JP2010156603A - Device and method for measuring thickness - Google Patents

Device and method for measuring thickness Download PDF

Info

Publication number
JP2010156603A
JP2010156603A JP2008334804A JP2008334804A JP2010156603A JP 2010156603 A JP2010156603 A JP 2010156603A JP 2008334804 A JP2008334804 A JP 2008334804A JP 2008334804 A JP2008334804 A JP 2008334804A JP 2010156603 A JP2010156603 A JP 2010156603A
Authority
JP
Japan
Prior art keywords
light
thickness
reflected
light receiving
receiving position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008334804A
Other languages
Japanese (ja)
Inventor
Atsuro Toda
敦郎 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Sunx Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunx Ltd filed Critical Sunx Ltd
Priority to JP2008334804A priority Critical patent/JP2010156603A/en
Publication of JP2010156603A publication Critical patent/JP2010156603A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thickness measuring device and a thickness measuring method capable of measuring the thickness of an optically transparent object, even when it is difficult to discriminate between a receiving position of light returning from its front face and a receiving position of light returning from the rear face. <P>SOLUTION: The thickness measuring device 1 includes: a light projecting part 2; a light receiving part 13 capable of respectively receiving light L23 reflected by an arrangement surface when no optically transparent objects 9 are present on the arrangement surface 11A, and light L22 reflected by the rear face when the optically transparent object is present on the arrangement surface; and a measuring part 8 for measuring the thickness of the optically transparent object on the basis of the correlation between the distance &Delta;X2 between a receiving position X3 of light reflected at the light receiving part and a receiving position X2 of light reflected by the rear face, and the thickness d1 of the optically transparent object. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、光透過性物体の厚さを測定する厚さ測定装置及び厚さ測定方法に関する。   The present invention relates to a thickness measuring apparatus and a thickness measuring method for measuring the thickness of a light transmissive object.

従来から、ガラスなどの透明体の厚さを測定する厚さ測定装置が提供されている(特許文献1参照)。この厚さ測定装置は、受光素子としてCCDが用いられており、透明体の表面からの反射光と裏面からの反射光がそのCCDにそれぞれ受光されるように構成されている。そして、表面及び裏面の反射位置に対応してCCD上での反射光の受光位置が定まるようになっており、表面及び裏面の各反射光の照射領域において、受光レベルがピークに達するピーク位置をそれぞれ検出し、それらピーク位置に基づいて透明体の厚さを測定するといった方法を用いている。
特開2004−93206公報
Conventionally, a thickness measuring device for measuring the thickness of a transparent body such as glass has been provided (see Patent Document 1). This thickness measuring apparatus uses a CCD as a light receiving element, and is configured such that reflected light from the front surface of the transparent body and reflected light from the back surface are received by the CCD. Then, the light receiving position of the reflected light on the CCD is determined corresponding to the reflection position of the front surface and the back surface, and the peak position where the light reception level reaches the peak in each of the reflected light irradiation regions on the front surface and the back surface. A method is used in which each is detected and the thickness of the transparent body is measured based on the peak positions.
JP 2004-93206 A

上述したように、上記従来の厚さ測定装置では、透明体の表面からの反射光と裏面からの反射光との受光位置を検出し、両受光位置に基づき透明体の厚さを測定する。ところが、例えば透明体の光透過率が比較的に高いときや、透明体が比較的に薄いときなどには、表面からの反射光の受光位置と裏面からの反射光の受光位置とを判別することが困難となり、厚さ測定ができなくなるという問題があった。   As described above, the conventional thickness measuring device detects the light receiving positions of the reflected light from the front surface and the reflected light from the back surface of the transparent body, and measures the thickness of the transparent body based on the both light receiving positions. However, for example, when the light transmittance of the transparent body is relatively high or when the transparent body is relatively thin, the light receiving position of the reflected light from the front surface and the light receiving position of the reflected light from the back surface are discriminated. This makes it difficult to measure the thickness.

本発明は上記のような事情に基づいて完成されたものであって、その目的は、表面からの反射光の受光位置と裏面からの反射光の受光位置とを判別することが困難な場合であっても光透過性物体の厚さを測定することが可能な厚さ測定装置及び厚さ測定方法を提供するところにある。   The present invention has been completed based on the above circumstances, and its purpose is when it is difficult to discriminate the light receiving position of the reflected light from the front surface and the light receiving position of the reflected light from the back surface. The present invention provides a thickness measuring device and a thickness measuring method capable of measuring the thickness of a light transmissive object.

(1)上記の目的を達成するための手段として、第1の発明に係る厚さ測定装置は、所定の配置面上に存在する光透過性物体の厚さを測定する厚さ測定装置であって、前記配置面側に向けて斜め向きに光を出射する投光部と、前記配置面上に前記光透過性物体が無い場合における前記配置面からの正反射光である第1反射光と、前記配置面上に前記光透過性物体が在る場合における前記配置面からの正反射光である第2反射光とをそれぞれ受光可能な受光部と、前記受光部における前記第1反射光の受光位置及び前記第2反射光の受光位置間の距離と、前記光透過性物体の厚さとにおける相関関係に基づき前記光透過性物体の厚さを測定する測定部と、を備える   (1) As a means for achieving the above object, a thickness measuring apparatus according to the first invention is a thickness measuring apparatus for measuring the thickness of a light transmitting object existing on a predetermined arrangement surface. A light projecting portion that emits light obliquely toward the arrangement surface, and first reflected light that is specularly reflected light from the arrangement surface when the light-transmissive object is not present on the arrangement surface; A light receiving unit capable of receiving second reflected light that is specularly reflected light from the arrangement surface when the light transmissive object is present on the arrangement surface, and the first reflected light of the light receiving unit. A measuring unit that measures the thickness of the light transmissive object based on a correlation between a light receiving position and a distance between the light receiving position of the second reflected light and the thickness of the light transmissive object.

