JPH05312535A - Method for analyzing shape of solder - Google Patents

Method for analyzing shape of solder

Info

Publication number
JPH05312535A
JPH05312535A JP4146912A JP14691292A JPH05312535A JP H05312535 A JPH05312535 A JP H05312535A JP 4146912 A JP4146912 A JP 4146912A JP 14691292 A JP14691292 A JP 14691292A JP H05312535 A JPH05312535 A JP H05312535A
Authority
JP
Japan
Prior art keywords
fillet
point
shape
angle
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4146912A
Other languages
Japanese (ja)
Other versions
JP3153336B2 (en
Inventor
Munetoshi Numata
宗敏 沼田
Makoto Nakai
良 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lossev Technology Corp
Original Assignee
Lossev Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lossev Technology Corp filed Critical Lossev Technology Corp
Priority to JP14691292A priority Critical patent/JP3153336B2/en
Publication of JPH05312535A publication Critical patent/JPH05312535A/en
Application granted granted Critical
Publication of JP3153336B2 publication Critical patent/JP3153336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To accurately analyze the shape of a solder fillet by introducing an appropriate model function to the shape of the fillet and finding the curve of the shape and required positional coordinates. CONSTITUTION:The meniscus shape formed by a fillet 2 is given by formulae I and II when the fillet angle at an arbitrary point P (x, y) on the curved surface of the fillet 2 is theta. The reflecting point formed on the fillet 2 by illuminating light 6 is represented by P1 and another reflecting point formed by another illuminating light 7 is represented by P2. The angles of the light rays 6 and 7 are respectively represented by PHI1 and PHI2. The front positions (0, 0) and P0 of a lead and fillet 2 are given by using the illuminating light immediately above. The fillet angles theta1 and theta2 at the points P1 and P2 are respectively given by theta1=(pi-2PHI1)/4 and theta2=(pi-2PHI2/4 and a fillet curve is decided by finding correction terms (a) and (b) and the fillet angle theta0 (contact angle theta1) at a point P0 by using the values of the position (x) and fillet angles theta at the points P1 and P2 for the formulae I and II and finding an unknown number (c) by using the coordinate values (x0, 0) at the point P0. Therefore, the contact angle thetah and fillet height (h) of a point Ph where the fillet 2 comes into contact with a lead 1 are found.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ハンダ形状の解析方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solder shape analyzing method.

【0002】[0002]

【ハンダ形状解析の必要性】異種の液体と固体(母材)
とが互いにくっつく現象をぬれ(wetting)とい
う。図1において、ぬれの張力Aは、A=γl cos θで
与えられ、液体の表面張力γl が一定ならば、接触角θ
が小さい程つまり0に近い程、ぬれの張力Aが大きく、
ハンダ付けの場合に、良くハンダ付けされていることに
なる。
[Need for solder shape analysis] Different liquids and solids (base material)
The phenomenon in which and stick to each other is called wetting. In FIG. 1, the wetting tension A is given by A = γ l cos θ, and if the surface tension γ l of the liquid is constant, the contact angle θ
The smaller is, that is, the closer to 0, the greater the wetting tension A,
When soldering, it means that they are well soldered.

【0003】図2で、ICパッケージなどのリード1の
先端部で、ハンダのフィレット2において、ハンダ付け
の強度は、リード1とフィレット2との接触角θh とパ
ッド3とフィレット2の接触角θl に依存する。また、
フィレットの上昇高さつまりフィレット高さhとフィレ
ット長さLも重要な要素である。
In FIG. 2, in the solder fillet 2 at the tip of the lead 1 of the IC package or the like, the strength of soldering is determined by the contact angle θ h between the lead 1 and the fillet 2, the contact angle between the pad 3 and the fillet 2. Depends on θ l . Also,
The rise height of the fillet, that is, the fillet height h and the fillet length L are also important factors.

