JPH02311704A - Transparent linear film thickness measuring device - Google Patents
Transparent linear film thickness measuring deviceInfo
- Publication number
- JPH02311704A JPH02311704A JP13391289A JP13391289A JPH02311704A JP H02311704 A JPH02311704 A JP H02311704A JP 13391289 A JP13391289 A JP 13391289A JP 13391289 A JP13391289 A JP 13391289A JP H02311704 A JPH02311704 A JP H02311704A
- Authority
- JP
- Japan
- Prior art keywords
- film
- transparent
- transparent linear
- film thickness
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔概要〕
基材上に直接又は透明膜を介し透明線状膜が形成された
試料に対し、この透明線状膜の膜厚を光学的に測定する
膜厚測定装置に関し、
簡単な構成で透明線状膜の膜厚を測定できるようにする
ことを目的とし、
透明線状膜を横切るようにスリット光を照射して光切断
線を形成する照射光学手段と、該光切断線を撮像する撮
像手段と、撮像された光切断線像のうち、該基材面に形
成された光切断線の像を抽出し、抽出された該光切断線
像について、該横切りによるずれ間隔を測定する画像処
理手段と、該ずれ間隔、スリット光の該試料に対する入
射角及び該透明線状膜の屈折率を用いて該透明線状膜の
膜厚を算出する膜厚算出手段と、を備えて構成する。[Detailed Description of the Invention] [Summary] A film thickness measuring device that optically measures the film thickness of a transparent linear film on a sample in which a transparent linear film is formed directly or via a transparent film on a substrate. With the aim of making it possible to measure the film thickness of a transparent linear film with a simple configuration, we have developed an irradiation optical means that irradiates a slit light across the transparent linear film to form a light cutting line; an imaging means for capturing an image of a light cutting line; extracting an image of the light cutting line formed on the substrate surface from the captured light cutting line image; an image processing means for measuring a displacement interval; a film thickness calculation means for calculating a film thickness of the transparent linear film using the displacement interval, an incident angle of slit light with respect to the sample, and a refractive index of the transparent linear film; , and configure it.
本発明は、基材上に直接又は透明膜を介し透明線状膜が
形成された試料に対し、この透明線状膜の膜厚を光学的
に測定する膜厚測定装置に関する。The present invention relates to a film thickness measuring device for optically measuring the film thickness of a transparent linear film on a sample in which a transparent linear film is formed directly or via a transparent film on a substrate.
プリント配線のような線状物の厚さ測定には、光切断法
が用いられている。また、透明膜の膜厚測定にはエリプ
ソメータが用いられている。Optical sectioning is used to measure the thickness of linear objects such as printed wiring. Further, an ellipsometer is used to measure the thickness of a transparent film.
しかし、従来の光切断法は、練状物表面での反射光を用
いるので、反射率が極めて小さい透明線状物に対しては
適用することができない。また、エリプソメータは、安
定化レーザや検光子、偏光子、光変調器等を用いている
ので、構成が複雑である。However, since the conventional light cutting method uses reflected light from the surface of the dough, it cannot be applied to transparent linear materials whose reflectance is extremely low. Further, the ellipsometer uses a stabilized laser, an analyzer, a polarizer, an optical modulator, etc., and therefore has a complicated configuration.
本発明の目的は、このような問題点に鑑み、簡単な構成
で透明線状膜の膜厚を測定することができる膜厚測定装
置を提供することにある。SUMMARY OF THE INVENTION In view of these problems, an object of the present invention is to provide a film thickness measuring device that can measure the thickness of a transparent linear film with a simple configuration.
第1図は本発明に係る透明線状膜の膜厚測定装置の原理
構成を示す。この装置は、基材1a上に直接又は透明膜
1hを介し透明線状膜1cが形成された試料1に対し、
透明線状膜1cの膜厚d1を光学的に測定する。FIG. 1 shows the basic structure of a transparent linear film thickness measuring device according to the present invention. This device is used for a sample 1 in which a transparent linear film 1c is formed on a base material 1a directly or via a transparent film 1h.
The film thickness d1 of the transparent linear film 1c is optically measured.
図中、2は光照射光学手段であり、透明線状膜1cを横
切るようにスリット光3を照射して光切断線4を形成す
る。In the figure, reference numeral 2 denotes a light irradiation optical means, which irradiates a slit light 3 across the transparent linear film 1c to form a light cutting line 4.