本願の発明者は、例えば投光部から配置面に向かう光の入射角度、光透過性物体の屈折率及び当該光透過性物体の周囲の屈折率が固定であれば、受光部における第1反射光の受光位置と第2反射光の受光位置との距離は、光透過性物体の厚さに応じて変化すること、即ち、上記受光位置間の距離と光透過性物体の厚さとの間に相関関係が成立することを見出した。
そこで、この発明では、上記相関関係に基づき光透過性物体の厚さを測定するようにした。これにより、表面からの反射光の受光位置と裏面からの反射光の受光位置と判別することが困難な場合であっても、光透過性物体の厚さを測定することが可能である。
For example, if the incident angle of light from the light projecting unit toward the arrangement surface, the refractive index of the light-transmitting object, and the refractive index around the light-transmitting object are fixed, the inventor of the present application performs the first reflection in the light-receiving unit. The distance between the light receiving position and the second reflected light receiving position varies depending on the thickness of the light transmissive object, that is, between the distance between the light receiving positions and the thickness of the light transmissive object. We found that the correlation was established.
Therefore, in the present invention, the thickness of the light transmissive object is measured based on the above correlation. Thereby, even if it is difficult to discriminate between the light receiving position of the reflected light from the front surface and the light receiving position of the reflected light from the back surface, the thickness of the light transmissive object can be measured.

(2)第2の発明は、第1の発明の厚さ測定装置であって、前記測定部は、次の演算式に基づき前記光透過性物体の厚さd1を測定する構成である。

Figure 2010156603
但し、d1:光透過性物体の厚さ
ΔX2:第1反射光の受光位置と第2反射光の受光位置との距離
θ1:投光部から光透過性物体への光の入射角度
n1:光透過性物体の周囲の屈折率
n2:光透過性物体の屈折率
k:受光部の受光面の角度に応じた係数 (2) The second invention is the thickness measuring apparatus according to the first invention, wherein the measuring unit measures the thickness d1 of the light transmissive object based on the following arithmetic expression.
Figure 2010156603
However, d1: Thickness of the light transmitting object ΔX2: Distance between the light receiving position of the first reflected light and the light receiving position of the second reflected light θ1: Incident angle of light from the light projecting unit to the light transmitting object n1: Light Refractive index around transparent object n2: Refractive index of light transmissive object k: Coefficient according to angle of light receiving surface of light receiving unit

(3)第3の発明は、第1または2の発明の厚さ測定装置であって、前記投光部からの出射光の、前記配置面に対する入射角度が、前記配置面で正反射可能な最大角度に設定されている。
この発明によれば、例えば光透過性物体の屈折率と、当該光透過性物体の周囲媒質の屈折率との差が小さくても、第1反射光の受光位置と第2反射光の受光位置との距離を長くすることができるため、厚さ測定の精度低下を抑制することが可能である。
(3) The third invention is the thickness measuring apparatus according to the first or second invention, wherein the incident angle of the emitted light from the light projecting unit with respect to the arrangement surface can be regularly reflected on the arrangement surface. The maximum angle is set.
According to the present invention, for example, even if the difference between the refractive index of the light transmitting object and the refractive index of the surrounding medium of the light transmitting object is small, the light receiving position of the first reflected light and the light receiving position of the second reflected light. Therefore, it is possible to suppress a decrease in accuracy of thickness measurement.

(4)第4の発明に係る厚さ測定方法は、所定の配置面上に存在する光透過性物体の厚さを測定する厚さ測定方法であって、前記配置面上に前記光透過性物体が無い場合に、当該配置面に向けて光を出射し、前記配置面で正反射した第1反射光を所定の受光面で受光する第1ステップと、前記配置面上に前記光透過性物体が在る場合に、光を出射し、前記配置面で正反射した第2反射光を前記受光面で受光する第2ステップと、前記受光面上における前記第1反射光の受光位置及び前記第2反射光の受光位置間の距離と、前記光透過性物体の厚さとにおける相関関係に基づき前記光透過性物体の厚さを測定する第3ステップと、を含む。   (4) A thickness measuring method according to a fourth aspect of the present invention is a thickness measuring method for measuring the thickness of a light-transmitting object existing on a predetermined arrangement surface, wherein the light-transmitting property is measured on the arrangement surface. When there is no object, the first step of emitting light toward the arrangement surface and receiving the first reflected light specularly reflected by the arrangement surface by a predetermined light-receiving surface; and the light transmittance on the arrangement surface When there is an object, a second step of emitting light and regularly reflecting the second reflected light on the arrangement surface by the light receiving surface, a light receiving position of the first reflected light on the light receiving surface, and the And a third step of measuring the thickness of the light transmissive object based on the correlation between the distance between the light receiving positions of the second reflected light and the thickness of the light transmissive object.

本発明によれば、表面からの反射光の受光位置と裏面からの反射光の受光位置とを判別することが困難な場合であっても光透過性物体の厚さを測定することが可能である。   According to the present invention, it is possible to measure the thickness of a light-transmitting object even when it is difficult to discriminate between the light receiving position of reflected light from the front surface and the light receiving position of reflected light from the back surface. is there.

本発明の一実施形態を図1から図8を参照しつつ説明する。
図1は本実施形態の厚さ測定装置1のブロック図である。同図に示すように、厚さ測定装置1は、光透過性を有する透明体9(例えばガラス、フラックスなど 本発明の「光透過性物体」の一例)の厚さを測定するための装置である。なお、同図には、透明体9が、例えば高反射率の表面11A(本発明の「配置面」の一例)を有する高反射率材11(例えば、アルミ等の金属材料からなる板材等)上に配置された状態が例示されている。
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a block diagram of a thickness measuring apparatus 1 according to this embodiment. As shown in the figure, the thickness measuring device 1 is a device for measuring the thickness of a transparent body 9 having optical transparency (eg, glass, flux, etc., an example of the “light transmitting object” of the present invention). is there. In the figure, the transparent body 9 has a high reflectivity material 11 (for example, a plate material made of a metal material such as aluminum) having, for example, a high reflectivity surface 11A (an example of the “arrangement surface” of the present invention). The state arrange | positioned on the top is illustrated.

1.厚さ測定装置の構成
図1に示すように、厚さ測定装置1は、投光部2、受光部13、CPU8を備える。
1. Configuration of Thickness Measuring Device As shown in FIG. 1, the thickness measuring device 1 includes a light projecting unit 2, a light receiving unit 13, and a CPU 8.

投光部2は、高反射率材11または透明体9に向けて斜め方向から光L1を出射する。具体的には、投光部2は、例えばレーザ光等を照射する投光素子3と、それを駆動する投光駆動回路12とを有しており、この投光素子3が透明体9に対して斜め方向から光L1を出射するように構成される。   The light projecting unit 2 emits light L1 from an oblique direction toward the high reflectivity material 11 or the transparent body 9. Specifically, the light projecting unit 2 includes, for example, a light projecting element 3 that irradiates laser light or the like, and a light projecting drive circuit 12 that drives the light projecting element 3. On the other hand, it is configured to emit light L1 from an oblique direction.