【0004】[0004]

【従来のハンダ形状解析およびその問題点】レーザーに
よるハンダ形状の解析も、画像処理によるハンダ形状解
析も、原理的には同じである。これは、図3に見られる
ように、フィレット2の真上方向にあるレーザー光源4
(画像処理の場合はカメラ)、水平面に対し角度φを持
つ検出素子5(画像処理の場合は照明)より、フィレッ
ト2の表面上の反射点Pにおけるフィレット角度(接触
角)θが算出できるというものであって、図4に示すよ
うに反射点Pn (P0 、P1 、P2 、P3 、・・、
n )でのフィレット角度θn (θ0 、θ1 、θ2 、θ
3 、・・、θn )と位置xn (x0 、x1 、x2
3 、・・、xn )とによりフィレット2の形状を折れ
線で表現できる。
[Prior art solder shape analysis and its problems] In principle, the analysis of solder shape by laser and the analysis of solder shape by image processing are the same. This is due to the laser light source 4 located directly above the fillet 2 as seen in FIG.
It is said that the fillet angle (contact angle) θ at the reflection point P on the surface of the fillet 2 can be calculated from (the camera in the case of image processing) and the detection element 5 (illumination in the case of image processing) having an angle φ with respect to the horizontal plane. As shown in FIG. 4, the reflection points P n (P 0 , P 1 , P 2 , P 3 , ...
Fillet angle θ n0 at P n), θ 1, θ 2, θ
3, ··, θ n) and the position x n (x 0, x 1 , x 2,
The shape of the fillet 2 can be represented by a polygonal line by using x 3 , ..., X n ).

【0005】ここで、サンプル間隔が粗いと、誤差が大
きくなるが、一般に、フィレット曲線を近似する折れ線
は、次の(1)式で表現できる。
Here, if the sample interval is coarse, the error becomes large, but generally, the polygonal line approximating the fillet curve can be expressed by the following equation (1).

【0006】[0006]

【数1】 [Equation 1]

【0007】真のフィレット曲線をy=f(x)とすれ
ば、近似による誤差ε(x)は、ε(x)=|F(x)
−f(x)|で与えられるが、一般的には位置x0 以外
の点でε(x)=0とはならず、しかもサンプル数Nが
少ない程、添字nが大きくなるに従って誤差ε(x)は
大きくなる。
If the true fillet curve is y = f (x), the error ε (x) due to the approximation is ε (x) = | F (x)
It is given by −f (x) |, but generally, ε (x) = 0 is not obtained at points other than the position x 0 , and the error ε (becomes larger as the subscript n becomes larger as the number of samples N decreases. x) becomes large.

【0008】また、フィレット角度θがπ/4以上とな
る部分の解析はできない。図3のように、検出素子5の
角度φは0<φ<π/2であるから、反射点Pn が検出
できるフィレット角度θn は、0<θ<π/4となる。
したがって、図5に見るように、反射点がないと、フィ
レット高さhと接触角θl は算出できない。
Further, the portion where the fillet angle θ is π / 4 or more cannot be analyzed. As shown in FIG. 3, since the angle φ of the detection element 5 is 0 <φ <π / 2, the fillet angle θ n at which the reflection point P n can be detected is 0 <θ <π / 4.
Therefore, as shown in FIG. 5, the fillet height h and the contact angle θ l cannot be calculated without the reflection point.

【0009】[0009]

【発明の目的】本発明の目的は、上記欠点を解決するも
ので、ハンダのフィレット形状を精度よく解析すること
である。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks and to analyze the fillet shape of the solder with high accuracy.

【0010】[0010]

【発明の解決手段】上記目的の下に、本発明は、ハンダ
フィレット形状に適切なモデル関数を導入し、これから
形状の曲線や必要な位置座標を求めるようにしている。
For the above object, the present invention introduces a model function suitable for a solder fillet shape and obtains a curve of the shape and necessary position coordinates from the model function.

【0011】[0011]

【実施例】フィレット2の側面形状のモデル関数は、次
のようにして導かれる。図6で、フィレット2の曲面上
の任意の点P(x,y)に対して、点Pでのフィレット
角をθとすれば、フィレット2が無限垂直板に形成する
メニスカス(半球面)形状は次式で与えられる。
EXAMPLE A model function of the side face shape of the fillet 2 is derived as follows. In FIG. 6, for any point P (x, y) on the curved surface of the fillet 2, if the fillet angle at the point P is θ, the meniscus (hemispherical) shape formed by the fillet 2 on an infinite vertical plate. Is given by

【0012】[0012]

【数2】 [Equation 2]

【0013】ここにθはフィレット角度、bはハンダ密
度と表面張力によって決まる定数である。
Where θ is a fillet angle and b is a constant determined by the solder density and surface tension.

【0014】ただし、上式は有限の大きさのパッドには
適用できないため、補正項として未知数a、bを挿入し
て次式が得られる。
However, since the above equation cannot be applied to a pad having a finite size, the unknowns a and b are inserted as a correction term to obtain the following equation.

