JPH05313200A - Active matrix substrate - Google Patents

Active matrix substrate

Info

Publication number
JPH05313200A
JPH05313200A JP12162692A JP12162692A JPH05313200A JP H05313200 A JPH05313200 A JP H05313200A JP 12162692 A JP12162692 A JP 12162692A JP 12162692 A JP12162692 A JP 12162692A JP H05313200 A JPH05313200 A JP H05313200A
Authority
JP
Japan
Prior art keywords
gate
gate wiring
disconnection
defect
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12162692A
Other languages
Japanese (ja)
Other versions
JP3231395B2 (en
Inventor
Mitsuhiro Uno
光宏 宇野
Koji Matsunaga
浩二 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12162692A priority Critical patent/JP3231395B2/en
Publication of JPH05313200A publication Critical patent/JPH05313200A/en
Application granted granted Critical
Publication of JP3231395B2 publication Critical patent/JP3231395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the production yield of a TFT array substrate by short circuiting nearly both ends of gate wiring groups with a metal formed before anodic oxidation. CONSTITUTION:The gate wiring groups are so constituted as to be all the circuit shorted at both ends thereof. A disconnection defect 7 of the gate wirings is assumed to be generated by the defect in photolithography at the time of forming the gate wirings or the defect at the time of etching at the time. The gate wiring groups are, however, short circuited even at the anodic oxidation current supply ends of the gate wiring groups and the anodic oxidation current is therefore supplied from the power feed ends of the gate wirings through the other normal gate wirings even behind the disconnected part. As a result, the anodic oxide films 2 are formed. The gate panel signals are supplied to the wirings after the disconnection of the liquid crystal panel by executing the rescue of the disconnection and, therefore, the normal display is possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば液晶等と組み合
わせて表示デバイスを構成するアクティブマトリクス基
板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active matrix substrate which constitutes a display device in combination with a liquid crystal or the like.

【0002】[0002]

【従来の技術】ここでは、液晶表示デバイスに用いるア
クティブマトリクス基板の代表的な薄膜トランジスタ
(以下TFTと略記)アレイ基板を例に説明する。近
年、TFTのゲ−ト絶縁膜を形成する材料として、ゲ−
ト配線を形成するアルミニウム、タンタル等の金属を陽
極酸化して得られる絶縁膜が注目されている。陽極酸化
法によって形成された絶縁膜は、従来の化学気相成長
(CVD)法、スパッタ法等で作製される絶縁膜に比
べ、ピンホ−ル欠陥の少ない膜を、容易に作製できると
いう特長を有している。
2. Description of the Related Art Here, a typical thin film transistor (hereinafter abbreviated as TFT) array substrate of an active matrix substrate used for a liquid crystal display device will be described as an example. In recent years, as a material for forming a gate insulating film of a TFT, a gate is used.
Attention has been focused on an insulating film obtained by anodizing a metal such as aluminum or tantalum that forms a wiring. The insulating film formed by the anodic oxidation method has a feature that a film with fewer pinhole defects can be easily formed as compared with an insulating film formed by a conventional chemical vapor deposition (CVD) method, a sputtering method, or the like. Have

【0003】以下、(図5)、(図6)、(図7)を用
いながら、従来の陽極酸化膜を用いたTFTアレイ基板
について説明する。(図5)は、陽極酸化後のTFTア
レイ基板の平面構成を示す。また、(図6)は、陽極酸
化膜を用いたTFTアレイ基板の断面構成を、(図7)
は、陽極酸化膜を用いたTFTアレイ基板の平面構成を
示す。
A conventional TFT array substrate using an anodic oxide film will be described below with reference to (FIG. 5), (FIG. 6) and (FIG. 7). FIG. 5 shows a planar configuration of the TFT array substrate after anodization. Further, (FIG. 6) shows the cross-sectional structure of the TFT array substrate using the anodic oxide film (FIG. 7).
Shows a plan configuration of a TFT array substrate using an anodized film.