受光部13は、投光部2から出射され高反射率材11または透明体9にて反射した反射光L2を受光する。具体的には、受光部13は、その反射光L2を受光するCCD5、CCD駆動回路4、増幅回路6を有している。なお、CCD5としては1次元CCDラインセンサや、或いは2次元の受光領域を有する2次元CCDなどを適用可能である。   The light receiving unit 13 receives the reflected light L2 emitted from the light projecting unit 2 and reflected by the high reflectivity material 11 or the transparent body 9. Specifically, the light receiving unit 13 includes a CCD 5 that receives the reflected light L2, a CCD drive circuit 4, and an amplifier circuit 6. As the CCD 5, a one-dimensional CCD line sensor or a two-dimensional CCD having a two-dimensional light receiving area can be applied.

CCD5において画素毎に生成される信号がCCD駆動回路4によって読み出される。このCCD駆動回路4は、CCD5の受光面5A上での位置毎(具体的にはセル毎)の受光レベルを示す受光信号SG1を出力する信号出力部として機能し、出力された受光信号SG1が増幅回路6により増幅され、CPU8に取り込まれるようになっている。   A signal generated for each pixel in the CCD 5 is read out by the CCD drive circuit 4. The CCD drive circuit 4 functions as a signal output unit that outputs a light reception signal SG1 indicating a light reception level for each position (specifically, for each cell) on the light receiving surface 5A of the CCD 5, and the output light reception signal SG1 is Amplified by the amplifier circuit 6 and taken into the CPU 8.

CCD5は次の反射光L2(L21〜L23)を受光可能に配置されている。
「表面反射光L21」:高反射率材11上に透明体9が有る場合に、投光部2から出射され当該透明体9の表面9Aにて正反射した反射光L2
「裏面反射光L22」:高反射率材11上に透明体9が有る場合に、投光部2から出射され当該透明体9の裏面9Bにて正反射した反射光L2(本発明の「第2反射光」の一例)
「配置面反射光L23」:高反射率材11上に透明体9が無い場合に、投光部2から出射され高反射率材11の表面11Aにて反射した反射光L2(本発明の「第1反射光」の一例)
The CCD 5 is arranged so as to be able to receive the next reflected light L2 (L21 to L23).
“Surface reflected light L21”: When the transparent body 9 is on the high reflectivity material 11, the reflected light L2 emitted from the light projecting unit 2 and regularly reflected by the surface 9A of the transparent body 9
“Back surface reflected light L22”: When the transparent body 9 is present on the high reflectivity material 11, the reflected light L2 emitted from the light projecting unit 2 and regularly reflected by the back surface 9B of the transparent body 9 (“ Example of “2 reflected light”)
“Arrangement surface reflected light L23”: When there is no transparent body 9 on the high reflectivity material 11, the reflected light L2 emitted from the light projecting portion 2 and reflected by the surface 11A of the high reflectivity material 11 (“ Example of “first reflected light”)

CPU8は、上記投光駆動回路12、CCD駆動回路4等を制御すると共に、次述する厚さ測定処理を実行する。また、このCPU8には、メモリ14及び操作部15が接続されている。   The CPU 8 controls the light projecting drive circuit 12, the CCD drive circuit 4 and the like, and executes a thickness measurement process described below. Further, a memory 14 and an operation unit 15 are connected to the CPU 8.

2.厚さ測定処理
厚さ測定装置1は、透明体9の厚さを測定するためのモードを2つ有している。1つ目は、表面反射光L21及び裏面反射光L22を利用する「第1モード」であり、2つ目は、裏面反射光L22及び配置面反射光L23を利用する「第2モード」である。ユーザは操作部15にて第1モード及び第2モードのいずれかを選択することができる。
2. Thickness Measurement Processing The thickness measurement device 1 has two modes for measuring the thickness of the transparent body 9. The first is a “first mode” using the front surface reflected light L21 and the back surface reflected light L22, and the second is a “second mode” using the back surface reflected light L22 and the arrangement surface reflected light L23. . The user can select either the first mode or the second mode with the operation unit 15.

2−1.第1モード
図2は表面反射光L21及び裏面反射光L22の光路を示す模式図であり、図3は第1モード処理を示すフローチャートである。なお、図2中の各符号の意味は次の通りである。
θ1:透明体9の表面9Aに対する、投光部2の出射光L1の入射角度
θ2:透明体9の表面9Aにおける投光部2の出射光L1の屈折角度
n1:透明体9に接触する媒体(例えば空気)の屈折率
n2:透明体9自身の屈折率
d1:透明体9の厚さ
2-1. First Mode FIG. 2 is a schematic diagram showing optical paths of the front surface reflected light L21 and the back surface reflected light L22, and FIG. 3 is a flowchart showing the first mode processing. In addition, the meaning of each code | symbol in FIG. 2 is as follows.
θ1: Incident angle of the outgoing light L1 of the light projecting unit 2 with respect to the surface 9A of the transparent body 9 θ2: Refraction angle of the outgoing light L1 of the light projecting unit 2 on the surface 9A of the transparent body 9 n1: Medium in contact with the transparent body 9 Refractive index of (for example, air) n2: Refractive index of the transparent body 9 itself d1: Thickness of the transparent body 9

ユーザは、第1モードを使用したい場合、高反射率材11上に透明体9を配置して操作部15にて第1モードを選択し実行する。すると、CPU8は図3に示す第1モード処理を実行する。まずS10で投光部2に投光動作を実行させる。これにより、投光部2からの出射光L1が透明体9に照射され、表面反射光L21及び裏面反射光L22がそれぞれCCD5にて受光される。次にS12で、CCD駆動回路4を駆動させてCCD5から受光信号SG1を取り込む。   When the user wants to use the first mode, the transparent body 9 is placed on the high reflectance material 11 and the first mode is selected and executed by the operation unit 15. Then, the CPU 8 executes the first mode process shown in FIG. First, in S10, the light projecting unit 2 is caused to execute a light projecting operation. Thereby, the emitted light L1 from the light projecting unit 2 is irradiated onto the transparent body 9, and the front surface reflected light L21 and the back surface reflected light L22 are received by the CCD 5, respectively. In step S12, the CCD driving circuit 4 is driven to receive the light reception signal SG1 from the CCD 5.