【0015】[0015]

【数3】 [Equation 3]

【0016】ここに、原点(0,0)は、xがリード先
端位置、yがパッドの高さとする。a、b、cは共に未
知数である。
Here, at the origin (0, 0), x is the lead tip position and y is the pad height. All of a, b, and c are unknown numbers.

【0017】基本的なフィレット2では、モデル関数は
次のようにして算出される。図7において照明6による
フィレット2上の反射点をP1 、照明7による反射点を
2とする。ここに照明6の角度はφ1 、照明7の角度
はφ2 である。リード先端位置(0,0)と、フィレッ
ト先端位置P0 は、真上の照明8を使用することにより
与えられているものとする。このとき、反射点P1 、P
2 におけるフィレット角度θ1 、θ2 はそれぞれ、次式
で与えられる。
In the basic fillet 2, the model function is calculated as follows. In FIG. 7, the reflection point on the fillet 2 by the illumination 6 is P 1 , and the reflection point by the illumination 7 is P 2 . Here, the angle of the illumination 6 is φ 1 , and the angle of the illumination 7 is φ 2 . It is assumed that the lead tip position (0, 0) and the fillet tip position P 0 are given by using the illumination 8 directly above. At this time, the reflection points P 1 , P
Fillet angle theta 1 at 2, respectively theta 2 is given by the following equation.

【0018】[0018]

【数4】 [Equation 4]

【0019】(3)式に反射点P1 、P2 におけるそれ
ぞれ位置xとフィレット角度θの値を代入して、それを
解いて補正項a、bを求める。
The values of the position x and fillet angle θ at the reflection points P 1 and P 2 are substituted into the equation (3), and the values are solved to obtain the correction terms a and b.

【0020】[0020]

【数5】 [Equation 5]

【0021】次に、未知数cを求めるために、点P0
おけるフィレット角度θ0 (接触角θl )を求める。点
0 の座標値(x0 ,0)を用いて、(5)式の値を
(3)式に代入して、(6)式が得られる。
Next, in order to obtain the unknown c, the fillet angle θ 0 (contact angle θ l ) at the point P 0 is obtained. By using the coordinate value (x 0 , 0) of the point P 0 and substituting the value of the expression (5) into the expression (3), the expression (6) is obtained.

【0022】[0022]

【数6】 [Equation 6]

【0023】さて、(6)式の上段を解くには、まず、
下記の式を導入する。
Now, to solve the upper stage of equation (6), first,
The following formula is introduced.

【0024】[0024]

【数7】 [Equation 7]

【0025】次に、ニュートン・ラプソン法により、次
のように初期値を与え、(8)式を得る。
Next, by the Newton-Raphson method, the following initial values are given to obtain the equation (8).

【0026】[0026]

【数8】 [Equation 8]

【0027】上記(8)式をN=3〜4回繰り返せば、
小数点以下4桁まで正しくψを求めることができる。こ
こでθ0 =ψN とおく。(6)式によって、未知数cが
求められる。
If the above equation (8) is repeated N = 3 to 4 times,
It is possible to accurately obtain ψ up to the fourth digit after the decimal point. Here, θ 0 = ψ N. The unknown number c is obtained by the equation (6).

【0028】[0028]

【数9】 [Equation 9]

【0029】以上の計算により未知数a、b、cは解か
れ、フィレット曲線は決定した。ここまでで、フィレッ
ト長さL=x0 、接触角θl =θ0 である。
The unknowns a, b, and c were solved by the above calculation, and the fillet curve was determined. Up to this point, the fillet length L = x 0 and the contact angle θ l = θ 0 .

【0030】次に、接触角θh およびフィレット高さh
を求める。フィレット2がリード1と接触する点をPh
とすれば、xh =0、yh =hとして、(3)式より
(10)式が得られる。
Next, the contact angle θ h and the fillet height h
Ask for. The point at which the fillet 2 is in contact with the lead 1 P h
Then, assuming that x h = 0 and y h = h, formula (10) is obtained from formula (3).

【0031】[0031]

【数10】 [Equation 10]

【0032】(10)式の上段の式は、(6)式の上段の
式と同様にニュートン・ラプソン法によって解けばよ
い。これより、フィレット高さhが求められる。
The upper equation of the equation (10) may be solved by the Newton-Raphson method similarly to the upper equation of the equation (6). From this, the fillet height h is obtained.