5は撮像手段であり、光切断線4を撮像fる。Reference numeral 5 denotes an imaging means, which images the optical cutting line 4.
6は画像処理手段であり、撮像された光切断線像のうち
、基材1a面に形成された光切断線の像を抽出し、抽出
された光切断線像について、該横切りによるずれ間隔胃
を測定する。Reference numeral 6 denotes an image processing means, which extracts an image of the light section line formed on the surface of the base material 1a from the photographed light section line image, and calculates the deviation interval due to the transverse cutting with respect to the extracted light section line image. Measure.
7は膜厚算出手段であり、ずれ間隔胃、スリット光の試
料lに対する入射角θ及び透明線状1!1cの屈折率n
1を用いて透明線状膜1cの膜厚d1を算出する。7 is a film thickness calculating means, which calculates the deviation interval, the incident angle θ of the slit light with respect to the sample l, and the refractive index n of the transparent linear 1!1c.
1 to calculate the film thickness d1 of the transparent linear film 1c.
第2図は試料1に対するスリット光3の光路を示す。以
下、線分とは第2図紙面に垂直な線分をいうものとする
。FIG. 2 shows the optical path of the slit light 3 with respect to the sample 1. Hereinafter, a line segment refers to a line segment perpendicular to the paper surface of the second drawing.
試料1は、基材1a上に透明膜1bを介し透明線状11
cが形成されている。スリット光3の中間部は、透明線
状膜1c上に位置しており、その表面Sl内の線分Aで
屈折し、透明Mlbの表面S2内の線分Bで屈折し、基
材1aの表面S3内の線分Cで反射し、透明膜1bの表
面S2内の線分りで屈折し、次いで透明線状膜1cの表
面Sl内の線分Eで屈折して反射光3dとなる。一方、
スリット光30両端部は透明線状膜1cの側部かつ透明
膜lb上に位置しており、透明膜1bの表面S2内の線
分Fで屈折し、基材1aの表面S3内の線分Gで反射し
、透明膜1bの表面S2内の線分Hで屈折して反射光3
Cとなる。Sample 1 consists of a transparent wire 11 placed on a base material 1a via a transparent film 1b.
c is formed. The middle part of the slit light 3 is located on the transparent linear film 1c, is refracted by a line segment A in the surface Sl, is refracted by a line segment B in the surface S2 of the transparent Mlb, and is refracted by a line segment B in the surface S2 of the transparent linear film 1c. It is reflected by a line segment C in the surface S3, refracted by a line segment in the surface S2 of the transparent film 1b, and then refracted by a line segment E in the surface Sl of the transparent linear film 1c to become reflected light 3d. on the other hand,
Both ends of the slit light 30 are located on the side of the transparent linear film 1c and on the transparent film lb, and are refracted by a line segment F in the surface S2 of the transparent film 1b, and are refracted by a line segment in the surface S3 of the base material 1a. G, and refracted by the line segment H in the surface S2 of the transparent film 1b, resulting in reflected light 3.
It becomes C.
線分Aでの反射光3a及び線分Fでの反射光3bは、透
明膜表面での反射光であるため、反射光3c及び反射光
3dに比し光強度が小さい。また、第3図に示す如く、
線分Cに形成される光切断線は線分Gに形成される光切
断線からずれている。撮像手段5で撮像された光切断線
像は、反射光3cs 3dの延長面上の線分G’ 、C
’であり、画像上でのずれ間隔Wは反射光3C% 3d
間の距離に比例し、撮像倍率が等倍の場合には次式で表
される。The reflected light 3a on the line segment A and the reflected light 3b on the line segment F are reflected light on the surface of the transparent film, and therefore have a lower light intensity than the reflected light 3c and the reflected light 3d. Also, as shown in Figure 3,
The optical section line formed on the line segment C is shifted from the optical section line formed on the line segment G. The light-section line image captured by the imaging means 5 is a line segment G', C on the extension surface of the reflected light 3cs 3d.
', and the shift interval W on the image is 3C% of reflected light 3d
When the imaging magnification is equal to the same magnification, it is expressed by the following formula.
W = 2dl (tanθ−tanθ1)cosθ−
−−(1)ここに、θ及びθ1はそれぞれ表面S1に対
するスリット光3の入射角及び屈折角であり、dlは透
明線状1!1cの膜厚である。W = 2dl (tanθ-tanθ1)cosθ-
--(1) Here, θ and θ1 are the incident angle and refraction angle of the slit light 3 with respect to the surface S1, respectively, and dl is the film thickness of the transparent linear 1!1c.
上式(1)より、透明線状膜1cの膜厚d1は次式で表
される。From the above formula (1), the thickness d1 of the transparent linear film 1c is expressed by the following formula.
dl= W (2(tanθ−tanθ1) co8θ
)−’(2)また、透明線状膜1cの屈折率をnlとす
ると、スネルの法則により次式が成立する。dl=W (2(tanθ-tanθ1) co8θ
)-' (2) Furthermore, if the refractive index of the transparent linear film 1c is nl, the following equation holds true according to Snell's law.
θ1= sin −’ (sinθ/n1)・・・(3
)したがって、W2O及びnlを用いて透明線状l1l
Cの膜厚d1を求めることができる。上式(2)かられ
かるように、膜厚d1は透明膜1bの膜厚d2、屈折率
02及び透明膜lb内での屈折角θ2に依存しない。よ
って、上式(2)は透引1bの膜厚d2が0の場合であ
っても成立する。さらに、透明膜1bが屈折率の異なる
複数の層から形成されていても上式(2)が成立する。θ1=sin −' (sinθ/n1)...(3
) Therefore, using W2O and nl, the transparent linear l1l
The film thickness d1 of C can be determined. As can be seen from the above equation (2), the film thickness d1 does not depend on the film thickness d2 of the transparent film 1b, the refractive index 02, and the refraction angle θ2 within the transparent film 1b. Therefore, the above formula (2) holds true even when the film thickness d2 of the transparent film 1b is zero. Furthermore, even if the transparent film 1b is formed from a plurality of layers having different refractive indexes, the above formula (2) holds true.
このようなことから、本発明によれば、簡単な構成で透
明線状膜の膜厚を測定することができる。Therefore, according to the present invention, the thickness of a transparent linear film can be measured with a simple configuration.
以下、図面に基づいて本発明の一実施例を説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.
第4図は透明線状膜の膜厚測定装置の構成を示す。FIG. 4 shows the configuration of a film thickness measuring device for a transparent linear film.
X−Yステージ10上には、第2図と同様に、基材1a
上に透明膜1bを介し透明線状膜1cが形成された試料
1が載置されている。この試料1には、入射角θでスリ
ット光が照射される。すなわち、レーザ12から放射さ
れたレーザ光は、ビームエクスパンダ14で拡径平行化
され、シリンドリカルレンズ16を通ってスリット光と
なり、試料1の表面及び各境界面に紙面垂直方向へ光切
断線が形成される。この光切断線は、x−Yステージ1
0上に配置された撮像装置18により撮像される。撮像
装置18から取り出される映像信号は、A/D変換器2
0によりデジタル変換されてマイクロコンピュータ22
に読み込まれる。On the X-Y stage 10, as in FIG.
A sample 1 on which a transparent linear film 1c is formed with a transparent film 1b interposed thereon is placed. This sample 1 is irradiated with slit light at an incident angle θ. That is, the laser beam emitted from the laser 12 is expanded in diameter and parallelized by the beam expander 14, passes through the cylindrical lens 16, becomes a slit beam, and an optical cutting line is formed on the surface of the sample 1 and each boundary surface in the direction perpendicular to the plane of the paper. It is formed. This optical cutting line is the x-Y stage 1
The image is captured by an imaging device 18 placed on the 0. The video signal taken out from the imaging device 18 is sent to the A/D converter 2.
0 and is converted into digital data by the microcomputer 22.
is loaded into.
第4図ではマイクロコンピュータ22のソフトウェア構
成を機能ブロックで示す。FIG. 4 shows the software configuration of the microcomputer 22 using functional blocks.
A/D変換器から出力される輝度データは、画像記憶部
22aに書き込まれて光切断線の画像が形成される。こ
の画像から、ずれ有無判定部22bにより、第3図に示
すような光切断線像のずれの有無が判定される。このず
れがある場合には、すなわち、光切断線が第1図に示す
如く透明線状膜1cを横切っている場合には、次のよう
にして膜厚の測定が行われる。The luminance data output from the A/D converter is written into the image storage section 22a to form an image of the optical cutting line. From this image, the deviation determination unit 22b determines whether or not there is a deviation in the light section line image as shown in FIG. If there is this deviation, that is, if the optical cutting line crosses the transparent linear film 1c as shown in FIG. 1, the film thickness is measured as follows.
最初に、主光切断線像抽出部22cにより第2図に示す
線分G、Cに形成された光切断線(以下、これを主光切
断線と称す。)に対応する像のみ抽出する。これは、主
光切断線の方が線分A、B。First, the principal ray section line image extracting section 22c extracts only images corresponding to the optical section lines formed in the line segments G and C shown in FIG. 2 (hereinafter referred to as principal ray section lines). This means that the principal ray section line is line segments A and B.
Fに形成される光切断線の像よりも輝度が充分大きいの
で、輝度のピークの大きさにより主光切断線であるかど
うかを判定することができる。第5図は抽出された主光
切断線像を示す。Since the brightness is sufficiently higher than the image of the light section line formed in F, it can be determined whether it is the principal light section line based on the magnitude of the peak of the brightness. FIG. 5 shows the extracted principal light section line image.
次に、ピーク位置検出afs22dにより、主光切断線
像のある線分上におけるピーク位置を検出する。例えば
第5図に於いて、主光切断線(ILL、L2及びL3の
長手方向中点を通り、それぞれLl、L2及びL3に直
交する直線に沿った輝度分布に於けるピーク位置P%Q
及びRを検出する。Next, the peak position detection afs 22d detects a peak position on a certain line segment of the principal beam section line image. For example, in FIG. 5, the peak position P%Q in the luminance distribution along the principal ray section line (a straight line passing through the longitudinal midpoints of ILL, L2, and L3 and perpendicular to Ll, L2, and L3, respectively)
and R are detected.
第6図は第5図のA−A線及びB−B線に沿った輝度を
示す。FIG. 6 shows the brightness along lines A-A and B-B in FIG.
次に、ずれ間隔測定部22eにより、主光切断線像のず
れ間隔Wを測定する。これは、第5図に於いて、直線P
Qと点R゛との間の最短距離を求めることにより行なわ
れる。Next, the shift interval measuring section 22e measures the shift interval W of the principal beam section line image. This is the straight line P in Figure 5.
This is done by finding the shortest distance between Q and point R'.
次に、膜厚算出部22fは、このずれ間隔W並びに設定
器24で設定された入射角θ及び透明線状膜1cの屈折
率nlを用い、上式(2)及び(3)に基づいて透明線
状膜1cの膜厚diを算出し、レコーダ26へ供給する
。Next, the film thickness calculating unit 22f uses this shift interval W, the incident angle θ set by the setting device 24, and the refractive index nl of the transparent linear film 1c, and calculates the value based on the above equations (2) and (3). The film thickness di of the transparent linear film 1c is calculated and supplied to the recorder 26.
この際、測定位置算出部22gは、ずれ有無判定部22
bによるずれ有りとの判定に応答して、x−Yステージ
10から供給される座標(X、 Y)を試料1上のスリ
ット光照射位置に変換し、レコーダ26へ供給する。At this time, the measurement position calculation section 22g
In response to the determination that there is a shift based on b, the coordinates (X, Y) supplied from the x-y stage 10 are converted to the slit light irradiation position on the sample 1 and supplied to the recorder 26.
膜厚算出部22fにより膜厚d1が算出され、または、
ずれ有無判定!22bによりずれ無しと判定された場合
には、ステージコントローラ28によりX−Yステージ
10がステップ駆動される。The film thickness d1 is calculated by the film thickness calculation unit 22f, or
Determine the presence or absence of deviation! 22b, when it is determined that there is no deviation, the stage controller 28 drives the XY stage 10 in steps.
以上の処理が繰り返し行われることにより、試料1上に
形成された透明線状膜1cの膜厚分布がレコーダ26に
記録される。By repeating the above process, the film thickness distribution of the transparent linear film 1c formed on the sample 1 is recorded on the recorder 26.
なお、本発明には外にも種々の変形例が含まれる。Note that the present invention includes various other modifications.