図4はCCD5上の受光レベルを示す波形図である。同図中の符号X1は表面反射光L21の受光位置(以下、「表面受光位置X1」という)であり、符号X2は裏面反射光L22の受光位置(以下、「裏面反射位置X2」という)である。CPU8は、S14では、受光信号SG1に基づき表面受光位置X1、及び、裏面受光位置X2を検出する。例えば受光レベルがピーク(極大値)を示す2つの画素位置を特定し、これらの受光位置X1、X2とする。   FIG. 4 is a waveform diagram showing the light reception level on the CCD 5. The symbol X1 in the figure is the light receiving position of the front surface reflected light L21 (hereinafter referred to as “front surface light receiving position X1”), and the symbol X2 is the light receiving position of the back surface reflected light L22 (hereinafter referred to as “back surface reflected position X2”). is there. In S14, the CPU 8 detects the front surface light receiving position X1 and the back surface light receiving position X2 based on the light receiving signal SG1. For example, two pixel positions where the light reception level has a peak (maximum value) are specified and set as these light reception positions X1 and X2.

S16では、受光位置X1、X2に基づき透明体9の厚さを測定する。ここで、例えば入射角度θ1、屈折率n1,n2が一定であれば、表面受光位置X1と裏面受光位置X2との間における距離ΔX1と、透明体9の厚さd1との間に相関関係が成立し、距離ΔX1は透明体9の厚さd1に応じた値を示す。そこで、本実施形態では、予め、様々な厚さの透明体9について厚さd1及び距離ΔX1を複数サンプリングし、厚さd1と距離ΔX1との対応関係に基づく関係式(d1=c・ΔX1 cは比例係数)を導出し、その関係式情報がメモリ14に記憶されている。そして、CPU8は、S12で取り込んだ受光信号SG1に基づく距離ΔX1と上記関係式情報とに基づき、現在の測定対象である透明体9の厚さd1を測定し、本第1モード処理を終了する。なお、上記複数のサンプリングから、厚さd1と距離ΔX1との対応関係テーブルを作成しておき、これをメモリ14に記憶し、距離ΔX1と対応関係テーブルとに基づき厚さd1を測定してもよい。   In S16, the thickness of the transparent body 9 is measured based on the light receiving positions X1 and X2. For example, if the incident angle θ1 and the refractive indexes n1 and n2 are constant, there is a correlation between the distance ΔX1 between the front surface light receiving position X1 and the rear surface light receiving position X2 and the thickness d1 of the transparent body 9. The distance ΔX1 indicates a value corresponding to the thickness d1 of the transparent body 9. Therefore, in the present embodiment, a plurality of thicknesses d1 and distances ΔX1 are sampled in advance for the transparent body 9 having various thicknesses, and a relational expression (d1 = c · ΔX1 c) based on the correspondence between the thickness d1 and the distance ΔX1. Is a proportionality coefficient), and its relational expression information is stored in the memory 14. Then, the CPU 8 measures the thickness d1 of the transparent body 9 that is the current measurement object based on the distance ΔX1 based on the light reception signal SG1 captured in S12 and the relational expression information, and ends the first mode process. . Note that a correspondence table between the thickness d1 and the distance ΔX1 is created from the plurality of samplings, stored in the memory 14, and the thickness d1 is measured based on the distance ΔX1 and the correspondence table. Good.

2−2.第2モード
図5は透明体9が無いときの配置面反射光L23の光路を示す模式図であり、図6は透明体9が有るときの裏面反射光L22及び配置面反射光L23の光路を示す模式図であり、図7は第2モード処理を示すフローチャートである。なお、図6中の符号d2については後述し、これ以外の符号の意味は図2と同様である。
2-2. Second Mode FIG. 5 is a schematic diagram showing the optical path of the arrangement surface reflected light L23 when there is no transparent body 9, and FIG. 6 shows the optical paths of the back surface reflected light L22 and the arrangement surface reflected light L23 when there is the transparent body 9. FIG. 7 is a flowchart showing the second mode process. In addition, the code | symbol d2 in FIG. 6 is mentioned later, The meaning of the code | symbol other than this is the same as that of FIG.

ユーザは、第2モードを使用したい場合、まず図5に示すように高反射率材11上に透明体9を配置せずに操作部15にて第2モードを選択し実行する。すると、CPU8は図7に示す第2モード処理を実行する。まずS20で投光部2に投光動作を実行させる。これにより、投光部2からの出射光L1が高反射率材11の表面11A上に照射され、配置面反射光L23がCCD5にて受光される。次にS22で、CCD駆動回路4を駆動させてCCD5から受光信号SG1を取り込む(本発明の「第1ステップ」の一例)。   When the user wants to use the second mode, first, the second mode is selected and executed by the operation unit 15 without arranging the transparent body 9 on the high reflectivity material 11 as shown in FIG. Then, the CPU 8 executes the second mode process shown in FIG. First, in S20, the light projecting unit 2 is caused to perform a light projecting operation. Thereby, the emitted light L1 from the light projecting unit 2 is irradiated on the surface 11A of the high reflectivity material 11, and the arrangement surface reflected light L23 is received by the CCD 5. Next, in S22, the CCD drive circuit 4 is driven to receive the light reception signal SG1 from the CCD 5 (an example of the “first step” in the present invention).

図8はCCD5上の受光レベルを示す波形図である。同図中の符号X3は配置面反射光L23の受光位置(以下、「配置面受光位置X3」という)であり、実線波形U1は透明体9が無いときの受光波形であり、点線波形U2は透明体9が有るときの受光波形であり、その他の符号の意味は図4と同様である。CPU8は、S24では、図3のS14と同様の方法により、受光信号SG1に基づき配置面受光位置X3を検出する。   FIG. 8 is a waveform diagram showing the light reception level on the CCD 5. The symbol X3 in the figure is the light receiving position of the arrangement surface reflected light L23 (hereinafter referred to as “arrangement surface light receiving position X3”), the solid line waveform U1 is the light reception waveform when there is no transparent body 9, and the dotted line waveform U2 is This is a light reception waveform when the transparent body 9 is present, and the meanings of the other symbols are the same as those in FIG. In S24, the CPU 8 detects the arrangement surface light reception position X3 based on the light reception signal SG1 by the same method as in S14 of FIG.

次に、ユーザは高反射率材11上に透明体9を配置し、操作部15にて所定の操作をすると、CPU8は、S26で投光部2に再び投光動作を実行させる。これにより、投光部2からの出射光L1が透明体9に照射され、表面反射光L21及び裏面反射光L22がそれぞれCCD5にて受光される。次にS28で、CCD駆動回路4を駆動させてCCD5から受光信号SG1を取り込む(本発明の「第2ステップ」の一例)。   Next, when the user places the transparent body 9 on the high reflectivity material 11 and performs a predetermined operation on the operation unit 15, the CPU 8 causes the light projecting unit 2 to execute the light projecting operation again in S26. Thereby, the emitted light L1 from the light projecting unit 2 is irradiated onto the transparent body 9, and the front surface reflected light L21 and the back surface reflected light L22 are received by the CCD 5, respectively. Next, in S28, the CCD drive circuit 4 is driven to receive the light reception signal SG1 from the CCD 5 (an example of the “second step” in the present invention).

ここで、例えば透明体9が比較的に薄い場合には、図8の点線波形U2に示すように、裏面受光位置X2に対応するピーク波形と表面受光位置X1に対応するピーク波形とが近接するため、受光信号SG1から裏面受光位置X2と表面受光位置X1とを判別することが困難になる。また、例えば透明体9の光透過率が比較的に高く、その表面9Aでの反射率が高反射率材11の反射率に比べて比較的に小さい場合には、裏面受光位置X2に対応するピーク波形に対して表面受光位置X1に対応するピーク波形が比較的に小さくなるため、やはり受光信号SG1から裏面受光位置X2と表面受光位置X1とを判別することが困難になる。従って、上記第1モード処理で透明体9の厚さを測定することができなくなるおそれがある。   Here, for example, when the transparent body 9 is relatively thin, the peak waveform corresponding to the back surface light receiving position X2 and the peak waveform corresponding to the front surface light receiving position X1 are close as shown by the dotted waveform U2 in FIG. For this reason, it is difficult to distinguish the back surface light receiving position X2 and the front surface light receiving position X1 from the light receiving signal SG1. For example, when the light transmittance of the transparent body 9 is relatively high and the reflectance at the surface 9A is relatively smaller than the reflectance of the high reflectance material 11, it corresponds to the back surface light receiving position X2. Since the peak waveform corresponding to the surface light receiving position X1 is relatively small with respect to the peak waveform, it is difficult to determine the back surface light receiving position X2 and the surface light receiving position X1 from the light receiving signal SG1. Therefore, there is a possibility that the thickness of the transparent body 9 cannot be measured by the first mode process.

これに対して、第2モード処理では、裏面受光位置X2と表面受光位置X1とを判別することは必ずしも必須ではない。具体的には、CPU8は、S30では、図3のS14と同様の方法により、受光信号SG1に基づき、少なくとも裏面反射位置X2を検出する。なお、裏面受光位置X2と表面受光位置X1とが判別可能であれば裏面反射位置X2を検出し、判別不能である場合には、受光レベルが最大値を示す画素位置を裏面反射位置X2とみなしてもよい。要するに、表面反射光L21が混在する裏面反射光L22の受光位置を、裏面反射位置X2としてもよいのである。   On the other hand, in the second mode process, it is not always necessary to determine the back surface light receiving position X2 and the front surface light receiving position X1. Specifically, in S30, the CPU 8 detects at least the back surface reflection position X2 based on the light reception signal SG1 by the same method as in S14 of FIG. If the back surface light receiving position X2 and the front surface light receiving position X1 can be discriminated, the back surface reflection position X2 is detected. If the back surface light receiving position X2 cannot be discriminated, the pixel position at which the light reception level has the maximum value is regarded as the back surface reflection position X2. May be. In short, the light receiving position of the back surface reflected light L22 in which the front surface reflected light L21 is mixed may be set as the back surface reflected position X2.

続いてCPU8は、S32で配置面受光位置X3及び裏面受光位置X2に基づき透明体9の厚さd1を測定する(本発明の「第3ステップ」の一例)。このときCPU8は本発明の「測定部」として機能する。ここで、例えば入射角度θ1、屈折率n1,n2が一定であれば、配置面受光位置X3と裏面受光位置X2との間における距離ΔX2と、透明体9の厚さd1との間に相関関係(比例係数α)が成立し、距離ΔX2は透明体9の厚さd1に応じた値を示す。このことは図6を参照しつつ次のように証明することができる。   Subsequently, in S32, the CPU 8 measures the thickness d1 of the transparent body 9 based on the arrangement surface light receiving position X3 and the back surface light receiving position X2 (an example of “third step” in the present invention). At this time, the CPU 8 functions as a “measurement unit” of the present invention. For example, if the incident angle θ1 and the refractive indexes n1 and n2 are constant, there is a correlation between the distance ΔX2 between the arrangement surface light receiving position X3 and the back surface light receiving position X2 and the thickness d1 of the transparent body 9. (Proportional coefficient α) is established, and the distance ΔX2 indicates a value corresponding to the thickness d1 of the transparent body 9. This can be proved as follows with reference to FIG.

なお、図6の符号d2(=ΔX2・cosθ1=ΔX2・k)は、距離ΔX2に応じた値を示す。また、符号aは、出射光L1の表面9Aに対する入射位置と屈折光L1'の裏面9Bへの入射位置との、表面9Aに沿った方向における距離(以下、「入射距離a」という)である。また、本実施形態では、配置面反射光L23がCCD5の受光面5Aに直角に入射することを前提として、k=cosθ1としたが、このkは、受光面5Aの角度に応じて変わる。   In addition, the code | symbol d2 (= (DELTA) X2 * cos (theta) 1 = (DELTA) X2 * k) of FIG. 6 shows the value according to distance (DELTA) X2. The symbol a is a distance (hereinafter referred to as “incident distance a”) between the incident position of the outgoing light L1 on the front surface 9A and the incident position of the refracted light L1 ′ on the rear surface 9B along the front surface 9A. . In the present embodiment, k = cos θ1 is set on the assumption that the arrangement surface reflected light L23 is incident on the light receiving surface 5A of the CCD 5 at a right angle. However, k varies depending on the angle of the light receiving surface 5A.