【0004】このTFTアレイ基板の作成方法は、ま
ず、アルミニウム、タンタル等の金属でゲ−ト配線1を
形成する。この時、(図5)に示すように全てのゲート
配線は、その一方の端末を短絡させた構成とする。
In the method of manufacturing this TFT array substrate, first, the gate wiring 1 is formed of a metal such as aluminum or tantalum. At this time, as shown in (FIG. 5), all of the gate wirings are configured so that one terminal thereof is short-circuited.

【0005】この状態で、電解液(しゅう酸等)に浸
し、本基板と平行に白金電極を陰極に設置し、本基板の
短絡したゲ−ト配線群に陽極電圧を印加する。約100
Vの電圧をゲート配線群に印加し、電気分解を行い酸素
を発生させ、ゲ−ト配線群上に陽極酸化膜2を形成す
る。
In this state, the substrate is dipped in an electrolytic solution (oxalic acid or the like), a platinum electrode is placed on the cathode in parallel with the main substrate, and an anode voltage is applied to the short-circuited gate wiring group of the main substrate. About 100
A voltage of V is applied to the gate wiring group, electrolysis is performed to generate oxygen, and the anodic oxide film 2 is formed on the gate wiring group.

【0006】この後、CVD法でシリコン窒化膜3を形
成する。TFTを形成するゲート絶縁膜は、陽極酸化膜
2とシリコン窒化膜3の2層より構成される。そして、
TFTを構成するi型半導体膜4を形成する。次に、透
明導電膜であるITO膜5によって、画素電極を形成す
る。
Thereafter, the silicon nitride film 3 is formed by the CVD method. The gate insulating film forming the TFT is composed of two layers of the anodic oxide film 2 and the silicon nitride film 3. And
The i-type semiconductor film 4 that forms the TFT is formed. Next, a pixel electrode is formed by the ITO film 5 which is a transparent conductive film.

【0007】この時、ゲ−トパルス信号を供給するため
の駆動ICの実装部も同時に形成する。ITO膜は、他
の導電膜に比べて表面状態が安定なため、駆動ICと良
好な接続が得られる事からIC実装部に用いられる。そ
して、ソ−ス・ドレイン電極6を形成し、絵素とTFT
を接続する。
At this time, the mounting portion of the drive IC for supplying the gate pulse signal is also formed. Since the ITO film has a stable surface state as compared with other conductive films, a good connection with the drive IC can be obtained, and thus the ITO film is used for the IC mounting portion. Then, the source / drain electrode 6 is formed, and the pixel and the TFT are formed.
Connect.

【0008】TFTアレイ基板完成後、液晶パネルに組
み上げる。もう一枚のITO膜を堆積させた透明ガラス
基板とを数ミクロンのギャップを挟持させながら貼合わ
せ、このギャップ中に液晶を注入する。液晶パネルの周
囲の余分なガラス基板は割断する。この基板切断時に、
(図3)で示す基板切断線8で切断する事によって、短
絡されたゲート配線群は分離される。
After the TFT array substrate is completed, it is assembled into a liquid crystal panel. Another transparent glass substrate on which an ITO film is deposited is bonded while holding a gap of several microns, and liquid crystal is injected into this gap. Excess glass substrate around the LCD panel is cut. When cutting this board,
By cutting along the substrate cutting line 8 shown in FIG. 3, the short-circuited gate wiring group is separated.

【0009】この後、ITO膜で形成したIC実装部よ
りゲート、ソース配線各々に信号を供給し液晶パネルを
表示させ、画像評価を行う。この時、ゲートもしくは、
ソース配線に断線が生じていた場合、レスキューを行
う。
After that, signals are supplied to the gate and source wirings from the IC mounting portion formed of the ITO film to display the liquid crystal panel, and image evaluation is performed. At this time, the gate or
If the source line is broken, rescue is performed.