【0033】[0033]

【数11】 [Equation 11]

【0034】[0034]

【フィレットのモデル関数算出法の拡張】以上の論述
は、リード先端位置x0 および照明6による輝点位置x
1 、照明7による輝点位置x2 が与えられている場合で
あった。
[Expansion of fillet model function calculation method] The above discussion is based on the lead tip position x 0 and the bright spot position x by the illumination 6.
1 and the bright spot position x 2 by the illumination 7 was given.

【0035】反射点(輝点)が1つしかない場合には、
次のようにする。(3)式の未知数a、b、cの中で、
定数bはハンダの素材によって共通であるから、基板の
平均的な定数bを求めておけば、反射点が1つしかなく
ても、未知数a、cは算出できる。
When there is only one reflection point (bright point),
Do the following: Among the unknowns a, b, and c in equation (3),
Since the constant b is common to the solder materials, if the average constant b of the substrate is obtained, the unknowns a and c can be calculated even if there is only one reflection point.

【0036】すなわち、反射点をP1 とすれば(x座標
をx1 )、x1 =a+b〔log cot (θ1 /4)−2co
s (θ1 /2)〕よりaを算出しx0 =a+b〔log co
t (θ0 /4)−2cos (θ1 /2)〕よりθ0 を算出
してから、0=c+2bsin(θ0 /2)でcを計算すれ
ばよい。
[0036] That is, if the reflection point and P 1 (x coordinate x 1), x 1 = a + b [log cot (θ 1/4) -2co
s (θ 1/2)] from the calculated a and x 0 = a + b [log co
After calculating the t (θ 0/4) -2cos (θ 1/2) ] than theta 0, it may be calculated to c at 0 = c + 2bsin (θ 0 /2).

【0037】反射点(輝点)が2つを超える場合には、
次のようにする。2つを超えるm個の照明があり、それ
らを照明1、2、・・、mとする。それぞれの角度をφ
1 、φ2 、・・、φm 、また、それぞれによる輝点
1 、P2 、・・、Pm の位置をそれぞれx1 、x2
・・、xm とする。θm =(π−2φm )/4として
(3)式に代入し、下記の式を得る。
When there are more than two reflection points (bright points),
Do the following: There are more than two m lights, and let them be lights 1, 2, ..., M. Φ for each angle
1 , φ 2 , ..., φ m , and the positions of the bright spots P 1 , P 2 , ..., P m are respectively defined as x 1 , x 2 ,
.., x m . Substituting into the equation (3) with θ m = (π−2φ m ) / 4, the following equation is obtained.

【0038】[0038]

【数12】 [Equation 12]

【0039】これを最小二乗法によって、未知数aおよ
び未知数bについて解く。すなわちgn =log cot(θn
/4)−2cos(θn /2)とおけば、未知数a、bが次
式から求められる。
This is solved for the unknowns a and b by the method of least squares. That is, g n = log cot (θ n
/ 4) -2cos (θ n / 2), the unknowns a and b can be obtained from the following equation.

【0040】[0040]

【数13】 [Equation 13]

【0041】次にニュートン・ラプソン法によって、x
0 =a+b〔log cot (θ0 /4)−2cos (θ1
2)〕よりθ0 を算出し、c=−2bsin(θ0 /2)を
求めればよい。
Next, by the Newton-Raphson method, x
0 = a + b [log cot (θ 0/4) -2cos (θ 1 /
2)] was calculated from theta 0, may be obtained and c = -2bsin (θ 0/2 ).

【0042】[0042]

【発明の効果】新しいハンダ形状解析方法では、モデル
関数を使用しているため、サンプル間隔が粗くても、精
度よくフィレット曲線を求めることができ、累積誤差が
生じない。基本的には、リード先端位置x3 とフィレッ
ト先端位置P0 (x0 、0)および2つの輝点位置さえ
わかればよい。またフィレット高さhおよび接触角θh
を精度よく算出できる。
Since the new solder shape analysis method uses the model function, the fillet curve can be accurately obtained even if the sample interval is rough, and the cumulative error does not occur. Basically, it suffices to know the lead tip position x 3 , the fillet tip position P 0 (x 0 , 0) and the two bright spot positions. Also, fillet height h and contact angle θ h
Can be calculated accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】表面張力の説明図である。FIG. 1 is an explanatory diagram of surface tension.

【図2】ハンダ付け状態の側面図である。FIG. 2 is a side view of a soldered state.

【図3】ハンダ形状の解析の原理図である。FIG. 3 is a principle diagram of analysis of a solder shape.

【図4】フィレット曲線の近似の説明図である。FIG. 4 is an explanatory diagram of approximation of a fillet curve.

【図5】フィレット曲線の近似の説明図である。FIG. 5 is an explanatory diagram of approximation of a fillet curve.

【図6】モデル関数の説明図である。FIG. 6 is an explanatory diagram of a model function.

【図7】モデル関数算出の説明図である。FIG. 7 is an explanatory diagram of model function calculation.

【符号の説明】[Explanation of symbols]

1 リード 2 フィレット 3 パッド 4 レーザー光源 5 検出素子 6 照明 7 照明 1 lead 2 fillet 3 pad 4 laser light source 5 detection element 6 illumination 7 illumination

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半球面状のフィレット形状のモデル関数
として、下記の式を定義し、照明の輝点発生位置やフィ
レットの境界条件から未知数a、b、cを求め、フィレ
ット高さhおよびフィレット角度θを求めるハンダ形状
の解析方法。 x=a+b〔log cot(θ/4)−2 cos(θ/2)〕 y=c+2bsin(θ/2) h=c+2bsin(θh /2)
1. The following formula is defined as a model function of a hemispherical fillet shape, and unknowns a, b, and c are obtained from a bright spot generation position of illumination and a boundary condition of the fillet, and a fillet height h and a fillet are obtained. How to analyze the solder shape to find the angle θ. x = a + b [log cot (θ / 4) -2 cos (θ / 2)] y = c + 2b sin (θ / 2) h = c + 2b sin (θ h / 2)
JP14691292A 1992-05-13 1992-05-13 Solder shape analysis method Expired - Fee Related JP3153336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14691292A JP3153336B2 (en) 1992-05-13 1992-05-13 Solder shape analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14691292A JP3153336B2 (en) 1992-05-13 1992-05-13 Solder shape analysis method

Publications (2)

Publication Number Publication Date
JPH05312535A true JPH05312535A (en) 1993-11-22
JP3153336B2 JP3153336B2 (en) 2001-04-09

Family

ID=15418381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14691292A Expired - Fee Related JP3153336B2 (en) 1992-05-13 1992-05-13 Solder shape analysis method

Country Status (1)

Country Link
JP (1) JP3153336B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041179A (en) * 2004-07-27 2006-02-09 Ngk Spark Plug Co Ltd Ceramic package for led and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284187B1 (en) 1999-04-28 2001-09-04 Visteon Global Technologies, Inc. Blow molding needle for liquid cooling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041179A (en) * 2004-07-27 2006-02-09 Ngk Spark Plug Co Ltd Ceramic package for led and its manufacturing method

Also Published As

Publication number Publication date
JP3153336B2 (en) 2001-04-09

Similar Documents

Publication Publication Date Title
JPH0348755A (en) Appearance inspection device for electronic parts
EP1017962B1 (en) Three dimensional inspection of electronic leads with optical element attached to the top surface of a transparent reticle
CN1287643A (en) Method and apparatus for three-dimensional inspection of electronic components
KR900000683A (en) Pattern Shape Measuring Device
JPH0499950A (en) Soldering inspection apparatus
JPH05312535A (en) Method for analyzing shape of solder
JPS6131909A (en) Detecting device for solid shape
JPH04203916A (en) Inspecting method of external appearance
JP3158640B2 (en) Pattern matching method
JPH04369411A (en) Setting method of reference surface for measuring shape of solder
JPH06241741A (en) Lead inspection device
JPH0372203A (en) Checking method of outer appearance of soldering part
Hiroi et al. Solder joint inspection using air stimulation speckle vibration detection method and fluorescence detection method
JPH07167621A (en) Method for inspecting pin appearance
JP2525261B2 (en) Mounted board visual inspection device
JPH09297011A (en) Method and apparatus for detection of shape of object surface
JPH06204700A (en) Chip component mount inspecting apparatus
JPH01265143A (en) Inspection device for solder state
JPH02311704A (en) Apparatus for measuring thickness of transparent linear film
JPH06258041A (en) Method and equipment for inspecting lead of semiconductor package
JP3040013B2 (en) Foreign object detection method using floating threshold
JPH05135157A (en) Outward appearance inspection device for mounted substrate
JPH03216508A (en) Solder ball inspecting instrument
JPH0457206B2 (en)
JPH0221244A (en) Detection of solder bridge

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees