor device
JP2777054B2 (en) Semiconductor device
JPS63202965A (en) Semiconductor device
JPS58212159A (en) Semiconductor integrated circuit device
JPH079385Y2 (en) Semiconductor integrated circuit device
JPS6347965A (en) Semiconductor integrated circuit
JPS60123062A (en) Manufacture of semiconductor integrated circuit
JP2536616B2 (en) Semiconductor device
JPS63136660A (en) Semiconductor device and manufacture thereof
JP2517237B2 (en) Method for manufacturing semiconductor integrated circuit
JPS58210659A (en) Semiconductor device and manufacture thereof
JPH05226347A (en) Semiconductor device
JPH10172980A (en) Semiconductor device and its manufacture