【0010】(図4)を用いて、ゲ−ト断線のレスキュ
−方法について説明する。(図4)は、TFTアレイの
簡略説明図である。(図4)において、ソ−ス配線は、
省略されている。駆動IC実装部13にICを実装する
事によって、ゲート配線群にゲートパルス信号が供給さ
れ、配線上のTFTが駆動される。図に示すように、T
FTアレイ基板周辺部に、ゲート配線群の入力端と終端
部を横断する形でレスキュー配線14を形成する。
A rescue method for a gate disconnection will be described with reference to FIG. FIG. 4 is a simplified explanatory diagram of the TFT array. In Fig. 4, the source wiring is
Omitted. By mounting the IC on the drive IC mounting unit 13, a gate pulse signal is supplied to the gate wiring group, and the TFT on the wiring is driven. As shown in the figure, T
Rescue wiring 14 is formed in the peripheral portion of the FT array substrate so as to cross the input end and the end portion of the gate wiring group.

【0011】但し、この時レスキュー配線14とゲート
配線1は、絶縁膜を介して分離しショートしない様に構
成されている。そしてさらに、ゲート配線各々の間にア
ルミニウムからなる矩形パターン(レスキューパッドと
呼ぶ)11を形成し、このレスキュー配線14と接続す
る。また、ゲート配線1各々に接続する形で、信号入力
端、及び終端部に、同様にアルミニウムからなる矩形パ
ターン(信号パッドと呼ぶ)12を形成する。
However, at this time, the rescue wiring 14 and the gate wiring 1 are configured so as to be separated via the insulating film and not to be short-circuited. Further, a rectangular pattern (referred to as a rescue pad) 11 made of aluminum is formed between the gate wirings and connected to the rescue wiring 14. Further, a rectangular pattern (also referred to as a signal pad) 12 also made of aluminum is formed at the signal input end and the terminal end so as to be connected to each gate wiring 1.

【0012】そして、ある配線が断線7を生じた場合、
その配線の入力端の信号パッド12とレスキューパッド
11、及び、終端部の信号パッド12とレスキューパッ
ド11を、金線15を用いてワイヤーボンディングの手
法で接続する。これにより、駆動ICから入力された信
号は、断線部以後の配線にも、レスキュー配線14を通
って配線終端部より供給され、断線不良は解消される。
If a wire breaks 7,
The signal pad 12 and the rescue pad 11 at the input end of the wiring, and the signal pad 12 and the rescue pad 11 at the terminal end are connected by the wire bonding method using the gold wire 15. As a result, the signal input from the drive IC is also supplied to the wiring after the disconnection portion through the rescue wiring 14 from the wiring end portion, and the disconnection defect is eliminated.

【0013】[0013]

【発明が解決しようとする課題】ゲート配線を陽極酸化
させるためには、全ゲート配線を短絡する必要がある。
しかしながら、(図5)に示すように、ゲート配線形成
時のフォトリソグラフィでの不良、または、エッチング
時の不良が原因で、ゲート配線1に断線7が発生する可
能性がある。断線不良が生じた配線は、断線部以後に陽
極酸化電流が供給されないため、陽極酸化膜2が形成さ
れない。
In order to anodize the gate wiring, it is necessary to short all the gate wirings.
However, as shown in FIG. 5, a disconnection 7 may occur in the gate wiring 1 due to a defect in photolithography when forming the gate wiring or a defect in etching. Since the anodizing current is not supplied to the wiring having the disconnection defect after the disconnection portion, the anodized film 2 is not formed.

【0014】陽極酸化膜が形成されないゲート配線上の
TFTは、ゲート絶縁膜がシリコン窒化膜3の1層とな
るため、他の正常部とTFT特性が異なり、その結果液
晶パネルにおいて画像不良が生じる。また、(図7)で
示すゲート・ソースクロス部16において、シリコン窒
化膜3の1層だけを介して2つの配線がクロスするた
め、ゲート・ソースショート不良が生じ易くなる。ゲー
ト・ソースショート不良が生じるとその配線に正常な信
号が供給されないため、同様に液晶パネルにおいて画像
不良が生じる。
In the TFT on the gate wiring where the anodic oxide film is not formed, since the gate insulating film is one layer of the silicon nitride film 3, the TFT characteristics are different from those of other normal portions, and as a result, an image defect occurs in the liquid crystal panel. .. Further, in the gate / source crossing portion 16 shown in (FIG. 7), two wirings cross each other through only one layer of the silicon nitride film 3, so that a gate / source short-circuit defect is likely to occur. When a gate-source short circuit defect occurs, a normal signal is not supplied to the wiring, and thus an image defect also occurs in the liquid crystal panel.

【0015】[0015]

【課題を解決するための手段】陽極酸化以前に形成した
金属で、ゲート配線群のほぼ両端を短絡させる。
Means for Solving the Problems With a metal formed before anodization, almost both ends of a gate wiring group are short-circuited.

【0016】[0016]

【作用】陽極酸化工程前に、もし、あるゲート配線で断
線が生じても、他の正常ゲート配線を経由して陽極酸化
電流が供給されるため、断線以後の配線にも陽極酸化膜
が形成される。よって、TFTアレイ基板の製造歩留ま
りが向上する。
Function Before the anodizing process, even if a disconnection occurs in a certain gate wiring, an anodizing current is supplied through another normal gate wiring, so that an anodized film is formed on the wiring after the disconnection. To be done. Therefore, the manufacturing yield of the TFT array substrate is improved.

【0017】[0017]

【実施例】第1の実施例を(図1)とともに説明する。
(図1)は、TFT構成するゲ−ト配線1、及び陽極酸
化膜2を形成した段階での図である。ゲ−ト配線群は、
それら両端で全て短絡された構成で、アルミニウム、ま
たはタンタル等の金属で形成される。この状態で、電解
液(しゅう酸等)に浸し、本基板の短絡したゲ−ト配線
群1箇所をクリップで接続し、陽極電圧を印加する。さ
らに、本基板と平行に白金電極を陰極に設置する。そし
て約100Vの電圧を短絡された本ゲート配線群に印加
し、電気分解を行い酸素を発生させ、ゲ−ト配線群上に
陽極酸化膜2を形成する。この後、先に、(図6)、7
を用いて説明したのと同様に、CVD法でシリコン窒化
膜3を形成し、TFTを構成するi型半導体膜4を形成
する。そして、透明導電膜であるITO膜5によって、
画素電極を形成し、ソ−ス・ドレイン電極6をアルミニ
ウムを用いて形成し、絵素とTFTを接続する。
EXAMPLE A first example (FIG. 1) will be described.
(FIG. 1) is a diagram at the stage when the gate wiring 1 and the anodic oxide film 2 constituting the TFT are formed. The gate wiring group is
The both ends thereof are short-circuited and are made of metal such as aluminum or tantalum. In this state, the substrate is immersed in an electrolytic solution (oxalic acid or the like), one short-circuited gate wiring group of this substrate is connected with a clip, and an anode voltage is applied. Further, a platinum electrode is placed on the cathode in parallel with the substrate. Then, a voltage of about 100 V is applied to the short-circuited main gate wiring group, electrolysis is performed to generate oxygen, and the anodic oxide film 2 is formed on the gate wiring group. After this, first (Fig. 6), 7
In the same manner as described above, the silicon nitride film 3 is formed by the CVD method and the i-type semiconductor film 4 forming the TFT is formed. Then, by the ITO film 5 which is a transparent conductive film,
A pixel electrode is formed, a source / drain electrode 6 is formed using aluminum, and a pixel and a TFT are connected.

【0018】(図1)に示すように、ゲート配線形成時
のフォトリソグラフィでの不良、または、エッチング時
の不良が原因で、ゲート配線1の断線不良7が発生して
いるとする。図面右側のゲ−ト配線群の陽極酸化電流供
給端部(給電端部と呼ぶ)においても、ゲ−ト配線群は
短絡されているため、断線部以後にも、断線が生じてい
ない他の正常ゲ−ト配線を経由して、ゲ−ト配線の給電
端部より陽極酸化電流が供給される。よって、陽極酸化
膜2が形成される。
As shown in FIG. 1, it is assumed that a disconnection defect 7 of the gate wiring 1 occurs due to a defect in photolithography at the time of forming the gate wiring or a defect in etching. Even at the anodizing current supply end (referred to as the power supply end) of the gate wiring group on the right side of the drawing, the gate wiring group is short-circuited, so that there is no disconnection even after the disconnection. Anodizing current is supplied from the feeding end of the gate wiring through the normal gate wiring. Therefore, the anodic oxide film 2 is formed.

【0019】また、先に述べた様に、断線レスキュ−を
行う事によって、液晶パネルにおいて、断線以後の配線
にもゲ−トパネル信号が供給されるため、正常な表示が
可能となる。
Further, as described above, by performing the disconnection rescue, in the liquid crystal panel, the gate panel signal is also supplied to the wiring after the disconnection, so that the normal display can be performed.

【0020】本実施例を行なうことによって、陽極酸化
以前にゲ−ト断線が生じていても、陽極酸化電流が供給
され陽極酸化膜が形成されるため、TFTアレイ基板の
製造歩留りが向上する。
By carrying out the present embodiment, even if the gate disconnection occurs before the anodization, the anodizing current is supplied to form the anodized film, so that the manufacturing yield of the TFT array substrate is improved.

【0021】また、TFTアレイ基板作製時、及び液晶
パネル組立時に発生する静電気が、1本のゲ−ト配線に
入り込んだ場合、そのゲ−ト配線上に配置されたTFT
の特性を変化させる不良をもたらす。ゲ−ト配線を短絡
させた構成は、この静電気を他の配線に分散させ、この
TFT特性不良を緩和させる効果も有する。本実施例の
構成に於いては、ゲ−ト配線の両端で短絡されているた
め、従来に比べて、さらに静電気に対して強い耐性を有
する。
Further, when static electricity generated at the time of manufacturing the TFT array substrate and at the time of assembling the liquid crystal panel enters into one gate wiring, the TFT arranged on the gate wiring.
Cause a defect that changes the characteristics of. The structure in which the gate wiring is short-circuited also has the effect of dispersing this static electricity to other wiring and alleviating this TFT characteristic defect. In the structure of this embodiment, both ends of the gate wiring are short-circuited, so that the gate wiring is more resistant to static electricity than the conventional one.

【0022】第2の実施例を(図2)、(図3)3とと
もに説明する。(図2)は、TFT構成するゲ−ト配線
1、及び陽極酸化膜2を形成した段階での図である。ま
ず、クロム膜9によってTFTアレイ基板両端に縦に延
在するパタ−ンを形成する。次に、(図3)(1)に示
すように、その両端が先に形成したクロム膜9上に重な
るように、ゲ−ト配線群1を形成する。(図2)に示す
ように、ゲ−ト配線群1は、クロム膜9によって、それ
ら両端で全て短絡されている。つぎに、(図3)(2)
に示すように、このクロム膜を完全に覆う形状で、レジ
スト膜10を形成する。この状態で、電解液(しゅう酸
等)に浸し、本基板の短絡したゲ−ト配線群1箇所をク
リップで接続し、陽極電圧を印加し、第1の実施例と同
様に、(図3)(3)に示すように、ゲ−ト配線群上に
陽極酸化膜2を形成して、レジスト膜は除去される。こ
の後、第1の実施例と同様に、プロセスを行い、TFT
アレイ基板を作成する。
A second embodiment (FIG. 2) and (FIG. 3) 3 will be described. (FIG. 2) is a diagram at the stage when the gate wiring 1 and the anodic oxide film 2 which form the TFT are formed. First, a pattern extending vertically is formed on both ends of the TFT array substrate by the chromium film 9. Next, as shown in (1) of FIG. 3, the gate wiring group 1 is formed so that both ends thereof overlap the chromium film 9 previously formed. As shown in FIG. 2, the gate wiring group 1 is short-circuited by the chromium film 9 at both ends thereof. Next, (Fig. 3) (2)
As shown in, the resist film 10 is formed in a shape that completely covers the chromium film. In this state, the substrate is dipped in an electrolytic solution (oxalic acid, etc.), one short-circuited gate wiring group of this substrate is connected with a clip, and an anode voltage is applied, as in the first embodiment (see FIG. (3) As shown in (3), the anodic oxide film 2 is formed on the gate wiring group, and the resist film is removed. After that, the process is performed in the same manner as in the first embodiment, and the TFT is
Create an array substrate.

