JPH053161B2 - - Google Patents

Info

Publication number
JPH053161B2
JPH053161B2 JP58030308A JP3030883A JPH053161B2 JP H053161 B2 JPH053161 B2 JP H053161B2 JP 58030308 A JP58030308 A JP 58030308A JP 3030883 A JP3030883 A JP 3030883A JP H053161 B2 JPH053161 B2 JP H053161B2
Authority
JP
Japan
Prior art keywords
temperature
compensated
oscillator
sintered body
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58030308A
Other languages
Japanese (ja)
Other versions
JPS59156002A (en
Inventor
Juzo Shimada
Shuzo Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3030883A priority Critical patent/JPS59156002A/en
Priority to DE8383112593T priority patent/DE3382208D1/en
Priority to EP83112593A priority patent/EP0111890B1/en
Priority to US06/561,506 priority patent/US4574255A/en
Priority to AU22427/83A priority patent/AU563467B2/en
Publication of JPS59156002A publication Critical patent/JPS59156002A/en
Publication of JPH053161B2 publication Critical patent/JPH053161B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/04Constructional details for maintaining temperature constant
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • C04B35/499Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides containing also titanates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/167Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed resistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4688Composite multilayer circuits, i.e. comprising insulating layers having different properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Description

【発明の詳細な説明】 本発明はコンデンサ、抵抗及び導体配線を含む
複合積層セラミツク基板を有する温度補償圧電発
振器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature compensated piezoelectric oscillator having a composite laminated ceramic substrate containing a capacitor, a resistor, and conductor wiring.

従来、圧電発振期における圧電発振子、抵抗、
コンデンサ、インダクター等の受動部品は、セラ
ミツク等の基板にプリント配線層を設け半田付け
して回路を作り、それをユニツトとして用いるこ
とが行なわれていた。
Conventionally, piezoelectric oscillators, resistors,
For passive components such as capacitors and inductors, printed wiring layers were provided on ceramic substrates and soldered to form circuits, and the circuits were used as units.

この場合、円板形またはチツプ型のコンデンサ
やチツプ抵抗等を1個づつ取付けねばらなかつ
た。
In this case, disk-shaped or chip-shaped capacitors, chip resistors, etc. had to be installed one by one.

また、本発明の分野における温度補償圧電発振
器においては、たとえば水晶発振器に用いられる
水晶振動子は温度の変動とともに、発振周波数も
変動する。
Furthermore, in the temperature compensated piezoelectric oscillator in the field of the present invention, for example, the oscillation frequency of a crystal resonator used in a crystal oscillator changes as the temperature changes.

従つて、水晶振動子の温度を一定温度の保ち、
発振周波数を安定化させるために常温槽が用いら
れるのが普通である。
Therefore, keeping the temperature of the crystal oscillator constant,
Normally, a room temperature bath is used to stabilize the oscillation frequency.

他方、温度補償を行なう方法として、水晶発振
子の温度特性に合わせて温度補償回路の抵抗素子
の抵抗値を選び、温度特性に対応した素子を回路
に組み入れていた。一例として第1図に示す発振
回路を例にとつて説明する。
On the other hand, as a method of performing temperature compensation, the resistance value of the resistance element of the temperature compensation circuit is selected in accordance with the temperature characteristics of the crystal oscillator, and an element corresponding to the temperature characteristics is incorporated into the circuit. As an example, the oscillation circuit shown in FIG. 1 will be explained.