例えば、A/D変換器20の代わりに2値化回路を用い
れば、画像記憶部22bに主光切断線像のみを書き込む
ことができる。また、ずれ間隔Wは、主光切断線L1、
L2、L3の各々について、複数の上述のようなピーク
位置を検出して測定する構成であってもよい。For example, if a binarization circuit is used instead of the A/D converter 20, only the chief beam section line image can be written in the image storage section 22b. In addition, the shift interval W is the principal light section line L1,
A configuration may be adopted in which a plurality of peak positions as described above are detected and measured for each of L2 and L3.
本発明に係る透明線状膜の膜厚測定装置では、透明線状
膜を横切るようにスリット光を照射して光切断線を形成
し、この光切断線を撮像し、撮像された光切断線像のう
ち、基材面に形成された光切断線の像について、該横切
りによるずれ間隔を測定し、このずれ間隔、スリット光
の試料に対する入射角及び透明線状膜の屈折率を用いて
透明線状膜の膜厚を算出するので、簡単な構成で透明線
状膜の膜厚を測定することができるという優れた効果を
奏する。In the film thickness measuring device for a transparent linear film according to the present invention, a slit light is irradiated across the transparent linear film to form a light cutting line, an image of this light cutting line is taken, and the imaged light cutting line is Among the images, for the image of the light cutting line formed on the substrate surface, the deviation interval due to the cross-cutting is measured, and the transparent Since the film thickness of the linear film is calculated, the excellent effect of being able to measure the film thickness of the transparent linear film with a simple configuration is achieved.
第1図乃至第3図は本発明に係り、
第1図は本発明の原理構成図、
第2図は試料に対するスリット光の光路図、第3図は第
2図と対応させて示す光切断線とその像の配置図である
。
第4図及び第5図は本発明の一実施例に係り、第4図は
膜厚測定装置の構成図、
第5図は主光切断線像のずれ間隔測定説明図、第6図は
第5図のA−A線及びB−B線に沿った輝度のグラフで
ある。
図中
12はレーザ
14はビームエクスパンダ
16はシリンドリカルレンズ
18は撮像装置
20はA/D変換器
22はマイクロコンピュータ
22aは画像記憶部
22cは主光切断線像抽出部
22dはピーク位置検出部
22eはずれ間隔測定部
第1図
走切断嶽(V棟)と七〇尤切断線(iL(一点領線)第
3図
諷5囚のA−AM及びB−B五虻1ニレ色−た方軍度第
6図1 to 3 relate to the present invention; FIG. 1 is a diagram of the principle configuration of the present invention; FIG. 2 is an optical path diagram of a slit light beam relative to a sample; and FIG. 3 is a diagram showing light cutting in correspondence with FIG. It is a layout diagram of lines and their images. 4 and 5 relate to an embodiment of the present invention, in which FIG. 4 is a configuration diagram of a film thickness measuring device, FIG. 5 is a graph of brightness along line AA and line BB in FIG. 5. FIG. In the figure, 12 is a laser 14, a beam expander 16, a cylindrical lens 18, an imaging device 20, an A/D converter 22, a microcomputer 22a, an image storage section 22c, a chief ray section line image extraction section 22d, a peak position detection section 22e. Discrepancy interval measurement part Figure 1 Running cut-off point (V building) and 70-point line (iL) Figure 3 degree figure 6
Claims (1)
状膜(1c)が形成された試料(1)に対し、該透明線
状膜(1c)の膜厚(d1)を光学的に測定する膜厚測
定装置において、 該透明線状膜(1c)を横切るようにスリット光(3)
を照射して光切断線(4)を形成する照射光学手段(2
)と、 該光切断線を撮像する撮像手段(5)と、 撮像された光切断線像のうち、該基材面に形成された光
切断線の像を抽出し、抽出された該光切断線像について
、該横切りによるずれ間隔(W)を測定する画像処理手
段(6)と、 該ずれ間隔(W)、スリット光の該試料に対する入射角
(θ)及び該透明線状膜の屈折率(n1)を用いて該透
明線状膜の膜厚(d1)を算出する膜厚算出手段(7)
と、 を有することを特徴とする透明線状膜の膜厚測定装置。[Claims] For the sample (1) in which a transparent linear film (1c) is formed on a substrate (1a) directly or via a transparent film (1b), a film of the transparent linear film (1c) is In a film thickness measuring device that optically measures the thickness (d1), a slit light (3) is emitted across the transparent linear film (1c).
an irradiation optical means (2) for irradiating to form a light cutting line (4);
); an imaging means (5) for capturing an image of the light cutting line; extracting an image of the light cutting line formed on the substrate surface from among the captured light cutting line images; an image processing means (6) for measuring the deviation interval (W) due to the transverse traversal of the line image, the deviation interval (W), the incident angle (θ) of the slit light on the sample, and the refractive index of the transparent linear film. Film thickness calculation means (7) for calculating the film thickness (d1) of the transparent linear film using (n1)
A film thickness measuring device for a transparent linear film, comprising:
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP13391289A JPH02311704A (en) | 1989-05-26 | 1989-05-26 | Transparent linear film thickness measuring device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP13391289A JPH02311704A (en) | 1989-05-26 | 1989-05-26 | Transparent linear film thickness measuring device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH02311704A true JPH02311704A (en) | 1990-12-27 |
Family
ID=15116000
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP13391289A Pending JPH02311704A (en) | 1989-05-26 | 1989-05-26 | Transparent linear film thickness measuring device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH02311704A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008070135A (en) * | 2006-09-12 | 2008-03-27 | Juki Corp | Optical axis deviation detection method of imaging apparatus, and component position detection method and apparatus |
| JP2010156603A (en) * | 2008-12-26 | 2010-07-15 | Sunx Ltd | Device and method for measuring thickness |
| JP2012078302A (en) * | 2010-10-06 | 2012-04-19 | Nidec Tosok Corp | Device for measuring height of wafer bump and method for measuring height |
-
1989
- 1989-05-26 JP JP13391289A patent/JPH02311704A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008070135A (en) * | 2006-09-12 | 2008-03-27 | Juki Corp | Optical axis deviation detection method of imaging apparatus, and component position detection method and apparatus |
| JP2010156603A (en) * | 2008-12-26 | 2010-07-15 | Sunx Ltd | Device and method for measuring thickness |
| JP2012078302A (en) * | 2010-10-06 | 2012-04-19 | Nidec Tosok Corp | Device for measuring height of wafer bump and method for measuring height |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5097516A (en) | Technique for illuminating a surface with a gradient intensity line of light to achieve enhanced two-dimensional imaging | |
| EP0563829B1 (en) | Device for inspecting printed cream solder | |
| US6256099B1 (en) | Methods and system for measuring three dimensional spatial coordinates and for external camera calibration necessary for that measurement | |
| JPH02311704A (en) | Transparent linear film thickness measuring device | |
| JPS6118078A (en) | Access pattern detector | |
| KR100295477B1 (en) | Device for measuring the dimensions of objects | |
| JPH04203916A (en) | Inspecting method of external appearance | |
| CN116839483A (en) | A substrate three-dimensional displacement measurement device, method and system | |
| JP3391030B2 (en) | Electronic device manufacturing method and pattern exposure method | |
| JPH0350752A (en) | Wafer alignment method and device | |
| JPH07260429A (en) | Method and apparatus for measuring dimensions of object | |
| JP3017606B2 (en) | Circuit board pattern dimension measuring method and device, and circuit board quality screening method and device | |
| JPH0942946A (en) | Measuring device and measuring method for electronic part and calibration mask | |
| JP2985635B2 (en) | Surface shape 3D measurement method | |
| JP2996264B2 (en) | Method for erasing IC chip removal area | |
| JPH0743323B2 (en) | Surface foreign matter inspection device | |
| US6229618B1 (en) | Method of improving registration accuracy and method of forming patterns on a substrate using the same | |
| JPH0634325A (en) | Size measuring method and apparatus of circuit substrate pattern | |
| JPH04289409A (en) | Board inspection method | |
| JP7332417B2 (en) | Measuring device and measuring method | |
| JPH09113222A (en) | Two-dimensional position and attitude measuring mark, and method and device for two-dimensional position and attitude measurement | |
| KR0181993B1 (en) | Apparatus and method for measuring visual size of material | |
| JPH02311706A (en) | Transparent film surface shape measuring device | |
| JP2000055624A (en) | Deviation measuring method | |
| JP3226712B2 (en) | Semiconductor pellet height measuring device and its measuring method |