【0023】(図2)に示すように、第1の実施例と同
様に、ゲート配線1の断線不良7が発生していても、ゲ
−ト配線給電末端部においてゲ−ト配線群は短絡されて
いるため、断線が生じていない他の正常ゲ−ト配線を経
由して、断線部以後にもゲ−ト配線給電末端部より陽極
酸化電流が供給される。よって、陽極酸化膜2が形成さ
れる。
As shown in FIG. 2, as in the first embodiment, even if the disconnection failure 7 of the gate wiring 1 occurs, the gate wiring group is short-circuited at the gate wiring feeding end portion. Therefore, the anodic oxidation current is supplied from the end portion of the power supply to the gate wiring even after the disconnection portion through the other normal gate wiring in which the disconnection has not occurred. Therefore, the anodic oxide film 2 is formed.

【0024】また、先に述べた様に、断線レスキュ−を
行う事によって、液晶パネルにおいて、断線以後の配線
にもゲ−トパネル信号が供給されるため、正常な表示が
可能となる。
Further, as described above, by performing the disconnection rescue, in the liquid crystal panel, the gate panel signal is also supplied to the wiring after the disconnection, so that the normal display can be performed.

【0025】本実施例を行なうことによって、(実施例
1)同様に、陽極酸化以前にゲ−ト断線が生じていて
も、陽極酸化膜が形成され、TFTアレイ基板の製造歩
留りが向上する。
By carrying out this embodiment, similarly to (Embodiment 1), even if the gate disconnection occurs before the anodic oxidation, the anodic oxide film is formed, and the manufacturing yield of the TFT array substrate is improved.

【0026】また、(実施例1)と同様に、TFT作製
時、及び液晶パネル組立時に発生する静電気が入力して
も、ゲ−ト配線の両端で短絡されているため、従来に比
べてさらに静電気に対して強い耐性を有する。
Further, as in the case of (Example 1), even if static electricity generated at the time of manufacturing the TFT and at the time of assembling the liquid crystal panel is input, it is short-circuited at both ends of the gate wiring. Has strong resistance to static electricity.

【0027】さらに、短絡されたゲ−ト配線群は、(実
施例1)と同様に、基板切断によっても分離可能である
が、Crパタ−ンによって短絡されているため、Crパ
タ−ン上の絶縁膜を除去しておけば、エッチングによっ
て、分離することも可能である。
Further, the short-circuited gate wiring group can be separated by cutting the substrate as in the case of the first embodiment, but since it is short-circuited by the Cr pattern, it is on the Cr pattern. If the insulating film is removed, it can be separated by etching.

【0028】Crのエッチング液は、硫酸セリウムアン
モニュウム水溶液を用いる。本エッチング液は、ゲ−
ト、ソ−ス配線を形成するアルミニウム、タンタルを溶
解させないため、断線等の不良は生じない。実施例1の
ように、基板切断によって、ゲート配線群を分離した場
合、ゲート配線上を切断するため基板切断時に発生した
静電気がゲート配線中に入る可能性がある。しかしなが
ら、エッチングによってゲ−ト配線を分離する場合、
(図2)に示すように、ゲート配線上を基板割断8する
必要がないため、静電気がゲート配線中に入る可能性は
低く、TFTアレイ基板の歩留りが向上する。
A cerium-ammonium sulfate aqueous solution is used as the Cr etching solution. This etching solution is
Since aluminum and tantalum that form the gate and source wiring are not melted, defects such as disconnection do not occur. When the gate wiring group is separated by cutting the substrate as in the first embodiment, static electricity generated at the time of cutting the substrate may enter the gate wiring because the gate wiring is cut. However, when the gate wiring is separated by etching,
As shown in FIG. 2, since it is not necessary to cut the substrate 8 on the gate wiring, it is unlikely that static electricity enters the gate wiring, and the yield of the TFT array substrate is improved.