まず入射角度θ1、屈折角度θ2、入射距離a、厚さd1、d2の間に次の数式が成立する。
[数式1]

Figure 2010156603
First, the following equation is established between the incident angle θ1, the refraction angle θ2, the incident distance a, and the thicknesses d1 and d2.
[Formula 1]
Figure 2010156603

次に、上記数式1より入射距離aを消去すると、次の数式2が成立する。
[数式2]

Figure 2010156603
従って、上記比例係数α(d1=α・d2)は次の数式3で表すことができる。
[数式3]
Figure 2010156603
Next, when the incident distance a is eliminated from the above equation 1, the following equation 2 is established.
[Formula 2]
Figure 2010156603
Therefore, the proportionality coefficient α (d1 = α · d2) can be expressed by the following Equation 3.
[Formula 3]
Figure 2010156603

また、スネルの式(数式4)から屈折角度θ2を表す式(数式5)を導出できる。
[数式4]

Figure 2010156603
[数式5]
Figure 2010156603
Further, an expression (Expression 5) representing the refraction angle θ2 can be derived from Snell's expression (Expression 4).
[Formula 4]
Figure 2010156603
[Formula 5]
Figure 2010156603

そして、数式3と数式5とから屈折角度θ2を消去すると、次の数式6を求めることができる。
[数式6]

Figure 2010156603
Then, when the refraction angle θ2 is eliminated from Equation 3 and Equation 5, the following Equation 6 can be obtained.
[Formula 6]
Figure 2010156603

この数式6から明らかなように、比例係数αは入射角度θ1、屈折率n1,n2から求めることができ、これらが固定値であれば、比例係数αも一定であり、このことは、配置面受光位置X3と裏面受光位置X2との間における距離ΔX2と、透明体9の厚さd1との間に相関関係(d1=α・d2)が成立することを意味する。そこで、本実施形態では、予め、様々な厚さの透明体9について厚さd1及び距離ΔX2を複数サンプリングし、厚さd1と距離ΔX2との対応関係に基づく関係式(d1=kα・ΔX1)を導出し、その関係式情報がメモリ14に記憶されている。そして、CPU8は、S22、S28で取り込んだ受光信号SG1に基づく距離ΔX2と上記関係式情報とに基づき、現在の測定対象である透明体9の厚さd1を測定し、本第2モード処理を終了する。なお、上記複数のサンプリングから、厚さd1と距離ΔX2との対応関係テーブルを作成しておき、これをメモリ14に記憶し、距離ΔX2と対応関係テーブルとに基づき厚さd1を測定してもよい。   As is apparent from Equation 6, the proportional coefficient α can be obtained from the incident angle θ1 and the refractive indexes n1 and n2, and if these are fixed values, the proportional coefficient α is also constant. This means that a correlation (d1 = α · d2) is established between the distance ΔX2 between the light receiving position X3 and the back surface light receiving position X2 and the thickness d1 of the transparent body 9. Therefore, in this embodiment, a plurality of thicknesses d1 and distances ΔX2 are sampled in advance for the transparent body 9 having various thicknesses, and a relational expression (d1 = kα · ΔX1) based on the correspondence between the thickness d1 and the distance ΔX2. The relational expression information is stored in the memory 14. Then, the CPU 8 measures the thickness d1 of the transparent body 9 that is the current measurement object based on the distance ΔX2 based on the light reception signal SG1 captured in S22 and S28 and the above relational expression information, and performs the second mode process. finish. Note that a correspondence table between the thickness d1 and the distance ΔX2 is created from the plurality of samplings, stored in the memory 14, and the thickness d1 is measured based on the distance ΔX2 and the correspondence table. Good.

3.本実施形態の効果
本実施形態によれば、第2モードでは、裏面反射光L22及び配置面反射光L23を利用して、配置面受光位置X3と裏面受光位置X2との間における距離ΔX2と、透明体9の厚さd1との相関関係に基づき、透明体9の厚さd1を測定する。従って、表面受光位置X1と裏面受光位置X2とを判別することが困難な場合でも、透明体9の厚さd1を測定することが可能である。
3. Effects of the Present Embodiment According to the present embodiment, in the second mode, the distance ΔX2 between the arrangement surface light receiving position X3 and the rear surface light receiving position X2 using the back surface reflected light L22 and the arrangement surface reflected light L23, Based on the correlation with the thickness d1 of the transparent body 9, the thickness d1 of the transparent body 9 is measured. Therefore, even when it is difficult to discriminate between the front surface light receiving position X1 and the back surface light receiving position X2, the thickness d1 of the transparent body 9 can be measured.

また、本実施形態では、第2モードだけでなく、第1モードも使用することができる。前述したように、この第1モードは、表面受光位置X1と裏面受光位置X2とを判別できる場合にしか使用できないが、透明体9を高反射率材11上に配置したままその厚さd1を測定することができるという利点がある。従って、第1モードと第2モードとの両方を有することは好ましい。   In the present embodiment, not only the second mode but also the first mode can be used. As described above, the first mode can be used only when the front surface light receiving position X1 and the back surface light receiving position X2 can be discriminated, but the thickness d1 is set while the transparent body 9 is placed on the high reflectivity material 11. There is an advantage that it can be measured. Therefore, it is preferable to have both the first mode and the second mode.

更に、投光部2からの出射光L1の入射角度θ1が、高反射率材11の表面11Aで正反射可能な最大角度(臨界角度よりもやや小さい角度)に設定されている。従って、例えば透明体9の屈折率n2と、当該透明体9の周囲媒質(例えば空気)の屈折率n1との差が小さくても、裏面反射光L22の受光位置X2と配置面反射光L23の受光位置X3との距離ΔX2を長くすることができるため、厚さ測定の精度低下を抑制することが可能である。   Furthermore, the incident angle θ1 of the emitted light L1 from the light projecting unit 2 is set to a maximum angle (an angle slightly smaller than the critical angle) that can be regularly reflected by the surface 11A of the high reflectivity material 11. Therefore, for example, even if the difference between the refractive index n2 of the transparent body 9 and the refractive index n1 of the surrounding medium (for example, air) of the transparent body 9 is small, the light receiving position X2 of the back surface reflected light L22 and the arrangement surface reflected light L23 Since the distance ΔX2 with respect to the light receiving position X3 can be increased, it is possible to suppress a decrease in thickness measurement accuracy.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような種々の態様も本発明の技術的範囲に含まれる。特に、各実施形態の構成要素のうち、最上位の発明の構成要素以外の構成要素は、付加的な要素なので適宜省略可能である。
(1)上記実施形態の第2モード処理において、S20〜S24の処理とS26〜S30の処理との順序を逆にしてもよい。また、S20〜S24の処理は、第2モード処理を実行するごとに毎回行う必要はない。例えば一度、配置面受光位置X3を検出しメモリ14に記憶しておき、それ以降はメモリ14に記憶した配置面受光位置X3を使用してもよい。そして、例えば厚さ測定装置1の配置変更や周囲環境変化などがあった場合に、S20〜S24の処理を再実行すればよい。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and the drawings, and for example, the following various aspects are also included in the technical scope of the present invention. In particular, among the constituent elements of each embodiment, constituent elements other than the constituent elements of the top-level invention can be omitted as appropriate because they are additional elements.
(1) In the second mode processing of the above embodiment, the order of the processing of S20 to S24 and the processing of S26 to S30 may be reversed. Moreover, it is not necessary to perform the processing of S20 to S24 every time the second mode processing is executed. For example, the arrangement surface light reception position X3 may be detected once and stored in the memory 14, and thereafter, the arrangement surface light reception position X3 stored in the memory 14 may be used. Then, for example, when there is a change in the arrangement of the thickness measuring device 1 or a change in the surrounding environment, the processes of S20 to S24 may be performed again.

(2)上記実施形態では、第2モード処理において厚さd1と距離ΔX2との対応関係テーブルを利用したが、本発明はこれに限られない。例えば数式6による演算処理に基づき透明体9の厚さを測定してもよい。   (2) In the above embodiment, the correspondence table between the thickness d1 and the distance ΔX2 is used in the second mode processing, but the present invention is not limited to this. For example, the thickness of the transparent body 9 may be measured based on the arithmetic processing according to Equation 6.

(3)上記実施形態では、入射角度θ1、屈折率n1,n2が一定の場合を例に挙げて説明したが、本発明はこれに限られない。入射角度θ1、屈折率n1,n2のうち少なくとも1つを設定変更可能とし、その変更値に応じて比例係数αを変更してもよい。例えば異なる材質(屈折率)の複数の光透過性物体を測定対象とする場合には、ユーザが各光透過性物体の屈折率n2を操作部15にて入力することにより、この入力値に応じて比例係数αを変更してもよい。このような構成であれば、投光部から光透過性物体への光の入射角度、光透過性物体の周囲(媒質)の屈折率、光透過性物体の屈折率が異なる場合でも、それに応じて上記パラメータを変更することで、各種の光透過性物体の厚さを測定することができる。   (3) In the above embodiment, the case where the incident angle θ1 and the refractive indexes n1 and n2 are constant has been described as an example, but the present invention is not limited to this. At least one of the incident angle θ1 and the refractive indexes n1 and n2 can be set and changed, and the proportionality coefficient α may be changed according to the changed value. For example, when a plurality of light-transmitting objects of different materials (refractive indexes) are to be measured, the user inputs the refractive index n2 of each light-transmitting object with the operation unit 15 and responds to this input value. The proportional coefficient α may be changed. With such a configuration, even if the incident angle of light from the light projecting unit to the light-transmitting object, the refractive index of the surrounding (medium) of the light-transmitting object, and the refractive index of the light-transmitting object are different, By changing the above parameters, the thickness of various light transmissive objects can be measured.

(4)更に、光透過性物体の屈折率n2を入力しなくても比例係数αを把握できる方法がある。即ち、予め厚さd1が分かっている透明体9について第2モードを実行し、距離ΔX2(d2)を求めて、d1=α・d2の式から、現在測定対象の光透過性物体の屈折率に応じたαを算出することができる。例えばユーザが予め分かっている厚さd1を操作部15に入力し、第2モードを実行することにより、CPU8が、上記入力された厚さd1と、第2モードの実行により得られた距離ΔX2とから比例係数αを求めるのである。   (4) Furthermore, there is a method in which the proportionality coefficient α can be grasped without inputting the refractive index n2 of the light transmissive object. That is, the second mode is executed for the transparent body 9 whose thickness d1 is known in advance, the distance ΔX2 (d2) is obtained, and the refractive index of the light-transmitting object that is currently measured is obtained from the equation d1 = α · d2. Can be calculated in accordance with. For example, when the user inputs a thickness d1 known in advance to the operation unit 15 and executes the second mode, the CPU 8 causes the input thickness d1 and the distance ΔX2 obtained by executing the second mode. From this, the proportionality coefficient α is obtained.

本発明の一実施形態に係る厚さ測定装置のブロック図The block diagram of the thickness measuring apparatus which concerns on one Embodiment of this invention. 表面反射光及び裏面反射光の光路を示す模式図Schematic diagram showing the optical path of the front surface reflected light and the back surface reflected light 第1モード処理を示すフローチャートFlow chart showing first mode processing CCD上の受光レベルを示す波形図Waveform diagram showing light reception level on CCD 反射光の光路を示す模式図(透明体有り)Schematic diagram showing the optical path of reflected light (with transparent body) 裏面反射光及び反射光の光路を示す模式図(透明体無し)Schematic diagram showing back side reflected light and optical path of reflected light (no transparent body) 第2モード処理を示すフローチャートFlow chart showing second mode processing CCD上の受光レベルを示す波形図Waveform diagram showing light reception level on CCD

符号の説明Explanation of symbols

1...厚さ測定装置
2...投光部
8...CPU(測定部)
9...透明体(光透過性物体)
9B...裏面
11A...表面(配置面)
13...受光部
L22...裏面反射光(第2反射光)
L23...配置面反射光(第1反射光)
SG1...受光信号
X2...裏面反射位置
X3...配置面受光位置
DESCRIPTION OF SYMBOLS 1 ... Thickness measuring device 2 ... Projection part 8 ... CPU (measurement part)
9 ... Transparent body (light transmissive object)
9B ... Back side 11A ... Front side (placement side)
13 ... light receiving portion L22 ... back surface reflected light (second reflected light)
L23 ... Arrangement surface reflected light (first reflected light)
SG1 ... light reception signal X2 ... back surface reflection position X3 ... position surface light reception position

Claims (4)

所定の配置面上に存在する光透過性物体の厚さを測定する厚さ測定装置であって、
前記配置面側に向けて斜め向きに光を出射する投光部と、
前記配置面上に前記光透過性物体が無い場合における前記配置面からの正反射光である第1反射光と、前記配置面上に前記光透過性物体が在る場合における前記配置面からの正反射光である第2反射光とをそれぞれ受光可能な受光部と、
前記受光部における前記第1反射光の受光位置及び前記第2反射光の受光位置間の距離と、前記光透過性物体の厚さとにおける相関関係に基づき前記光透過性物体の厚さを測定する測定部と、を備える厚さ測定装置。
A thickness measuring device for measuring the thickness of a light transmissive object existing on a predetermined arrangement surface,
A light projecting unit that emits light obliquely toward the arrangement surface side;
First reflected light that is specularly reflected light from the placement surface when the light-transmissive object is not present on the placement surface, and from the placement surface when the light-transmissive object is present on the placement surface. A light receiving unit capable of receiving the second reflected light, which is specularly reflected light, and
The thickness of the light transmissive object is measured based on the correlation between the distance between the light receiving position of the first reflected light and the light receiving position of the second reflected light in the light receiving unit and the thickness of the light transmissive object. And a thickness measuring device.
請求項1に記載の厚さ測定装置であって、
前記測定部は、次の演算式に基づき前記光透過性物体の厚さd1を測定する構成である。
Figure 2010156603
但し、d1:光透過性物体の厚さ
ΔX2:第1反射光の受光位置と第2反射光の受光位置との距離
θ1:投光部から光透過性物体への光の入射角度
n1:光透過性物体の周囲の屈折率
n2:光透過性物体の屈折率
k:受光部の受光面の角度に応じた係数
The thickness measuring device according to claim 1,
The measurement unit is configured to measure the thickness d1 of the light transmissive object based on the following arithmetic expression.
Figure 2010156603
However, d1: Thickness of the light transmitting object ΔX2: Distance between the light receiving position of the first reflected light and the light receiving position of the second reflected light θ1: Incident angle of light from the light projecting unit to the light transmitting object n1: Light Refractive index around transparent object n2: Refractive index of light transmissive object k: Coefficient according to angle of light receiving surface of light receiving unit
請求項1または請求項2に記載の厚さ測定装置であって、
前記投光部からの出射光の、前記配置面に対する入射角度が、前記配置面で正反射可能な最大角度に設定されている。
The thickness measuring device according to claim 1 or 2,
An incident angle of the light emitted from the light projecting unit with respect to the arrangement surface is set to a maximum angle that allows regular reflection on the arrangement surface.
所定の配置面上に存在する光透過性物体の厚さを測定する厚さ測定方法であって、
前記配置面上に前記光透過性物体が無い場合に、当該配置面に向けて光を出射し、前記配置面で正反射した第1反射光を所定の受光面で受光する第1ステップと、
前記配置面上に前記光透過性物体が在る場合に、光を出射し、前記配置面で正反射した第2反射光を前記受光面で受光する第2ステップと、
前記受光面上における前記第1反射光の受光位置及び前記第2反射光の受光位置間の距離と、前記光透過性物体の厚さとにおける相関関係に基づき前記光透過性物体の厚さを測定する第3ステップと、を含む厚さ測定方法。
A thickness measurement method for measuring the thickness of a light transmissive object existing on a predetermined arrangement surface,
A first step of emitting light toward the arrangement surface when the light-transmissive object is not present on the arrangement surface and receiving the first reflected light regularly reflected on the arrangement surface by a predetermined light-receiving surface;
A second step of emitting light when the light-transmitting object is present on the arrangement surface and receiving the second reflected light specularly reflected by the arrangement surface by the light-receiving surface;
The thickness of the light transmissive object is measured based on the correlation between the light receiving position of the first reflected light and the light receiving position of the second reflected light on the light receiving surface and the thickness of the light transmissive object. And a third step of measuring the thickness.
JP2008334804A 2008-12-26 2008-12-26 Device and method for measuring thickness Pending JP2010156603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008334804A JP2010156603A (en) 2008-12-26 2008-12-26 Device and method for measuring thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008334804A JP2010156603A (en) 2008-12-26 2008-12-26 Device and method for measuring thickness

Publications (1)

Publication Number Publication Date
JP2010156603A true JP2010156603A (en) 2010-07-15

Family

ID=42574627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008334804A Pending JP2010156603A (en) 2008-12-26 2008-12-26 Device and method for measuring thickness

Country Status (1)

Country Link
JP (1) JP2010156603A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080525A (en) * 2014-10-17 2016-05-16 キヤノン株式会社 Measurement device, measurement method, lithography device and article manufacturing method
KR101745117B1 (en) * 2015-07-02 2017-06-09 타-젠 쿠오 A high accuracy apparatus and method of photoelectric glass substrate in real-time identification

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4593533A (en) * 1974-12-05 1986-06-10 Alsenz Richard H Method and apparatus for detecting and controlling the formation of ice or frost
JPH02311704A (en) * 1989-05-26 1990-12-27 Fujitsu Ltd Apparatus for measuring thickness of transparent linear film
US20040190004A1 (en) * 2003-03-26 2004-09-30 Changsoo Kwak Apparatus for shifting reference distance of laser displacement sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4593533A (en) * 1974-12-05 1986-06-10 Alsenz Richard H Method and apparatus for detecting and controlling the formation of ice or frost
JPH02311704A (en) * 1989-05-26 1990-12-27 Fujitsu Ltd Apparatus for measuring thickness of transparent linear film
US20040190004A1 (en) * 2003-03-26 2004-09-30 Changsoo Kwak Apparatus for shifting reference distance of laser displacement sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080525A (en) * 2014-10-17 2016-05-16 キヤノン株式会社 Measurement device, measurement method, lithography device and article manufacturing method
KR101745117B1 (en) * 2015-07-02 2017-06-09 타-젠 쿠오 A high accuracy apparatus and method of photoelectric glass substrate in real-time identification

Similar Documents

Publication Publication Date Title
TWI397839B (en) User input device with planar light guide illumination plate
JP4808637B2 (en) Portable distance measuring device
JP5025552B2 (en) Touch panel
TWI420081B (en) Distance measuring system and distance measuring method
TWI536210B (en) Method of estimating motion with optical lift detection
KR20160034358A (en) Light guide panel including diffraction gratings
KR20100037014A (en) Optical finger navigation utilizing quantized movement information
WO2010010311A3 (en) Optical device and method for measuring the rotation of an object
JP3881960B2 (en) Portable automatic refractometer
JP2010156603A (en) Device and method for measuring thickness
US10496226B2 (en) Optical sensing unit and touch panel device including the same
JP5903855B2 (en) Optical displacement sensor
KR101934069B1 (en) Liquid level measuring equipment
WO2018201566A1 (en) Laser detection device, and application method thereof
TWI433007B (en) Optical touch device and locating method thereof
KR101913173B1 (en) Contamination Measuring Device for Solar Panel Surface
EP1293768A3 (en) Sensor utilizing attenuated total reflection
JP2006099273A5 (en)
TWI617384B (en) Focusing point detecting device
JP6705593B2 (en) measuring device
CN210802701U (en) Laser wavelength measuring device based on interference mode
JP5463960B2 (en) Measuring device
JP2005147891A (en) Surface plasmon resonance sensor
JP2009145071A (en) Optical characteristic measuring instrument and optical characteristic measuring method
EP4283279A1 (en) Accurate turbidity measurement system and method, using speckle pattern

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507