第1図において、1〜11は抵抗器、20〜2
6は蓄電器、30,31はサーミスタ等の感温素
子、32,33はダイオード、34は水晶発振
子、35はトランジスターである。この回路にお
いて水晶発振子34は周波数温度特性に合わせて
温度補償するために、図中の破線で囲つた温度補
償部分の抵抗器1,2,3,11を適切に決定す
る必要があり、従つて抵抗器1,2,3,11の
部品を変更していた。これらの部品の変更は、従
来発振回路実装時に各々のデイスクリート部分を
発振器動作条件にあわせて実装するが、あるいは
プリント板上に複数個の同一用途部を実装してお
き、条件に合わせてストラツプ配線する方法がと
られていた。例えば、水晶発振子の初期周波数を
調整する場合には、第1図に示す抵抗器1,2,
3,11のそれぞれを第2図に示す様な抵抗器4
1,42,43で構成し、発振周波数に合わせて
切り替え配線する様なことは一般的である。
In Fig. 1, 1 to 11 are resistors, 20 to 2
6 is a capacitor, 30 and 31 are temperature sensitive elements such as thermistors, 32 and 33 are diodes, 34 is a crystal oscillator, and 35 is a transistor. In this circuit, in order to compensate the temperature of the crystal oscillator 34 according to the frequency-temperature characteristics, it is necessary to appropriately determine the resistors 1, 2, 3, and 11 in the temperature compensation part surrounded by the broken line in the figure. Therefore, the parts of resistors 1, 2, 3, and 11 were changed. Conventionally, these parts can be changed by mounting each discrete part according to the oscillator operating conditions when mounting the oscillator circuit, or by mounting multiple parts for the same purpose on a printed board and changing the strap according to the conditions. A method of wiring was used. For example, when adjusting the initial frequency of a crystal oscillator, resistors 1, 2,
3 and 11 are each connected to a resistor 4 as shown in FIG.
1, 42, and 43, and the wiring is generally switched in accordance with the oscillation frequency.

しかし、これらの部品定数を変更する為に第2
図に示すようにストラツプ等で変更することは実
装面積、価格等の面で損失が大きい。又、同一発
振器ユニツトを広い条件下で共用的に使用するた
めには、これらの調整部品が数多く必要であり、
望ましい状況ではない。
However, in order to change these component constants, the second
As shown in the figure, changing with a strap or the like results in a large loss in terms of mounting area, cost, etc. Furthermore, in order to use the same oscillator unit in common under a wide range of conditions, a large number of these adjustment parts are required.
This is not a desirable situation.

本発明はこれらの欠点を除去し、小型、高精度
で、且つ、経済的な圧電発振器を実現するもので
ある。すなわち、本発明は、絶縁体、誘電体、抵
抗体、及び、導体が一体に積層され、焼成されて
なる積層焼結体とその表面に設置された圧電振動
子と半導体素子と感温素子とからなる温度補償圧
電発振器であつて、前記積層焼結体の内部にはコ
ンデンサ素子と抵抗素子と配線用導体とが形成さ
れており、前記積層焼結体の内部の前記抵抗素子
と前記配線用導体と前記感温素子とで温度補償回
路を構成しており、前記温度補償回路を構成する
前記抵抗素子には、選択して切り換え可能な抵抗
素子が配置されていることを特徴とする温度補償
圧電発振器である。
The present invention eliminates these drawbacks and realizes a compact, highly accurate, and economical piezoelectric oscillator. That is, the present invention provides a laminated sintered body in which an insulator, a dielectric, a resistor, and a conductor are integrally laminated and fired, and a piezoelectric vibrator, a semiconductor element, and a temperature-sensitive element installed on the surface of the laminated sintered body. A temperature-compensated piezoelectric oscillator comprising: a capacitor element, a resistive element, and a wiring conductor formed inside the laminated sintered body; Temperature compensation characterized in that the conductor and the temperature sensing element constitute a temperature compensation circuit, and the resistance element constituting the temperature compensation circuit is provided with a selectively switchable resistance element. It is a piezoelectric oscillator.

