JPH05315754A - Forming method for circuit on low temperature baked ceramic multilayer circuit board - Google Patents

Forming method for circuit on low temperature baked ceramic multilayer circuit board

Info

Publication number
JPH05315754A
JPH05315754A JP4142185A JP14218592A JPH05315754A JP H05315754 A JPH05315754 A JP H05315754A JP 4142185 A JP4142185 A JP 4142185A JP 14218592 A JP14218592 A JP 14218592A JP H05315754 A JPH05315754 A JP H05315754A
Authority
JP
Japan
Prior art keywords
conductor
ceramic multilayer
low temperature
paste
baked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4142185A
Other languages
Japanese (ja)
Inventor
Kyoichi Nakai
恭一 中井
Toru Ezaki
徹 江崎
Junji Asaumi
順治 浅海
Osamu Sugano
修 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP4142185A priority Critical patent/JPH05315754A/en
Publication of JPH05315754A publication Critical patent/JPH05315754A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

PURPOSE:To narrow an interval between Cu conductors by combining a screen printing method with a photolithographic technique. CONSTITUTION:After a ceramic green sheet is manufactured, it is cut, and through holes are further formed. Ag paste for charging the holes and Ag paste for inner wirings are screen printed, and the sheets are laminated and integrated. This laminate is baked to obtain a low temperature-baked ceramic multilayer circuit board 1. Thick film Cu paste is screen printed on the baked board 1, dried and then baked at 600 deg.C in a nitrogen atmosphere. Then, a photoresist dry film is laminated, and pattern-exposed through a photomask. Further, the resist is developed, dried at the ambient temperature, and then the exposed thick film Cu conductor is etched. Eventually, unnecessary photoresist is removed, and a predetermined thick film Cu conductor pattern 4 is formed on the board 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低温焼成セラミック多
層配線基板上に、Cu導体を高密度に回路形成させる方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a circuit of Cu conductors on a low temperature fired ceramic multilayer wiring board at high density.

【0002】低温焼成セラミック多層配線基板上に、C
u導体を形成する方法は公知である。その代表的な方法
は、内部配線にAg系導体を使用したセラミックグリー
ンシートを積層し、低温焼成して得た基板表面にCuペ
ーストを所定の配線パターンになるようにスクリーン印
刷し、乾燥したのち、非酸化雰囲気中、基板焼成温度以
下で再び焼成することにより、外部Cu導体の回路基板
を製造していた(特開昭62−265796)。また、
外部Cu導体をフォトリソグラフィ技術を利用して配線
パターンに形成する方法も知られている。たとえば、グ
リーンシートを低温焼成して得た基板表面を酸性液で粗
化し、触媒付与し、次いで無電解Cuめっき、その上に
さらに電界めっきを施したのち、所定の配線パターンに
なるように、フォトリソグラフィ技術によってCu導体
を形成させる方法がある(特開平1−173697)。
On a low temperature fired ceramic multilayer wiring board, C
Methods of forming u conductors are known. A typical method is to stack a ceramic green sheet using an Ag-based conductor on the internal wiring, screen print a Cu paste on the surface of the substrate obtained by low-temperature firing so as to form a predetermined wiring pattern, and then dry. A circuit board having an external Cu conductor was manufactured by firing again in a non-oxidizing atmosphere at a temperature not higher than the firing temperature of the board (JP-A-62-265796). Also,
A method of forming an external Cu conductor in a wiring pattern using a photolithography technique is also known. For example, the substrate surface obtained by firing the green sheet at a low temperature is roughened with an acid solution, a catalyst is applied, electroless Cu plating is then performed, and then electric field plating is further applied thereto, so that a predetermined wiring pattern is obtained. There is a method of forming a Cu conductor by a photolithography technique (Japanese Patent Laid-Open No. 1-173697).

【0003】[0003]

【発明が解決しようとする課題】前記の従来によっても
Cu配線パターンは形成できる。しかし、スクリーン印
刷法によると、Cu導体の線間隔・線幅を最小になるよ
うに努力しても、せいぜい75μm止りであり、それ以
下に線間隔を小さくし、表面配線密度を高めることはで
きない。一方、フォトリソグラフィ技術を利用する方法
は、Cuめっき技術を併用する点に特徴を有するが、そ
のために、基板表面を酸洗いする粗面化工程、Cuめっ
きの付着を強固にするための触媒付与工程など、複雑な
前処理工程を欠かすことができない。このように、従来
の方法はいずれも欠点を有していた。
The Cu wiring pattern can be formed by the above-mentioned conventional method. However, according to the screen printing method, even if efforts are made to minimize the line spacing and line width of the Cu conductor, the line spacing is at most 75 μm, and it is not possible to reduce the line spacing below that and increase the surface wiring density. .. On the other hand, the method using the photolithography technique is characterized in that the Cu plating technique is used in combination, but for that reason, a roughening step of pickling the surface of the substrate and a catalyst addition for strengthening the adhesion of the Cu plating are performed. Intricate pretreatment processes such as processes are indispensable. As described above, all the conventional methods have drawbacks.

【0004】[0004]

【課題を解決するための手段】本発明者らは、より簡易
な工程で、Cu導体の線間隔・線幅の狭小化を目的とし
て開発を重ねた結果、意外にも最も卑近な技術を組合わ
せた方法が最適であることを知見して、本発明を完成さ
せた。
The inventors of the present invention have surprisingly developed the most popular technique as a result of repeated development for the purpose of narrowing the line spacing and line width of Cu conductors in a simpler process. The present invention has been completed by finding that the combined method is optimal.

【0005】すなわち本発明は、内部にAg系導体を形
成したセラミックグリーンシートを低温焼成して得た基
板表面に、スクリーン印刷法でCuペーストを印刷し、
乾燥し、およそ600℃〜750℃程度の低温で焼成し
たのち、フォトリソグラフィ技術を用いて配線パターン
を形成する低温焼成セラミック多層配線基板への回路形
成方法を提供するものである。
That is, according to the present invention, a Cu paste is printed by a screen printing method on the surface of a substrate obtained by firing a ceramic green sheet having an Ag conductor formed therein at a low temperature.
The present invention provides a method for forming a circuit on a low-temperature fired ceramic multilayer wiring board, which comprises drying and firing at a low temperature of about 600 ° C. to 750 ° C., and then forming a wiring pattern using a photolithography technique.

【0006】本発明の最大の特徴は、スクリーン印刷法
とフォトリソグラフィ技術とを組合わせた点にあり、こ
れによってCu導体の線間隔を従来より大幅に狭くする
ことができる。
The greatest feature of the present invention lies in the combination of the screen printing method and the photolithography technique, whereby the line spacing of the Cu conductor can be made narrower than ever before.

【0007】スクリーン印刷法およびそれに用いるCu
ペーストは、本発明では慣用の手段や市販のペーストを
採用することができ、特に限定されない。
Screen printing method and Cu used therefor
In the present invention, the paste may be a conventional means or a commercially available paste and is not particularly limited.

【0008】スクリーン印刷法で印刷し乾燥されたCu
ペーストは、600℃〜750℃で低温焼成されるの
で、基板表面にCu厚膜として密着する。焼成温度が6
00℃以下では基板との密着強度が低下し、750℃以
上ではAg系導体へのCu導体の拡散が顕著になり、接
続不良が発生する。このように本発明は、印刷・乾燥・
焼成という単純な工程でCu導体を基板上に形成した
後、フォトリソグラフィ技術を用いて配線パターンを形
成するといった比較的簡易な方法で、低温焼成セラミッ
ク多層配線基板上へCu導体配線パターンを形成するこ
とができる。
Cu printed and dried by screen printing
Since the paste is fired at a low temperature of 600 ° C. to 750 ° C., it adheres to the surface of the substrate as a Cu thick film. Firing temperature is 6
If the temperature is 00 ° C. or lower, the adhesion strength with the substrate decreases, and if the temperature is 750 ° C. or higher, the diffusion of the Cu conductor into the Ag-based conductor becomes remarkable, resulting in defective connection. As described above, the present invention is capable of printing, drying,
The Cu conductor wiring pattern is formed on the low temperature fired ceramic multilayer wiring board by a relatively simple method of forming the Cu conductor on the substrate by a simple process of firing and then forming the wiring pattern by using the photolithography technique. be able to.

【0009】本発明によれば、フォトリソグラフィ技術
によって、配線パターンの線間隔を30μm程度まで狭
小にすることができるため、従来法に比べ、線間隔で約
2/5にすることができ、したがって表面配線密度の向
上を著しく高めることができる。
According to the present invention, the line spacing of the wiring pattern can be narrowed down to about 30 μm by the photolithography technique, so that the line spacing can be reduced to about 2/5 as compared with the conventional method. It is possible to remarkably improve the surface wiring density.

【0010】[0010]

【実施例】実施例1 アルミナーホウケイ酸鉛ガラス(50−50重量%)を
主成分としたセラミックグリーンシート(日本セメント
社製)をドクターブレード法により作製したのち、一定
の大きさに裁断し、さらにパンチングによってグリーン
シートの所定箇所にスルーホールを形成する。スルーホ
ール充填用Agペースト(6141D:デュポンジャパ
ン社製)および内部配線用Agペースト(NAG−20
2:日本セメント社製)をそれぞれスクリーン印刷し、
それらのグリーンシートを積層し、熱プレスにより一体
化する。この積層体を、空気中で850℃、10分間保
持して焼成し、図1に示す低温焼成セラミック多層配線
基板1を得る。図中2はスルーホール充填Ag導体、3
は内部配線Ag導体である。焼成基板1の表面の所定箇
所に、厚膜Cuペース(QS190:デュポンジャパン
社製)をスクリーン印刷し、120℃で10分間乾燥
後、窒素雰囲気中、600℃、5分間保持して焼成し、
厚膜Cu導体を形成する。この時の厚膜Cu導体の焼成
膜厚は15〜20μmである。次に、基板表面全体にア
ルカリ現像タイプのフォトレジストドライフィルム(P
HT−887A−25:日立化成工業社製)をラミネー
トし、フォトマスクを介して照射量40ミリジュールの
紫外線照射によりパターン露光を行う。さらに1wt%
−Na2 CO3 水溶液にてレジストの現像を行い、室温
乾燥後、露出した厚膜Cu導体を35〜40wt%の塩
化第二鉄水溶液でエッチングする。最後に、不要のフォ
トレジストを2.5wt%−NaOH水溶液にて除去
し、所要の厚膜Cu導体パターン4を低温焼成セラミッ
ク多層配線基板1の表面に形成する。上記の実施例に基
づいて形成された厚膜Cu導体の線間隔および線幅は、
共に30μmであり、微細化が可能となり、低温焼成セ
ラミック多層配線基板の外部Cu配線の高密度化が図れ
た。
Example 1 A ceramic green sheet (manufactured by Nippon Cement Co., Ltd.) containing alumina-lead borosilicate glass (50-50% by weight) as a main component was prepared by a doctor blade method and then cut into a certain size. Further, through holes are formed at predetermined locations on the green sheet by punching. Through-hole filling Ag paste (6141D: manufactured by DuPont Japan) and internal wiring Ag paste (NAG-20).
2: screened by Nippon Cement Co., Ltd.,
The green sheets are laminated and integrated by hot pressing. This laminated body is held in air at 850 ° C. for 10 minutes and fired to obtain the low temperature fired ceramic multilayer wiring board 1 shown in FIG. In the figure, 2 is a through-hole filled Ag conductor, 3
Is an internal wiring Ag conductor. Thick film Cu pace (QS190: manufactured by DuPont Japan) was screen-printed on a predetermined portion of the surface of the baked substrate 1, dried at 120 ° C. for 10 minutes, and then baked at 600 ° C. for 5 minutes in a nitrogen atmosphere, and baked.
A thick film Cu conductor is formed. The firing film thickness of the thick Cu conductor at this time is 15 to 20 μm. Then, an alkali development type photoresist dry film (P
HT-887A-25 (manufactured by Hitachi Chemical Co., Ltd.) is laminated, and pattern exposure is performed by irradiating an ultraviolet ray having an irradiation amount of 40 millijoules through a photomask. 1 wt%
-Na 2 CO 3 performs resist development with an aqueous solution, after drying at room temperature to etch the exposed thick Cu conductors 35~40Wt% ferric chloride aqueous solution. Finally, the unnecessary photoresist is removed with a 2.5 wt% -NaOH aqueous solution, and the required thick film Cu conductor pattern 4 is formed on the surface of the low temperature fired ceramic multilayer wiring substrate 1. The line spacing and line width of the thick film Cu conductor formed based on the above-mentioned embodiment are
Both are 30 μm, which enables miniaturization, and the external Cu wiring of the low temperature fired ceramic multilayer wiring board can be densified.

【0011】実施例2 アルミナ−ホウケイ酸鉛ガラス(50−50重量%)を
主成分としたセラミックグリーンシート(日本セメント
社製)をドクターブレード法により作製した後、一定の
大きさに裁断し、さらにパンチングによってグリーンシ
ートの所定箇所にスルーホールを形成する。スルーホー
ル充填用Agペースト(6141D:デュポンジャパン
社製)、内部配線用Agペースト(NAG−202:日
本セメント社製)および鉛ペロブスカイト系の誘電体ペ
ースト(CFA−501:日本セメント社製)をそれぞ
れスクリーン印刷し、それらのグリーンシートを積層
し、熱プレスにより一体化する。そのさい、一枚のグリ
ーンシート内にコンデンサを内蔵させる。この積層体
を、空気中で850℃、10分間保持して焼成し、図2
に示すようにコンデンサを内蔵した低温焼成セラミック
多層配線基板10を得る。図中、11はコンデンサ、1
2はコンデンサ用Ag電極である。コンデンサを内蔵し
た低温焼成セラミック多層配線基板10の表面上の所定
箇所に、厚膜Cuペースト(QS190:デュポンジャ
パン社製)をスクリーン印刷し、120℃で10分間乾
燥後、窒素雰囲気中、600℃、5分間保持の条件で焼
成を行い、厚膜Cu導体を形成した。この時の厚膜Cu
導体の焼成膜厚は15〜20μmである。次に、基板表
面全体にアルカリ現像タイプのフォトレジストドライフ
ィルム(PHT−887A−25:日立化成工業社製)
をラミネート形成し、フォトマスクを介して照射量40
ミリジュールの紫外線照射によりパターン露光を行った
のち、1wt%−Na2 CO3 水溶液にて現像し、室温
乾燥後、露出した厚膜Cu導体を35〜40wt%の塩
化第二鉄水溶液にてエッチングする。最後に、不要のフ
ォトレジストを2.5wt%−NaOH水溶液にて除去
し、所要の厚膜Cu導体パターン4がコンデンサを内蔵
した低温焼成セラミック多層配線基板の表面に形成でき
る。上記の実施例に基づいて形成された厚膜Cu導体の
線間隔および線幅は、実施例1と同様の30μmの微細
化が可能となり、コンデンサを内蔵した低温焼成セラミ
ック多層配線基板の外部Cu配線の高密度化が図れた。
Example 2 A ceramic green sheet (manufactured by Nippon Cement Co., Ltd.) containing alumina-lead borosilicate glass (50-50% by weight) as a main component was prepared by the doctor blade method, and then cut into a certain size. Furthermore, through holes are formed at predetermined locations on the green sheet by punching. Through-hole filling Ag paste (6141D: manufactured by DuPont Japan), internal wiring Ag paste (NAG-202: manufactured by Nippon Cement Co., Ltd.), and lead perovskite-based dielectric paste (CFA-501: manufactured by Nippon Cement Co., Ltd.), respectively. Screen printing is performed, the green sheets are laminated, and integrated by hot pressing. At that time, a capacitor is built in one green sheet. This laminate was held in air at 850 ° C. for 10 minutes for firing,
As shown in (1), a low temperature fired ceramic multilayer wiring board 10 having a built-in capacitor is obtained. In the figure, 11 is a capacitor, 1
2 is an Ag electrode for capacitors. A thick film Cu paste (QS190: made by DuPont Japan) is screen-printed on a predetermined location on the surface of the low temperature fired ceramic multilayer wiring substrate 10 having a built-in capacitor, dried at 120 ° C. for 10 minutes, and then 600 ° C. in a nitrogen atmosphere. Firing was performed under the condition of holding for 5 minutes to form a thick film Cu conductor. Thick film Cu at this time
The firing film thickness of the conductor is 15 to 20 μm. Next, an alkali development type photoresist dry film (PHT-887A-25: manufactured by Hitachi Chemical Co., Ltd.) is formed on the entire surface of the substrate.
Is laminated and the irradiation dose is 40
After pattern exposure by irradiation of millijoules of ultraviolet rays, development was performed with a 1 wt% -Na 2 CO 3 aqueous solution, and after drying at room temperature, the exposed thick film Cu conductor was etched with a 35-40 wt% ferric chloride aqueous solution. To do. Finally, unnecessary photoresist is removed with a 2.5 wt% -NaOH aqueous solution, and the required thick-film Cu conductor pattern 4 can be formed on the surface of the low-temperature fired ceramic multilayer wiring board containing the capacitor. The line spacing and line width of the thick film Cu conductor formed based on the above-described embodiment can be miniaturized to 30 μm as in the case of the first embodiment, and the external Cu wiring of the low temperature firing ceramic multilayer wiring board with the built-in capacitor can be achieved. Higher density was achieved.

【0012】[0012]

【発明の効果】本発明の方法によれば、簡易な工程によ
って、低温焼成セラミック多層配線基板上にCu導体回
路を極めて高密度に形成することができる。
According to the method of the present invention, Cu conductor circuits can be formed in extremely high density on a low temperature fired ceramic multilayer wiring substrate by a simple process.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明基板の実施例1に関する断面図で
ある。
FIG. 1 is a sectional view of a first embodiment of a substrate of the present invention.

【図2】図2は実施例2の断面図である。FIG. 2 is a sectional view of a second embodiment.

【符号の説明】[Explanation of symbols]

1 低温焼成セラミック多層配線基板 2 スルーホール充填Ag導体 3 内部配線Ag導体 4 厚膜Cu導体パターン 10 コンデンサ内蔵低温焼成セラミック多層配線基板 11 コンデンサ 12 コンデンサ用Ag電極 1 Low-Temperature Ceramic Multilayer Wiring Board 2 Through Hole Filling Ag Conductor 3 Internal Wiring Ag Conductor 4 Thick Film Cu Conductor Pattern 10 Low Temperature Firing Ceramic Multilayer Wiring Board with Built-in Capacitor 11 Capacitor 12 Capacitor Ag Electrode

フロントページの続き (72)発明者 菅野 修 東京都江東区清澄1−2−23 日本セメン ト株式会社中央研究所内Front Page Continuation (72) Inventor Osamu Kanno 1-2-23, Kiyosumi, Koto-ku, Tokyo Inside of Central Research Institute, Nippon Cement Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Ag系内部導体を有する低温焼成セラミ
ック多層配線基板の表面にCu導体回路を形成する方法
において、該表面にCuペーストをスクリーン印刷し、
乾燥し、非酸化雰囲気において600℃〜750℃で焼
成したのち、フォトリソグラフィ技術を用いてCu導体
回路のパターニングを行なうことを特徴とする低温焼成
セラミック多層配線基板の回路形成方法。
1. A method for forming a Cu conductor circuit on the surface of a low-temperature fired ceramic multilayer wiring board having an Ag-based internal conductor, screen-printing a Cu paste on the surface,
A method for forming a circuit for a low-temperature-fired ceramic multilayer wiring board, which comprises drying and firing at 600 ° C. to 750 ° C. in a non-oxidizing atmosphere, and then patterning a Cu conductor circuit using a photolithography technique.
【請求項2】 前記低温焼成セラミック多層配線基板の
内部に、コンデンサを形成したことを特徴とする請求項
1に記載の低温焼成セラミック多層配線基板の回路形成
方法。
2. The method for forming a circuit of a low temperature fired ceramic multilayer wiring board according to claim 1, wherein a capacitor is formed inside the low temperature fired ceramic multilayer wiring board.
JP4142185A 1992-05-07 1992-05-07 Forming method for circuit on low temperature baked ceramic multilayer circuit board Pending JPH05315754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4142185A JPH05315754A (en) 1992-05-07 1992-05-07 Forming method for circuit on low temperature baked ceramic multilayer circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4142185A JPH05315754A (en) 1992-05-07 1992-05-07 Forming method for circuit on low temperature baked ceramic multilayer circuit board

Publications (1)

Publication Number Publication Date
JPH05315754A true JPH05315754A (en) 1993-11-26

Family

ID=15309361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4142185A Pending JPH05315754A (en) 1992-05-07 1992-05-07 Forming method for circuit on low temperature baked ceramic multilayer circuit board

Country Status (1)

Country Link
JP (1) JPH05315754A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521069B1 (en) * 1999-01-27 2003-02-18 Matsushita Electric Industrial Co., Ltd. Green sheet and manufacturing method thereof, manufacturing method of multi-layer wiring board, and manufacturing method of double-sided wiring board
JP2011044683A (en) * 2009-08-24 2011-03-03 Samsung Electro-Mechanics Co Ltd Ceramic substrate, and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521069B1 (en) * 1999-01-27 2003-02-18 Matsushita Electric Industrial Co., Ltd. Green sheet and manufacturing method thereof, manufacturing method of multi-layer wiring board, and manufacturing method of double-sided wiring board
US6696139B2 (en) 1999-01-27 2004-02-24 Matsushita Electric Industrial Co., Ltd. Green sheet and manufacturing method thereof, manufacturing method of multi-layer wiring board and manufacturing method of double-sided wiring board
JP2011044683A (en) * 2009-08-24 2011-03-03 Samsung Electro-Mechanics Co Ltd Ceramic substrate, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
EP0250842A2 (en) Imaging process for forming ceramic electronic circuits
US4401521A (en) Method for manufacturing a fine-patterned thick film conductor structure
EP0373356A1 (en) Circuit board
JPH05315754A (en) Forming method for circuit on low temperature baked ceramic multilayer circuit board
US5292624A (en) Method for forming a metallurgical interconnection layer package for a multilayer ceramic substrate
JP2002176258A (en) Method of manufacturing printed wiring board
JPH07176444A (en) Manufacture for laminated inductor
JPS59207651A (en) Manufacture of filmy circuit substrate
US4898805A (en) Method for fabricating hybrid integrated circuit
JPS63124596A (en) Circuit board
JP3393676B2 (en) Method for manufacturing multilayer ceramic circuit board
JP2003324027A (en) Method of manufacturing laminated electronic component
JP3500244B2 (en) Manufacturing method of ceramic substrate
JPH09199820A (en) Simultaneously forming method of thin film and thick film resistors on hybrid integrated circuit board
JPH06164110A (en) Method for forming au conductor on ceramic wiring board
JP2003304060A (en) Method of manufacturing double-sided circuit board
JP2000299202A (en) Thick-film circuit board and manufacture thereof
JPS61113298A (en) Through hole printing
JPH11126971A (en) Manufacture of glass ceramics wiring board
JP2001267741A (en) Method of manufacturing multilayer board
JP2004031591A (en) Multi-layer circuit components and its manufacturing method
JPS6337518B2 (en)
JPH0143476B2 (en)
JP2005159039A (en) Circuit-forming laminate and circuit board
JPS58196095A (en) Method of producing multilayer ceramic circuit board