【0029】[0029]

【発明の効果】ある配線で断線が生じていても、他の配
線より陽極酸化電流が供給され、断線以後の配線にも、
陽極酸化膜が形成される。よって、TFTアレイ基板の
製造歩留まりが向上する。
[Effects of the Invention] Even if a wire breaks, an anodizing current is supplied from another wire, and even after the wire breaks,
An anodic oxide film is formed. Therefore, the manufacturing yield of the TFT array substrate is improved.

【0030】また、TFTアレイ基板作製時、及び液晶
パネル組立時に発生する静電気が、1本のゲ−ト配線に
入り込んだ場合、そのゲ−ト配線上に配置されたTFT
の特性を変化させる不良をもたらす。ゲ−ト配線を短絡
させた構成は、この静電気を他の配線に分散させ、この
TFT特性不良を緩和させる効果も有する。本発明の構
成に於いては、ゲ−ト配線の両端で短絡されているた
め、従来に比べて、静電気に対して強い耐性を有する。
In addition, when static electricity generated at the time of manufacturing the TFT array substrate and at the time of assembling the liquid crystal panel enters one gate wiring, the TFT arranged on the gate wiring.
Cause a defect that changes the characteristics of. The structure in which the gate wiring is short-circuited also has the effect of dispersing this static electricity to other wiring and alleviating this TFT characteristic defect. In the structure of the present invention, since both ends of the gate wiring are short-circuited, the gate wiring is more resistant to static electricity than the conventional one.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例で、ゲート配線、及び陽極酸化膜
形成後のTFTアレイ基板の簡略平面構成図
FIG. 1 is a schematic plan configuration diagram of a TFT array substrate after forming a gate wiring and an anodic oxide film in the first embodiment.

【図2】第2の実施例で、ゲート配線、及び陽極酸化膜
形成後のTFTアレイ基板の簡略平面構成図
FIG. 2 is a schematic plan configuration diagram of a TFT array substrate after forming a gate wiring and an anodic oxide film in the second embodiment.

【図3】第2の実施例で、ゲート配線、及び陽極酸化膜
形成迄のTFTアレイ基板の簡略断面工程図
FIG. 3 is a schematic cross-sectional process diagram of a TFT array substrate up to formation of a gate wiring and an anodic oxide film in the second embodiment.

【図4】TFTアレイ基板に於けるゲート断線に対する
ワイヤーボンディングの手法によるレスキュー法の説明
FIG. 4 is an explanatory diagram of a rescue method by a wire bonding method for a gate disconnection on a TFT array substrate.

【図5】従来例で、ゲート配線、及び陽極酸化膜形成後
のTFTアレイ基板の簡略平面構成図
FIG. 5 is a simplified plan configuration diagram of a TFT array substrate after forming a gate wiring and an anodic oxide film in a conventional example.

【図6】陽極酸化膜を用いたTFTアレイの断面構成図FIG. 6 is a cross-sectional configuration diagram of a TFT array using an anodic oxide film.

【図7】陽極酸化膜を用いたTFTアレイの平面構成図FIG. 7 is a plan configuration diagram of a TFT array using an anodic oxide film.