本発明による実施回路例を第3図に示す。ここ
で1−1,1−2,1−3および2−1,2−
2,2−3および3−1,3−2,3−3および
11−1,11−2,11−3は発振器条件によ
り接続を変える調整抵抗器である。次に本発明の
発振器の構造断面図を第4図に示す。ここで第3
図に示す感温素子30,31およびダイオード3
2,33および水晶発振子34およびトランジス
ター35以外は、すべて積層焼結体内部に含まれ
ている。ここで51は絶縁体シート、52は誘電
体シート、53はスルーホール部54は印刷法又
はグリーンシート法により形成された抵抗体層、
55導体層、56はコンデンサ形成用内部電極
層、61は抵抗形成部分、62はコンデンサ形成
部分、63は外部端子用導体層、71は水晶発振
子、72はトランジスタ、73はダイオード74
は積層焼結体表面に配置されたサーミスタ等の感
温素子である。
An example of a circuit according to the present invention is shown in FIG. Here 1-1, 1-2, 1-3 and 2-1, 2-
2, 2-3, 3-1, 3-2, 3-3, and 11-1, 11-2, 11-3 are adjustment resistors whose connections are changed depending on the oscillator conditions. Next, a cross-sectional view of the structure of the oscillator of the present invention is shown in FIG. Here the third
Temperature sensing elements 30, 31 and diode 3 shown in the figure
2, 33, the crystal oscillator 34, and the transistor 35 are all contained inside the laminated sintered body. Here, 51 is an insulating sheet, 52 is a dielectric sheet, 53 is a through-hole portion 54 is a resistor layer formed by a printing method or a green sheet method,
55 a conductor layer, 56 an internal electrode layer for forming a capacitor, 61 a resistor forming part, 62 a capacitor forming part, 63 a conductor layer for external terminals, 71 a crystal oscillator, 72 a transistor, 73 a diode 74
is a temperature sensing element such as a thermistor placed on the surface of the laminated sintered body.

前記調整抵抗1−1〜1−3,2−1〜2−
3,3−1〜3−3,11−1〜11−3は外部
端子用導体層をシヨートバー91により接続すれ
ば選定できる。
The adjustment resistors 1-1 to 1-3, 2-1 to 2-
3, 3-1 to 3-3, 11-1 to 11-3 can be selected by connecting the external terminal conductor layer with the short bar 91.

すなわち、第5図〜第7図にこの調整抵抗を作
製する実施例を示す。第5図から第7図は絶縁体
シート上に導体層、抵抗体層が形成された状態を
示す平面図(第5図a,第6図a,第7図a)と
断面図(第5図b,第6図b,第7図b)であ
る。
That is, FIGS. 5 to 7 show examples of manufacturing this adjustment resistor. Figures 5 to 7 are plan views (Figure 5a, Figure 6a, Figure 7a) and cross-sectional views (Figure 5 Figure b, Figure 6b, Figure 7b).

すなわち、最外層として外部端子用導体層63
を形成した第5図に示す絶縁体シート51を配置
しこれに接して導体層55を形成した第6図に示
す絶縁体シート(第6図)、さらに3種の大きさ
の異なる抵抗体層54と導体層が形成された絶縁
体シート(第7図)が順に積層され焼成される。
That is, the external terminal conductor layer 63 is used as the outermost layer.
An insulator sheet 51 shown in FIG. 5 is arranged and a conductor layer 55 is formed in contact with the insulator sheet 51 shown in FIG. 54 and an insulating sheet (FIG. 7) on which a conductor layer is formed are laminated in order and fired.

また、ここで用いる絶縁体生シートは酸化アル
ミニウム40〜60重量%、ホウケイ酸鉛系結晶化ガ
ラス40〜60重量%の組成範囲で総量100%となる
ように選んだ混合粉末を有機バインダー、有機溶
媒、可塑材と共に泥漿状にし、ドクターブレード
法等のスリツプキヤステイング製膜により20μm
〜300μmの生シートをホリエステルフイルム上に
成形し剥離したのち所望の寸法にパンチングして
シートを得る。ここで用いた結晶化ガラス粉末の
組成は酸化物換算表記に従つたとき、酸化鉛、酸
化ホウ素、二酸化ケイ素、族元素酸化物、族
元素(但し、炭素、ケイ素、鉛は除く)酸化物を
それぞれ重量比3〜65%、2〜50%、4〜65%、
0.1〜50%、0.02〜20%の組成範囲で総量100%と
なるように選んだ組成物で構成されている。
In addition, the raw insulator sheet used here consists of a mixed powder selected to have a composition range of 40 to 60% by weight of aluminum oxide, 40 to 60% by weight of lead borosilicate crystallized glass, and an organic binder, an organic Form into a slurry with solvent and plasticizer, and form a film with a thickness of 20 μm using slip casting such as the doctor blade method.
A green sheet of ~300 μm is formed on a polyester film, peeled off, and then punched to desired dimensions to obtain a sheet. The composition of the crystallized glass powder used here is based on oxide conversion notation: lead oxide, boron oxide, silicon dioxide, group element oxides, and group element (excluding carbon, silicon, and lead) oxides. Weight ratio 3-65%, 2-50%, 4-65%, respectively.
It is composed of a composition selected so that the total amount is 100% in the composition range of 0.1 to 50% and 0.02 to 20%.

誘電体生シートはFe2O3、PbO3、Nb2O5
WO3の粉末を所定量坪量し、ボールミル混合し
て過乾燥後700〜800℃で予焼を行なつたのち、
ボールミル粉砕した粉末を有機バインダー、有機
溶媒、可塑材と共に混合し、泥漿状にして絶縁体
生シートの作成と同様にドクターブレード法等の
スリプキヤステイング製膜により10μm〜200μm
のシートを得た。ここで用いた誘電体材料はPb
(Fe1/2Nb1/2)O3−Pb(Fe2/3・W1/3)
O3二元系複合ペロブスカイト化合物である。
Dielectric raw sheet contains Fe 2 O 3 , PbO 3 , Nb 2 O 5 ,
A predetermined amount of WO 3 powder is weighed, mixed in a ball mill, overdried, and prefired at 700 to 800°C.
The ball-milled powder is mixed with an organic binder, an organic solvent, and a plasticizer, and made into a slurry to form a film of 10 μm to 200 μm using slip casting, such as the doctor blade method, in the same way as making an insulating raw sheet.
I got a sheet of The dielectric material used here is Pb
(Fe1/2Nb1/2)O 3 −Pb (Fe2/3・W1/3)
It is an O 3 binary complex perovskite compound.

また、抵抗低としてはスクリーン印刷法により
抵抗体ペーストを、絶縁体生シート又は誘電体生
シート上に形成する方法および抵抗体グリーンシ
ート片を用いて形成する方法がある。ここで抵抗
体ペーストは抵抗材料粉末と有機ビヒクルを三本
ロール等により混練することにより得られる。
Further, for low resistance, there are a method of forming a resistor paste on an insulating raw sheet or a dielectric raw sheet by a screen printing method, and a method of forming a resistor paste using a resistor green sheet piece. Here, the resistor paste is obtained by kneading resistor material powder and an organic vehicle using a triple roll or the like.

一方、抵抗体グリーンシートは、二酸化ルテニ
ウム粉末と絶縁体生シートを用いた結晶化ガラス
粉末とを、それぞれ重量比十:90〜50:50の範囲
で所望の抵抗値が得られるように混合し、エチル
セルソルブ、ブチルカルビトール、ブチルフタリ
ル酸ブチルおよびポリビニルブチラール等を加え
て泥漿化し、上記同様に製膜し20μm〜200μmの
シートを得た。
On the other hand, the resistor green sheet is made by mixing ruthenium dioxide powder and crystallized glass powder using an insulating green sheet at a weight ratio of 10:90 to 50:50 to obtain the desired resistance value. , ethyl cellosolve, butyl carbitol, butyl butylphthalate, polyvinyl butyral, etc. were added to form a slurry, and a film was formed in the same manner as above to obtain a sheet of 20 μm to 200 μm.

電極層および信号線に用いる導体はAu、Ag、
Pb、Pt等の金属の単体もしくは1以上含んだ合
金粉末を有機ビヒクルとともに混練しペースト状
にしたものを使用した。これらの種々のシートを
所定の配列にし、適時所定の形状に切断し、900
℃で焼成して抵抗素子とコンデンサ素子を含む積
層体を作製した。これに水晶発振子、トランジス
タ、ダイオード、感温素子をその両面又は片面に
取付けた。
Conductors used for electrode layers and signal lines are Au, Ag,
A paste made by kneading a single metal or an alloy powder containing one or more metals such as Pb and Pt with an organic vehicle was used. These various sheets were arranged in a predetermined manner, cut into a predetermined shape at the appropriate time, and then
A laminate including a resistor element and a capacitor element was produced by firing at ℃. A crystal oscillator, a transistor, a diode, and a temperature sensing element were attached to one or both sides of this.

以上のような構成法にて温度補償水晶発振器を
実現した結果、従来の形状の1/5〜1/10に体積を
圧縮した温度補償水晶発振器を実現できた。
As a result of realizing a temperature-compensated crystal oscillator using the above configuration method, we were able to realize a temperature-compensated crystal oscillator whose volume was compressed to 1/5 to 1/10 of the conventional shape.

又、小型形状にもかかわらず周波数微調整機能
を有しているため、高精度であり、かつ汎用性の
ある構成であるため経済的である。
In addition, it has a frequency fine adjustment function despite its small size, so it is highly accurate and has a versatile configuration, making it economical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の水晶発振器回路の一例を示す
回路図、第2図は温度補償水晶発振器を説明する
ための図、第3図は本発明の実施例を示す回路図
第4図は本発明の実施例を示す温度補償水晶発振
器の構成断面図、第5図〜第7図は本発明の発振
器の製造工程を示す図である。 図において、1〜11は抵抗器、20〜26は
蓄電器、30,31は感温素子、32,33はダ
イオード、3シートは水晶発振子、35はトラン
ジスター、41〜43は抵抗器、51は絶縁体シ
ート、52は誘電体シート、53はスルーホール
部、5シートは抵抗体層、55は導体層、56は
コンデンサ形成用内部電極層、61は抵抗形成部
分、62はコンデンサ形成部分、63は外部端子
用導体層、71は水晶発振子、72はトランジス
タ、73はダイオード、74は感温素子、91は
シヨートバーである。
FIG. 1 is a circuit diagram showing an example of a conventional crystal oscillator circuit, FIG. 2 is a diagram for explaining a temperature compensated crystal oscillator, and FIG. 3 is a circuit diagram showing an embodiment of the present invention. FIGS. 5 to 7 are cross-sectional views of the structure of a temperature-compensated crystal oscillator showing an embodiment of the invention, and are diagrams showing the manufacturing process of the oscillator of the invention. In the figure, 1 to 11 are resistors, 20 to 26 are capacitors, 30 and 31 are temperature sensing elements, 32 and 33 are diodes, 3rd sheet is a crystal oscillator, 35 is a transistor, 41 to 43 are resistors, and 51 is a Insulator sheet, 52 is a dielectric sheet, 53 is a through hole portion, 5 sheet is a resistor layer, 55 is a conductor layer, 56 is an internal electrode layer for forming a capacitor, 61 is a resistor forming portion, 62 is a capacitor forming portion, 63 71 is a crystal oscillator, 72 is a transistor, 73 is a diode, 74 is a temperature sensing element, and 91 is a shot bar.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁体、誘電体、抵抗体、及び、導体が一体
に積層され、焼成されてなる積層焼結体とその表
面に設置された圧電振動子と半導体素子と感温素
子とからなる温度補償圧電発振器であつて、前記
積層焼結体の内部にはコンデンサ素子と抵抗素子
と配線用導体とが形成されており、前記積層焼結
体の内部の前記抵抗素子と前記配線用導体と前記
感温素子とで温度補償回路を構成しており、前記
温度補償回路を構成する前記抵抗素子には、選択
して切り換え可能な抵抗素子が配置されているこ
とを特徴とする温度補償圧電発振器。
1 Temperature-compensated piezoelectricity consisting of a laminated sintered body made by laminating and firing an insulator, dielectric, resistor, and conductor, and a piezoelectric vibrator, semiconductor element, and temperature-sensitive element installed on the surface of the laminated sintered body. In the oscillator, a capacitor element, a resistance element, and a wiring conductor are formed inside the laminated sintered body, and a capacitor element, a resistance element, and a wiring conductor are formed inside the laminated sintered body. A temperature-compensated piezoelectric oscillator, wherein the temperature-compensated piezoelectric oscillator constitutes a temperature-compensated circuit, and the resistive elements constituting the temperature-compensated circuit include selectively switchable resistive elements.
JP3030883A 1982-12-15 1983-02-25 Temperature compensation piezoelectric oscillator Granted JPS59156002A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3030883A JPS59156002A (en) 1983-02-25 1983-02-25 Temperature compensation piezoelectric oscillator
DE8383112593T DE3382208D1 (en) 1982-12-15 1983-12-14 MONOLITHIC MULTILAYER CERAMIC SUBSTRATE WITH AT LEAST ONE DIELECTRIC LAYER MADE OF A MATERIAL WITH PEROVSKIT STRUCTURE.
EP83112593A EP0111890B1 (en) 1982-12-15 1983-12-14 Monolithic multicomponents ceramic substrate with at least one dielectric layer of a composition having a perovskite structure
US06/561,506 US4574255A (en) 1982-12-15 1983-12-15 MMC Substrate including capacitors having perovskite structure dielectric and electrical devices including MMC substrate
AU22427/83A AU563467B2 (en) 1982-12-15 1983-12-15 Ceramic substrate for piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3030883A JPS59156002A (en) 1983-02-25 1983-02-25 Temperature compensation piezoelectric oscillator

Publications (2)

Publication Number Publication Date
JPS59156002A JPS59156002A (en) 1984-09-05
JPH053161B2 true JPH053161B2 (en) 1993-01-14

Family

ID=12300140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3030883A Granted JPS59156002A (en) 1982-12-15 1983-02-25 Temperature compensation piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JPS59156002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109819585A (en) * 2017-11-20 2019-05-28 鹏鼎控股(深圳)股份有限公司 Circuit board and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2752277B2 (en) * 1991-10-30 1998-05-18 京セラ株式会社 Oscillation circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793702A (en) * 1980-12-02 1982-06-10 Mitsubishi Electric Corp Quartz oscillating circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793702A (en) * 1980-12-02 1982-06-10 Mitsubishi Electric Corp Quartz oscillating circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109819585A (en) * 2017-11-20 2019-05-28 鹏鼎控股(深圳)股份有限公司 Circuit board and preparation method thereof

Also Published As

Publication number Publication date
JPS59156002A (en) 1984-09-05

Similar Documents

Publication Publication Date Title
US4574255A (en) MMC Substrate including capacitors having perovskite structure dielectric and electrical devices including MMC substrate
JPH0632378B2 (en) Multi-layer ceramic board with built-in electronic components
JP2767014B2 (en) Noise filter
JPH053161B2 (en)
JPS5917232A (en) Composite laminated ceramic part and method of producing same
JP3317246B2 (en) Composite ceramic and composite ceramic element
JPH0468803B2 (en)
JPS5917233A (en) Method of producing composite laminated ceramic part
JP3443436B2 (en) Multilayer circuit board with built-in capacitance
JP3295997B2 (en) Ceramic multilayer substrate
JPS59144206A (en) Crystal oscillator made of laminated ceramic
JPH053162B2 (en)
JPH0530323B2 (en)
JPH0468804B2 (en)
JPH0216004B2 (en)
JPS6092697A (en) Composite laminated ceramic part
JPS6088420A (en) Composite laminated ceramic part
JP3093602B2 (en) Manufacturing method of ceramic circuit board
JPS59169209A (en) Crystal oscillator having thermostatic chamber
JPH0714109B2 (en) Ceramic composite circuit board
JPS59110208A (en) Composite laminated multifrequency crystal oscillator
JPS59134812A (en) Ceramic circuit board containing condenser
JP2000226256A (en) Dielectric ceramic composition and ceramic multi-layered substrate
JPS59177914A (en) Composite part
JPH06314916A (en) Strip line resonator