【符号の説明】[Explanation of symbols]

1 ゲート金属 2 陽極酸化膜 3 シリコン窒化膜 4 半導体膜 5 ITO膜 6 ソ−ス・ドレイン金属 7 ゲート断線部 8 基板割断線 9 クロム膜 10 レジスト膜 11 レスキューパッド 12 信号パッド 13 駆動IC実装部 14 レスキュー配線 15 金線 16 ゲート・ソースクロス部 1 Gate Metal 2 Anodic Oxide Film 3 Silicon Nitride Film 4 Semiconductor Film 5 ITO Film 6 Source / Drain Metal 7 Gate Disconnection 8 Substrate Dividing 9 Chrome Film 10 Resist Film 11 Rescue Pad 12 Signal Pad 13 Drive IC Mount 14 Rescue wiring 15 Gold wire 16 Gate / source cross section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板の一主面上に、平行に延在する配線群
と前記配線群を陽極酸化して得られた絶縁膜とを有する
アクティブマトリクス基板において、前記配線群が、前
記陽極酸化以前に形成された金属で、前記配線群のほぼ
両端が短絡されている事を特徴とるアクティブマトリク
ス基板。
1. An active matrix substrate having a wiring group extending in parallel and an insulating film obtained by anodizing the wiring group on one main surface of the substrate, wherein the wiring group is anodized. An active matrix substrate, characterized in that the both ends of the wiring group are short-circuited with the metal formed previously.
JP12162692A 1992-05-14 1992-05-14 Active matrix substrate manufacturing method Expired - Fee Related JP3231395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12162692A JP3231395B2 (en) 1992-05-14 1992-05-14 Active matrix substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12162692A JP3231395B2 (en) 1992-05-14 1992-05-14 Active matrix substrate manufacturing method

Publications (2)

Publication Number Publication Date
JPH05313200A true JPH05313200A (en) 1993-11-26
JP3231395B2 JP3231395B2 (en) 2001-11-19

Family

ID=14815925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12162692A Expired - Fee Related JP3231395B2 (en) 1992-05-14 1992-05-14 Active matrix substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP3231395B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045752A1 (en) * 1997-04-09 1998-10-15 Seiko Epson Corporation Method of manufacturing liquid crystal device
JP2015225265A (en) * 2014-05-29 2015-12-14 三菱電機株式会社 Display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045752A1 (en) * 1997-04-09 1998-10-15 Seiko Epson Corporation Method of manufacturing liquid crystal device
US6341005B1 (en) 1997-04-09 2002-01-22 Seiko Epson Corporation Method for producing liquid crystal device with conductors arranged in a matrix
JP2015225265A (en) * 2014-05-29 2015-12-14 三菱電機株式会社 Display device
US10043466B2 (en) 2014-05-29 2018-08-07 Mitsubishi Electric Corporation Display device

Also Published As

Publication number Publication date
JP3231395B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
US5672523A (en) Thin film transistor substrate, manufacturing method thereof, liquid crystal display panel and liquid crystal display equipment
KR960011942B1 (en) Panel fabricating method of thin film transistor
US7417693B2 (en) Liquid crystal display device and its manufacturing method
KR0140971B1 (en) An active matrix type liquid crystal display panel and a method for producing the same
KR930005549B1 (en) Display panel and display panel making method
US7982837B2 (en) Liquid crystal display device and its manufacturing method
JPH10339888A (en) Thin film transistor array and its production
KR100356452B1 (en) Liquid crystal display device and method of manufacturing the same
US5374837A (en) Thin film transistor array substrate acting as an active matrix substrate
JPH05313200A (en) Active matrix substrate
JP3265702B2 (en) Thin film transistor panel
JPH04305627A (en) Production of active matrix substrate
JPH0545677A (en) Production of wiring board, wiring board and liquid crystal display device
JP2001356367A (en) Liquid crystal image display device and method for manufacturing semiconductor device for image display device
JPH04365016A (en) Active matrix board
JPS61100971A (en) Manufacture of thin-film transistor
JPH1090717A (en) Active matrix type liquid crystal display device and its manufacture
JPH07244295A (en) Liquid crystal display device and its production
JPH022522A (en) Manufacture of tft panel
JPH07104316A (en) Production of liquid crystal display device
JPH05249490A (en) Production of tft array substrate
JPH05173186A (en) Manufacture of thin film transistor panel
JP2000082817A (en) Active matrix substrate and manufacture thereof
JP2002076363A (en) Liquid crystal display
JPH0340511B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees