JP2016080525A - Measurement device, measurement method, lithography device and article manufacturing method - Google Patents

Measurement device, measurement method, lithography device and article manufacturing method Download PDF

Info

Publication number
JP2016080525A
JP2016080525A JP2014212493A JP2014212493A JP2016080525A JP 2016080525 A JP2016080525 A JP 2016080525A JP 2014212493 A JP2014212493 A JP 2014212493A JP 2014212493 A JP2014212493 A JP 2014212493A JP 2016080525 A JP2016080525 A JP 2016080525A
Authority
JP
Japan
Prior art keywords
reflected light
light
substrate
surface reflected
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014212493A
Other languages
Japanese (ja)
Other versions
JP2016080525A5 (en
JP6415235B2 (en
Inventor
浩平 前田
Kohei Maeda
浩平 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014212493A priority Critical patent/JP6415235B2/en
Publication of JP2016080525A publication Critical patent/JP2016080525A/en
Publication of JP2016080525A5 publication Critical patent/JP2016080525A5/ja
Application granted granted Critical
Publication of JP6415235B2 publication Critical patent/JP6415235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a measurement device that is advantageous to a highly accurate measurement of a surface position of a measurement object.SOLUTION: A measurement device comprises: a light shield member 11 that has a plurality of aperture parts, and distributes light from a light source to a plurality of light fluxes using the plurality of aperture parts; a detector 14 that detects front surface reflection light 17a having the plurality of light fluxes reflected upon a front surface of an object, and rear surface reflection light 17b reflected upon a rear surface thereof, and outputs a signal waveform including a plurality of peak waveforms of the front surface reflection light 17a, and a plurality of peak waveforms of the rear surface reflection light 17b; and processing unit 15 that calculates a thickness of the object on the basis of the peak waveform of the front surface reflection light 17a not overlapping the plurality of peak waveforms of the rear surface reflection light 17b in terms of a signal waveform, and the peak waveform of the rear surface reflection light 17b not overlapping the plurality of peak waveforms of the front surface reflection light 17a therein, acquires a relation between the thickness thereof and a measurement error due to the overlapping, identifies the peak waveform of the front surface reflection light 17a on the basis of the thickness thereof and the relation, and calculates a position of a front surface of the object.SELECTED DRAWING: Figure 2

Description

本発明は、計測装置、計測方法、リソグラフィ装置、および物品の製造方法に関する。   The present invention relates to a measuring device, a measuring method, a lithography apparatus, and an article manufacturing method.

露光装置は、半導体デバイスや液晶表示デバイスなどの製造工程に含まれるリソグラフィ工程において、原版(レチクルやマスクなど)のパターンを投影光学系を介して感光剤が塗布された基板(ウエハやガラスプレートなど)に転写する装置である。このような露光装置では、原版のパターンの結像面に基板の表面(露光面)を位置合わせ、すなわち合焦するために、基板の表面の位置(面位置または高さ)を正確に計測する必要がある。そこで、露光装置は、投影光学系の光軸方向における基板の位置を計測するオートフォーカスセンサー(AFセンサー)を有する。AFセンサーは、一般的に、基板の表面に対して光(複数のビーム)を投射する投光系と、基板の表面からの反射光を受光する受光系と、受光系からの光を検出し処理部へ信号波形を出力する検出部とを含む。ここで、基板がガラスプレートなどの透光性基板である場合、受光系が受光する光には、基板の表面からの反射光のみならず、基板の裏面からの反射光も含まれる。そのような反射光を用いて計測する場合には検出対象でない基板の裏面からの反射光により計測精度が低下するため、AFセンサーを用いる場合には、いかに基板の裏面での反射光を低減するか、または基板の表面での反射光を抽出するかが重要となる。しかし、リソグラフィ装置で用いる基板の厚さの薄化に伴い、検出器で検出される表面反射光の波形と裏面反射光の波形とが重なることがある。そこで、特許文献1は、検出部が検出した反射光の波形と参照波形とのプロファイルフィッティング処理を用いて、表面反射光の波形のみを抽出する面位置検出装置を開示している。特許文献2は、基板の表面で反射した反射光の波形と基板の裏面で反射した反射光の波形との両方を含む信号波形のうち、互いに重なりのない波形のみを使用する自動焦点合わせ装置を開示している。特許文献3は、物質の表面および下面のそれぞれからの反射光が重なることによる誤差量と既知である物質の膜厚との関係を予め取得し、物質の膜厚に合わせ誤差量を予測する試料面位置測定装置を開示している。   An exposure apparatus is a substrate (such as a wafer or a glass plate) coated with a photosensitive agent through a projection optical system on a pattern of an original (reticle, mask, etc.) in a lithography process included in a manufacturing process of a semiconductor device or a liquid crystal display device. ). In such an exposure apparatus, the position (surface position or height) of the surface of the substrate is accurately measured in order to align the surface (exposure surface) of the substrate with the imaging surface of the original pattern, that is, to focus the surface. There is a need. Therefore, the exposure apparatus has an autofocus sensor (AF sensor) that measures the position of the substrate in the optical axis direction of the projection optical system. An AF sensor generally detects a light projecting system that projects light (a plurality of beams) onto the surface of a substrate, a light receiving system that receives reflected light from the surface of the substrate, and light from the light receiving system. And a detection unit that outputs a signal waveform to the processing unit. Here, when the substrate is a translucent substrate such as a glass plate, the light received by the light receiving system includes not only reflected light from the surface of the substrate but also reflected light from the back surface of the substrate. When measuring using such reflected light, the measurement accuracy decreases due to the reflected light from the back surface of the substrate that is not the detection target. Therefore, when using the AF sensor, how to reduce the reflected light on the back surface of the substrate. It is important to extract the reflected light from the surface of the substrate. However, as the thickness of the substrate used in the lithography apparatus is reduced, the waveform of the reflected light from the front surface detected by the detector may overlap with the waveform of the reflected light from the back surface. Therefore, Patent Document 1 discloses a surface position detection device that extracts only the waveform of the surface reflected light using a profile fitting process between the waveform of the reflected light detected by the detection unit and the reference waveform. Patent Document 2 discloses an automatic focusing apparatus that uses only non-overlapping waveforms among signal waveforms including both a waveform of reflected light reflected on the surface of a substrate and a waveform of reflected light reflected on the back surface of the substrate. Disclosure. Patent Document 3 obtains in advance a relationship between an error amount due to overlapping of reflected light from the surface and lower surface of a substance and a known film thickness of the substance, and predicts the error quantity according to the film thickness of the substance A surface position measuring device is disclosed.

特開2004−273828号公報JP 2004-273828 A 特開平05−281458号公報JP 05-281458 A 特公平07−113547号公報Japanese Examined Patent Publication No. 07-113547

しかしながら、計測対象となる透過性基板は、基板毎および基板内で厚さに微小なばらつきがあり、基板の厚さに応じて表面反射光および裏面反射光の波形の重なり状態は変化することがある。特許文献1の装置では、基板の厚さに応じて変化する重なり状態に対応するためには、基板上を多点計測し、その計測点毎にプロファイルフィッティング処理を行わなければならず、スループットが低下する。また、特許文献2および特許文献3の装置では、計測対象となる基板および該基板の計測位置における厚さのばらつきを検出することができず、算出される基板の計測値に誤差が生じることがある。   However, the transmissive substrate to be measured has minute variations in thickness for each substrate and within the substrate, and the overlapping state of the waveform of the front surface reflected light and the back surface reflected light may change depending on the thickness of the substrate. is there. In the apparatus of Patent Document 1, in order to cope with an overlapping state that changes according to the thickness of the substrate, it is necessary to perform multipoint measurement on the substrate and perform profile fitting processing for each measurement point, and throughput is reduced. descend. In addition, in the apparatuses of Patent Document 2 and Patent Document 3, it is not possible to detect the variation in thickness at the measurement target substrate and the measurement position of the substrate, and an error may occur in the calculated measurement value of the substrate. is there.

本発明は、このような状況を鑑みてなされたものであり、例えば、計測対象の表面位置を高精度に計測するのに有利な計測装置を提供することを目的とする。   The present invention has been made in view of such a situation, and an object of the present invention is to provide a measurement device that is advantageous for measuring the surface position of a measurement target with high accuracy, for example.

上記課題を解決するために、本発明は、物体の表面の位置を計測する計測装置であって、複数の開口部を有し、光源からの光を複数の開口部を用いて複数の光束に分配する遮光部材と、複数の光束が物体の表面で反射した表面反射光と、物体の裏面で反射した裏面反射光とを検出して、表面反射光の複数のピーク波形と裏面反射光の複数のピーク波形とを含む信号波形を出力する検出器と、信号波形において裏面反射光の複数のピーク波形と重なりのない表面反射光のピーク波形と、表面反射光の複数のピーク波形と重なりのない裏面反射光のピーク波形とに基づいて物体の厚さを算出し、厚さと重なりによる計測誤差との関係を取得し、厚さと関係とに基づいて表面反射光のピーク波形を特定し、物体の表面の位置を算出する処理部とを備えることを特徴とする。   In order to solve the above-described problems, the present invention is a measuring apparatus that measures the position of the surface of an object, and has a plurality of openings, and the light from the light source is converted into a plurality of light beams using the plurality of openings. A light blocking member to be distributed, a surface reflected light in which a plurality of light beams are reflected on the surface of the object, and a back surface reflected light reflected on the back surface of the object are detected, and a plurality of peak waveforms of the surface reflected light and a plurality of back surface reflected lights are detected. A detector that outputs a signal waveform including a peak waveform of the surface, a peak waveform of the surface reflected light that does not overlap with the plurality of peak waveforms of the back surface reflected light, and a plurality of peak waveforms of the surface reflected light that do not overlap in the signal waveform Calculate the thickness of the object based on the peak waveform of the reflected light from the back surface, obtain the relationship between the thickness and the measurement error due to the overlap, identify the peak waveform of the reflected light from the surface based on the thickness and the relationship, And a processing unit that calculates the position of the surface And wherein the Rukoto.

本発明によれば、例えば、計測対象の表面位置を高精度に計測するのに有利な計測装置を提供することができる。   According to the present invention, for example, it is possible to provide a measurement device that is advantageous for measuring the surface position of a measurement target with high accuracy.

本発明の一実施形態に係る計測装置の構成を示す図である。It is a figure which shows the structure of the measuring device which concerns on one Embodiment of this invention. 受光光の流れを示す計測装置の要部の構成の図である。It is a figure of the structure of the principal part of the measuring device which shows the flow of received light. 比較的厚い基板を計測した際の計測光の流れを示す図である。It is a figure which shows the flow of the measurement light at the time of measuring a comparatively thick board | substrate. 図3に示す基板を計測した際の信号波形を示すグラフである。It is a graph which shows the signal waveform at the time of measuring the board | substrate shown in FIG. 比較的薄い基板を計測した際の計測光の流れを示す図である。It is a figure which shows the flow of the measurement light at the time of measuring a comparatively thin board | substrate. 図5に示す基板を計測した際の信号波形を示すグラフである。It is a graph which shows the signal waveform at the time of measuring the board | substrate shown in FIG. 信号波形に重なりがない状態の信号波形の一例を示すグラフである。It is a graph which shows an example of a signal waveform in the state where there is no overlap in a signal waveform. 信号波形の一部に重なりがある状態の信号波形の一例を示すグラフである。It is a graph which shows an example of a signal waveform in the state where there is an overlap in a part of signal waveform. 信号波形すべてに重なりがある状態の信号波形の一例を示すグラフである。It is a graph which shows an example of a signal waveform in the state where all signal waveforms have an overlap. 基板の厚さと表裏面反射光のシフト量位置との関係を示す図である。It is a figure which shows the relationship between the thickness of a board | substrate, and the shift amount position of front and back reflected light. 基板の厚さと計測誤差との相関関係を示すグラフである。It is a graph which shows the correlation of the thickness of a board | substrate, and a measurement error. 光の強度比毎の基板の厚さと計測誤差との相関関係を示すグラフである。It is a graph which shows correlation with the thickness of the board | substrate for every intensity ratio of light, and a measurement error.

以下、本発明を実施するための形態について図面などを参照して説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

まず、本発明の一実施形態に係る計測装置(計測方法)について説明する。本実施形態に係る計測装置は、例えば、露光装置などのリソグラフィ装置に設置される。そして、計測装置は、リソグラフィ装置内のステージに載置されている基板(ウエハやガラスプレートなど)を計測対象物(物体)として、その表面の位置(面位置または高さ)を計測するものである。以下、本実施形態に係る計測装置は、一例として露光装置に設置されるものとして説明する。   First, a measurement apparatus (measurement method) according to an embodiment of the present invention will be described. The measurement apparatus according to this embodiment is installed in a lithography apparatus such as an exposure apparatus, for example. The measurement apparatus measures the position (surface position or height) of the surface of a substrate (wafer, glass plate, etc.) placed on the stage in the lithography apparatus as a measurement object (object). is there. Hereinafter, the measurement apparatus according to the present embodiment will be described as being installed in an exposure apparatus as an example.

図1は、本実施形態に係る計測装置22を含む露光装置100の構成を示す概略図である。露光装置100は、例えば、ステップ・アンド・リピートまたはステップ・アンド・スキャン方式にて原版(レチクルまたはマスク)1に形成されているパターン(例えば回路パターン)を介して基板5を露光する露光装置である。なお、図1を含む以下の各図では、後述する投影光学系4の光軸方向(本実施形態では鉛直方向)に平行にZ軸を取り、Z軸に垂直な平面内で露光時の走査方向にY軸を取り、Y軸に直交する非走査方向にX軸を取っている。露光装置100は、照明系3と、原版ステージ2と、投影光学系4と、基板ステージ7と、計測装置22と、制御部23とを備える。照明系3は、露光時に光(例えばレーザー光)を照射し、原版1を照明する。原版ステージ2は、原版1を保持する。投影光学系4は、原版1に形成されているパターンを基板5上に投影(結像)する。基板ステージ7は、基板5を保持部材(チャック)6を介し、XY平面上を移動可能に保持する。なお、基板ステージ7は、XYの各軸方向だけでなくZ軸方向にも移動可能であり、合焦のための駆動系でもある。また、基板ステージ7は、各軸用にそれぞれ設けられた、レーザー干渉計9と、基板ステージ7に設置されたミラー8とを用いてその位置が特定され、制御部23により各軸方向において高精度に位置決めされる。   FIG. 1 is a schematic diagram showing a configuration of an exposure apparatus 100 including a measurement apparatus 22 according to the present embodiment. The exposure apparatus 100 is an exposure apparatus that exposes the substrate 5 via a pattern (for example, a circuit pattern) formed on an original (reticle or mask) 1 by, for example, a step-and-repeat or step-and-scan method. is there. In each of the following drawings including FIG. 1, the Z-axis is taken in parallel to the optical axis direction (vertical direction in the present embodiment) of the projection optical system 4 to be described later, and scanning during exposure is performed in a plane perpendicular to the Z-axis. The Y axis is taken in the direction, and the X axis is taken in the non-scanning direction orthogonal to the Y axis. The exposure apparatus 100 includes an illumination system 3, an original stage 2, a projection optical system 4, a substrate stage 7, a measuring device 22, and a control unit 23. The illumination system 3 illuminates the original 1 by irradiating light (for example, laser light) during exposure. The original stage 2 holds the original 1. The projection optical system 4 projects (images) the pattern formed on the original 1 onto the substrate 5. The substrate stage 7 holds the substrate 5 movably on the XY plane via a holding member (chuck) 6. The substrate stage 7 can move not only in the XY axis directions but also in the Z axis direction, and is also a drive system for focusing. Further, the position of the substrate stage 7 is specified by using a laser interferometer 9 provided for each axis and a mirror 8 installed on the substrate stage 7. Positioned with accuracy.

計測装置22は、基板ステージ7上の保持部材6に載置されている基板5の面位置(本実施形態ではZ軸方向の高さ位置)を検出する。計測装置22は、光源10と、投光系19と、受光系13と、検出器14と、処理部15とを含む。光源は、例えば500〜1200nmの波長の光を発する。投光系19は、不図示の集光レンズ、複数の開口部(スリット等)が形成された遮光部材11、および投光レンズ12を含み、集光レンズにより集光された光源10からの光を遮光部材11および投光レンズ12を介して基板5の表面に投影する。検出光16は、基板5の表面(物体上)に向けて斜め(入射角θ)に導光(投光)される。受光系13は、検出光16が基板5で反射してなる受光光17を検出器14へ導光する。検出器14は、例えば受光素子アレイを含み、受光光17を受光し、処理部15へ検出信号を出力(送信)する。処理部15は、検出器14から受信した検出信号に基づいて演算処理を実行し、面位置を求める。   The measuring device 22 detects the surface position (the height position in the Z-axis direction in the present embodiment) of the substrate 5 placed on the holding member 6 on the substrate stage 7. The measuring device 22 includes a light source 10, a light projecting system 19, a light receiving system 13, a detector 14, and a processing unit 15. The light source emits light having a wavelength of 500 to 1200 nm, for example. The light projecting system 19 includes a condensing lens (not shown), a light shielding member 11 having a plurality of openings (slits, etc.), and a light projecting lens 12, and the light from the light source 10 condensed by the condensing lens. Is projected onto the surface of the substrate 5 through the light shielding member 11 and the light projecting lens 12. The detection light 16 is guided (projected) obliquely (incident angle θ) toward the surface of the substrate 5 (on the object). The light receiving system 13 guides the received light 17 formed by reflecting the detection light 16 on the substrate 5 to the detector 14. The detector 14 includes, for example, a light receiving element array, receives the received light 17, and outputs (transmits) a detection signal to the processing unit 15. The processing unit 15 performs arithmetic processing based on the detection signal received from the detector 14 to obtain the surface position.

制御部23は、露光装置100の各構成要素の動作および調整などを制御し得る。制御部23は、例えばコンピューターなどで構成され、露光装置100の各構成要素に回線を介して接続され、プログラムなどにしたがって各構成要素の制御を実行し得る。ここで、上記の説明では、計測装置22には、露光装置100とは独立して演算処理を実行する処理部15を含む構成としている。これに対して、本実施形態のように計測装置22が露光装置100に設置される場合には、処理部15が実行する処理を、代わりに制御部23が実行する構成としてもよい。さらに、制御部23は、露光装置100の他の部分と一体で(共通の筐体内に)構成してもよいし、露光装置100の他の部分とは別体で(別の筐体内に)構成してもよい。   The control unit 23 can control the operation and adjustment of each component of the exposure apparatus 100. The control unit 23 is configured by, for example, a computer, is connected to each component of the exposure apparatus 100 via a line, and can control each component according to a program or the like. Here, in the above description, the measurement device 22 is configured to include the processing unit 15 that executes arithmetic processing independently of the exposure device 100. On the other hand, when the measuring device 22 is installed in the exposure apparatus 100 as in the present embodiment, the control unit 23 may instead execute the processing executed by the processing unit 15. Further, the control unit 23 may be configured integrally with other parts of the exposure apparatus 100 (in a common casing), or separate from other parts of the exposure apparatus 100 (in a separate casing). It may be configured.

次に、計測装置22による計測(計測方法)について説明する。図2は、図1に示す計測装置22を含む露光装置100の構成のうち検出光16と受光光17との関係を説明するための要部を示す概略図である。光源10からの光が遮光部材11の開口部により分配され、複数の光束として形成された検出光16は、基板5で反射する際、基板5の表面で反射した表面反射光17aと、基板5の裏面で反射した裏面反射光17bとの2つの成分の受光光17となる。これら2つの成分の受光光17は、混在した状態で存在し、受光系13を介して検出器14へ導かれ、検出器14において、基板5の表面で反射した表面反射光17aは、点sの位置に入射し、基板5の裏面で反射した裏面反射光17bは、点rの位置に入射する。露光装置100において、投影光学系4の焦点位置は、基板5の面位置と合焦させる必要があるため、計測装置22は、表面反射光17aに基づき、基板5の面位置を計測する。しかし、基板5の厚さが薄くなると、表面反射光17aと裏面反射光17bとの光線間隔が狭くなり、表面反射光17aの検出信号に、裏面反射光17bの検出信号がノイズとなって混入することがある。   Next, measurement (measurement method) by the measurement device 22 will be described. FIG. 2 is a schematic diagram showing a main part for explaining the relationship between the detection light 16 and the light reception light 17 in the configuration of the exposure apparatus 100 including the measurement apparatus 22 shown in FIG. When the light from the light source 10 is distributed by the openings of the light blocking member 11 and the detection light 16 formed as a plurality of light beams is reflected by the substrate 5, the surface reflected light 17a reflected by the surface of the substrate 5 and the substrate 5 are reflected. The light receiving light 17 of two components is the back surface reflected light 17b reflected by the back surface of the light. The received light 17 of these two components exists in a mixed state and is guided to the detector 14 via the light receiving system 13, and the surface reflected light 17 a reflected by the surface of the substrate 5 in the detector 14 is a point s. The back-surface reflected light 17b that is incident on the position and reflected by the back surface of the substrate 5 enters the position of the point r. In the exposure apparatus 100, since the focal position of the projection optical system 4 needs to be focused on the surface position of the substrate 5, the measuring device 22 measures the surface position of the substrate 5 based on the surface reflected light 17a. However, when the thickness of the substrate 5 is reduced, the distance between the front surface reflected light 17a and the back surface reflected light 17b is reduced, and the detection signal of the back surface reflected light 17b is mixed with the detection signal of the front surface reflected light 17a as noise. There are things to do.

ここで、表面反射光17aと裏面反射光17bとの光線間隔Δdと基板5の厚みとの関係について、図3〜6を用いて詳説する。なお、説明を簡略化するため、遮光部材11の透光部が1つの場合、すなわち、検出光16が1本の場合を例に挙げて説明する。図3に示すように、基板5が比較的厚くかつ検出光16の入射角θが適切に設定されている場合には、検出器14に入射する表面反射光17aと裏面反射光17bとの光線間隔は、Δdとなる。この場合、検出器14で出力される信号波形において、点sに入射した表面反射光17aの検出信号Aと点rに入射した裏面反射光17bの検出信号Bとは、図4に示すように、離れた位置に存在するため重なることはない。そのため、この信号波形を検出器14から取得した処理部15は、裏面反射光17bの検出信号Bに影響を受けることなく、表面反射光17aの検出信号Aのピーク位置sを決定することができる。しかし、図3と同じ入射角θで入射する検出光16を用いて、薄化した基板5を計測する場合、図5に示すように、検出器14に入射する表面反射光17aと裏面反射光17bとの光線間隔は、Δdとなる。この場合、検出器14より出力される信号波形において、表面反射光17aの検出信号Aと裏面反射光17bの検出信号Bとは、図6に示すように、重なって現れることがある。この重なりにより表面反射光17aの検出信号Aに裏面反射光17bの検出信号Bがノイズとなって影響するため、処理部15は、表面反射光17aの検出信号Aのピーク位置sを精度良く決定することができない。 Here, the relationship between the light beam interval Δd between the front surface reflected light 17a and the back surface reflected light 17b and the thickness of the substrate 5 will be described in detail with reference to FIGS. In order to simplify the description, the case where the light shielding member 11 has one translucent portion, that is, the case where there is one detection light 16 will be described as an example. As shown in FIG. 3, when the substrate 5 is relatively thick and the incident angle θ of the detection light 16 is appropriately set, the light rays of the front surface reflected light 17a and the back surface reflected light 17b incident on the detector 14 are used. The interval is Δd 1 . In this case, in the signal waveform output from the detector 14, the detection signal A of the front surface reflected light 17a incident on the point s and the detection signal B of the back surface reflected light 17b incident on the point r are as shown in FIG. , They do not overlap because they exist at distant locations. Therefore, the processing unit 15 that has acquired this signal waveform from the detector 14 can determine the peak position s of the detection signal A of the front surface reflected light 17a without being affected by the detection signal B of the back surface reflected light 17b. . However, when the thinned substrate 5 is measured using the detection light 16 incident at the same incident angle θ as in FIG. 3, as shown in FIG. 5, the front surface reflected light 17a and the back surface reflected light are incident on the detector. ray spacing and 17b becomes [Delta] d 2. In this case, in the signal waveform output from the detector 14, the detection signal A of the front surface reflected light 17a and the detection signal B of the back surface reflected light 17b may appear as shown in FIG. Due to this overlap, the detection signal B of the back surface reflected light 17b affects the detection signal A of the surface reflected light 17a as noise, so the processing unit 15 accurately determines the peak position s of the detection signal A of the front surface reflected light 17a. Can not do it.

そこで、本発明の一実施形態に係る計測装置22は、基板5の厚さtに応じた計測誤差Δuを考慮して基板5の面位置を計測するものとする。この計測装置22は、一例として3本のスリットを開口部として有する遮光部材11を備え、3本の検出光16を基板5に照射するものとする。図7〜9は、本実施形態における計測装置22に適用可能な検出器14が出力する、基板5の厚さ毎の信号波形を示すグラフである。なお、図7〜9において、検出光16の基板5への入射角度θは、すべて80°であるものとし、測定対象となる基板5の厚さtは、50μm以上であるものとする。50μ以上にすることにより、表面反射光17aの検出信号Aと裏面反射光17bの検出信号Bの重なりを浅くすることができ、後述する重なりのない検出信号を検出しやすくなる。なお、基板5の厚さtが50μm未満であっても、検出光16の基板5への入射角度θが小さくなるよう計測装置22を調整することにより表面反射光17aの検出信号Aと裏面反射光17bの検出信号Bの重なりを低減することは可能である。しかし、入射角度θが小さくなると、基板5上に前工程において処理が施されている場合、検出器から出力される信号波形がその影響を受けて、計測誤差が発生することがあるため、測定対象となる基板5の厚さtは、50μm以上であることが望ましい。   Therefore, the measurement apparatus 22 according to an embodiment of the present invention measures the surface position of the substrate 5 in consideration of the measurement error Δu corresponding to the thickness t of the substrate 5. As an example, the measurement device 22 includes a light shielding member 11 having three slits as openings, and irradiates the substrate 5 with three detection lights 16. 7 to 9 are graphs showing signal waveforms for each thickness of the substrate 5 output from the detector 14 applicable to the measuring device 22 in the present embodiment. 7 to 9, the incident angles θ of the detection light 16 on the substrate 5 are all 80 °, and the thickness t of the substrate 5 to be measured is 50 μm or more. By setting it to 50 μm or more, the overlap of the detection signal A of the front surface reflected light 17a and the detection signal B of the back surface reflected light 17b can be made shallower, and it becomes easier to detect a detection signal having no overlap described later. Even if the thickness t of the substrate 5 is less than 50 μm, the detection signal A of the surface reflected light 17a and the back surface reflection are adjusted by adjusting the measuring device 22 so that the incident angle θ of the detection light 16 to the substrate 5 is reduced. It is possible to reduce the overlap of the detection signal B of the light 17b. However, when the incident angle θ is reduced, measurement errors may occur if the signal waveform output from the detector is affected by the processing performed on the substrate 5 in the previous process. The thickness t of the target substrate 5 is desirably 50 μm or more.

まず、図7を参照して、比較的厚い基板(一例として、0.4mm)5を計測する場合を考える。この場合、表面反射光17aの検出信号Aとなるピーク値aおよびピーク位置s1〜s3を示す3つのピーク波形と、裏面反射光17bの検出信号Bとなるピーク値bおよびピーク位置r1〜r3を示す3つのピーク波形とは、重ならない波形として出力される。そのため、表面反射光17aの検出信号Aに、裏面反射光17bの検出信号Bによる誤差が含まれない。したがって、処理部15は、検出器14から出力される信号波形に基づき、表面反射光17aのピーク値aおよびピーク位置s1〜s3を判断し、基板5の面位置を計測することができる。   First, a case where a relatively thick substrate (for example, 0.4 mm) 5 is measured will be considered with reference to FIG. In this case, three peak waveforms indicating the peak value a and the peak positions s1 to s3 serving as the detection signal A of the front surface reflected light 17a, and the peak value b and the peak positions r1 to r3 serving as the detection signal B of the back surface reflected light 17b are represented. The three peak waveforms shown are output as non-overlapping waveforms. Therefore, the detection signal A of the front surface reflected light 17a does not include an error due to the detection signal B of the back surface reflected light 17b. Therefore, the processing unit 15 can determine the peak value a and the peak positions s1 to s3 of the surface reflected light 17a based on the signal waveform output from the detector 14, and can measure the surface position of the substrate 5.

次に、図7と比較して薄化した基板(一例として、0.14mm)5を計測する場合を考える。この場合、表面反射光17aと裏面反射光17bとの光線間隔Δdが図7の場合と比較して小さくなる。そのため、図8に示すように、検出器14から出力される信号波形において表面反射光17aの検出信号Aのうちピーク位置s2、s3を示すピーク波形が、裏面反射光17bの検出信号Bのピーク位置r1、r2を示すピーク波形と重なる。また、基板5がさらに薄化すると(一例として、0.06mm)、図9に示すように、表面反射光17aの検出信号Aと裏面反射光17bの検出信号Bのそれぞれ3つのピーク波形すべてが重なる。   Next, consider the case of measuring a thinned substrate (as an example, 0.14 mm) 5 in comparison with FIG. In this case, the light ray interval Δd between the front surface reflected light 17a and the back surface reflected light 17b is smaller than that in the case of FIG. Therefore, as shown in FIG. 8, in the signal waveform output from the detector 14, the peak waveform indicating the peak positions s2 and s3 in the detection signal A of the front surface reflected light 17a is the peak of the detection signal B of the back surface reflected light 17b. It overlaps with the peak waveform indicating the positions r1 and r2. Further, when the substrate 5 is further thinned (for example, 0.06 mm), as shown in FIG. 9, all three peak waveforms of the detection signal A of the front surface reflected light 17a and the detection signal B of the back surface reflected light 17b are obtained. Overlap.

図8および図9に示すように、基板5の厚さtが薄くなると、表面反射光17aの検出信号Aのs3側から、裏面反射光17bの検出信号Bのr1側と重なり始める。表面反射光17aおよび裏面反射光17bの検出信号A、Bが重なることにより、表面反射光17aのピーク位置s1〜s3およびピーク値aに裏面反射光17bの検出信号Bがノイズとして影響を与えることがある。そのため、処理部15は、検出器14から出力される信号波形から表面反射光17aの正確な検出信号Aを判断することができず、基板5の面位置を精度良く計測することができない。そこで、この計測装置22は、検出器14により出力された信号波形から基板5の厚さtを算出し、基板5の厚さtに基づき、基板5の面位置の計測誤差Δuを予測する。   As shown in FIGS. 8 and 9, when the thickness t of the substrate 5 is reduced, the substrate 5 starts to overlap with the r1 side of the detection signal B of the back surface reflected light 17b from the s3 side of the detection signal A of the front surface reflected light 17a. When the detection signals A and B of the front surface reflected light 17a and the back surface reflected light 17b overlap, the detection signal B of the back surface reflected light 17b affects the peak positions s1 to s3 and the peak value a of the front surface reflected light 17a as noise. There is. Therefore, the processing unit 15 cannot determine the accurate detection signal A of the surface reflected light 17a from the signal waveform output from the detector 14, and cannot accurately measure the surface position of the substrate 5. Therefore, the measurement device 22 calculates the thickness t of the substrate 5 from the signal waveform output from the detector 14 and predicts the measurement error Δu of the surface position of the substrate 5 based on the thickness t of the substrate 5.

まず、計測対象となる基板5の厚さtの算出方法について説明する。図10は、基板5の厚さtと表裏面反射光位置のシフト量Δsとの関係を示す概略図である。図10に示すように、基板の厚さをtとし、基板の屈折率をNとし、計測光の入射角度をθとし、受光系の倍率をβとし、検出器14における表裏面反射光位置のシフト量をΔsとする。この場合、これらの関係は、以下の式1および式2で表すことができる。
Δs=β×(2×t×tanθ’)×sinθ (式1)
θ’=sin−1(sinθ/N) (式2)
First, a method for calculating the thickness t of the substrate 5 to be measured will be described. FIG. 10 is a schematic diagram showing the relationship between the thickness t of the substrate 5 and the shift amount Δs of the front and rear surface reflected light positions. As shown in FIG. 10, the thickness of the substrate is t, the refractive index of the substrate is N, the incident angle of the measurement light is θ, the magnification of the light receiving system is β, Let the shift amount be Δs. In this case, these relationships can be expressed by the following formulas 1 and 2.
Δs = β × (2 × t × tan θ ′) × sin θ (Formula 1)
θ ′ = sin−1 (sin θ / N) (Formula 2)

図7に示すように、表面反射光17aおよび裏面反射光17bの検出信号A、Bが重ならない場合、表裏面反射光位置のシフト量Δsは、表面反射光17aのピーク位置と対応する裏面反射光17bのピーク位置から算出される。この場合、表面反射光17aの検出信号Aのピーク位置s1〜s3、裏面反射光17bの検出信号のピーク位置r1〜r3を用いて、表裏面反射光位置のシフト量Δsは、以下の式3で表すことができる。
Δs=s1−r1=s2−r2=s3−r3 (式3)
As shown in FIG. 7, when the detection signals A and B of the front surface reflected light 17a and the back surface reflected light 17b do not overlap, the shift amount Δs of the front and back surface reflected light position is the back surface reflection corresponding to the peak position of the front surface reflected light 17a. It is calculated from the peak position of the light 17b. In this case, using the peak positions s1 to s3 of the detection signal A of the front surface reflected light 17a and the peak positions r1 to r3 of the detection signals of the back surface reflected light 17b, the shift amount Δs of the front and rear surface reflected light positions is expressed by the following equation (3). Can be expressed as
Δs = s1-r1 = s2-r2 = s3-r3 (Formula 3)

しかし、基板5の薄化により表面反射光17aの検出信号Aに裏面反射光17bの検出信号Bが重なり始めると、処理部15が、各反射光のピーク位置すべてを判別できず、表裏面反射光位置のシフト量Δsを信号波形から検出することができない。すなわち、基板5の厚さtが薄くなると、図7〜9に示す信号波形のように表面反射光17aの検出信号Aに裏面反射光17bの検出信号Bが重なり始める。厚さtの変化に応じて、表面反射光17aおよび裏面反射光17bの検出信号A、Bのうち重なったピーク波形の数、およびその位置も変化するため、表裏面反射光位置のシフト量Δsを検出器14が出力する信号波形から算出することができない。   However, if the detection signal B of the back surface reflected light 17b begins to overlap the detection signal A of the front surface reflected light 17a due to the thinning of the substrate 5, the processing unit 15 cannot discriminate all the peak positions of each reflected light and reflects the front and back surfaces. The shift amount Δs of the optical position cannot be detected from the signal waveform. That is, when the thickness t of the substrate 5 is reduced, the detection signal B of the back surface reflected light 17b begins to overlap the detection signal A of the front surface reflected light 17a as shown in the signal waveforms of FIGS. As the thickness t changes, the number of overlapping peak waveforms of the detection signals A and B of the front surface reflected light 17a and the back surface reflected light 17b and the position thereof also change. Cannot be calculated from the signal waveform output by the detector 14.

そこで、処理部15は、表面反射光17aの左側のピーク波形のピーク位置s1と裏面反射光17bの右側のピーク波形のピーク位置r3との関係から厚さtを算出する。基板5の厚さtが薄くなるにつれ、表面反射光17aおよび裏面反射光17bの検出信号A、Bのそれぞれ3つのピーク波形のうち重なるピーク波形の数は、増える。各反射光の検出信号A、Bの波形のうち最後に重なるピーク波形は、検出器14が出力する信号波形の両端に存在するピーク波形である。すなわち、本実施形態においては、表面反射光17aの左側のピーク波形のピーク位置s1と裏面反射光17bの右側のピーク波形のピーク位置r3がこれに該当する。また、検出器14から出力される信号波形において、裏面反射光17bは、基板5中を屈折および反射するため、表面反射光17aよりも低いピーク値bを有する。さらに、表面反射光17aの検出信号Aに対する裏面反射光17bの検出信号Bのピーク波形の位置は、検出器14および受光系13の仕様に依存し、同じ計測装置22を用いる場合、表面反射光17aの検出信号Aに対し常に左右どちらか一定の側に存在する。そのため、例えば、図8に示すような信号波形を得た処理部15は、ピークを有する4つの波形のうち、ピークの小さい波形1つが裏面反射光17bのピーク位置r3であり、最も左側に存在する波形が表面反射光17aのピーク位置s1であると判断できる。2つのピーク位置s1、r1と、表裏面反射光位置のシフト量Δsとの関係は、ピーク波形間のピッチ、すなわち遮光部材11の遮光部間のピッチをPとすると、以下の式4で表すことができる。
Δs=s1−r1=s1−(r3−2×P)
=s3−r3=(s1+2×P)−r3 (式4)
Therefore, the processing unit 15 calculates the thickness t from the relationship between the peak position s1 of the left peak waveform of the front surface reflected light 17a and the peak position r3 of the right peak waveform of the back surface reflected light 17b. As the thickness t of the substrate 5 decreases, the number of peak waveforms that overlap among the three peak waveforms of the detection signals A and B of the front surface reflected light 17a and the back surface reflected light 17b increases. Of the waveforms of the detection signals A and B of the reflected light, the peak waveform that overlaps last is a peak waveform that exists at both ends of the signal waveform output by the detector 14. That is, in the present embodiment, the peak position s1 of the left peak waveform of the front surface reflected light 17a and the peak position r3 of the right peak waveform of the back surface reflected light 17b correspond to this. In the signal waveform output from the detector 14, the back surface reflected light 17 b has a lower peak value b than the front surface reflected light 17 a because it is refracted and reflected in the substrate 5. Furthermore, the position of the peak waveform of the detection signal B of the back surface reflected light 17b with respect to the detection signal A of the surface reflected light 17a depends on the specifications of the detector 14 and the light receiving system 13, and when using the same measuring device 22, the surface reflected light The detection signal A of 17a is always present on the left or right side. Therefore, for example, the processing unit 15 that has obtained the signal waveform as shown in FIG. 8 has one waveform having a small peak among the four waveforms having peaks, which is the peak position r3 of the back surface reflected light 17b, and is present on the leftmost side. It can be determined that the waveform to be performed is the peak position s1 of the surface reflected light 17a. The relationship between the two peak positions s1 and r1 and the shift amount Δs of the front and rear surface reflected light positions is expressed by the following equation 4 where P is the pitch between the peak waveforms, that is, the pitch between the light shielding portions of the light shielding member 11. be able to.
Δs = s1−r1 = s1− (r3−2 × P)
= S3-r3 = (s1 + 2 * P) -r3 (Formula 4)

なお、ピーク波形間のピッチPは、表面反射光17aおよび裏面反射光17bの検出信号A、Bにおいて、通常共通である。しかし、遮光部材11の複数の遮光部が異なるピッチで配置され、ピッチPが表面反射光17aおよび裏面反射光17bのそれぞれの検出信号内で異なる場合、または表裏面反射光間でピッチPが異なる場合がある。この場合、それぞれ重複がないピーク波形を使用して各反射光に応じたピーク位置s、rとピッチPとの関係を求め、表面反射光17aおよび裏面反射光17bの検出信号A、B間それぞれでピッチPが同一であるとする式4に反映させればよい。   The pitch P between the peak waveforms is usually common in the detection signals A and B of the front surface reflected light 17a and the back surface reflected light 17b. However, when the plurality of light shielding portions of the light shielding member 11 are arranged at different pitches and the pitch P is different in the respective detection signals of the front surface reflected light 17a and the back surface reflected light 17b, or the pitch P is different between the front and back surface reflected light. There is a case. In this case, the relationship between the peak positions s and r and the pitch P corresponding to each reflected light is obtained using peak waveforms that do not overlap each other, and between the detection signals A and B of the front surface reflected light 17a and the back surface reflected light 17b, respectively. Therefore, the pitch P may be reflected in the expression 4 that is the same.

さらに、同一の基板5で厚さtが異なる位置、または、厚さtが異なる基板5を計測する場合を考える。この場合、厚さtが既知な基板5を計測した際の信号波形において、各反射光のうち、重なりのない各検出信号の検出器14上の位置差(図8におけるs1−s3)を基準とし、該基準からの変化をシフト量Δsとして算出してもよい。   Further, consider the case where the same substrate 5 is measured at a position where the thickness t is different, or the substrate 5 where the thickness t is different. In this case, in the signal waveform when the substrate 5 having a known thickness t is measured, the position difference (s1-s3 in FIG. 8) of the detection signals that do not overlap among the reflected lights on the detector 14 is used as a reference. The change from the reference may be calculated as the shift amount Δs.

以上の方法により、波形の重なりの有無に関わらず、表裏面反射光位置のシフト量Δsを求めることができ、この表裏面反射光位置のシフト量Δsから式1および式2を用いて、基板5の厚さtを算出することができる。   By the above method, the shift amount Δs of the front and back surface reflected light positions can be obtained regardless of whether the waveforms overlap, and the substrate 1 can be obtained from the shift amount Δs of the front and back surface reflected light positions using Equations 1 and 2. A thickness t of 5 can be calculated.

次に、上述のように算出した基板5の厚さtに基づき、計測誤差Δuを算出する方法について説明する。この計測誤差Δuとは、図7〜図8に示すように厚さtが薄くなり表面反射光17aおよび裏面反射光17bの検出信号A、Bが重なることにより発生する誤差をいう。まず、処理部15は、この計測装置22を用いた場合の基板5の厚さtと計測誤差Δuとの関係を示す相関テーブルを作成する。図11は、基板5の厚さtと計測誤差Δuとの関係を示す相関テーブルの一例である。この相関テーブルは、計測装置22を用いて、厚さtが既知である基板5の高さを計測し、基板5の厚さtから予測される基板5の高さ(位置)と計測装置22による計測結果を比較して計測誤差Δuを算出することにより作成することができる。また、この相関テーブルは、上述の方法により算出された基板5の厚さtから予測される基板5の高さ(位置)と計測装置22による計測結果を比較して計測誤差Δuを算出することにより作成してもよい。ただし、この相関テーブルにおいて、例えば、図7に示すように表面反射光17aおよび裏面反射光17bの検出信号A、Bに重なりが発生しないときの計測誤差を基準値u0とする。また、相関テーブルを作成する際の検出光16は、実際に計測対象となる基板5を計測するための検出光16またはそれとほぼ等価な波形を有する検出光を用いる。   Next, a method for calculating the measurement error Δu based on the thickness t of the substrate 5 calculated as described above will be described. The measurement error Δu is an error generated when the thickness t becomes thin and the detection signals A and B of the front surface reflected light 17a and the back surface reflected light 17b overlap as shown in FIGS. First, the processing unit 15 creates a correlation table indicating the relationship between the thickness t of the substrate 5 and the measurement error Δu when the measurement device 22 is used. FIG. 11 is an example of a correlation table showing the relationship between the thickness t of the substrate 5 and the measurement error Δu. This correlation table uses the measuring device 22 to measure the height of the substrate 5 whose thickness t is known, and the height (position) of the substrate 5 predicted from the thickness t of the substrate 5 and the measuring device 22. The measurement error Δu can be calculated by comparing the measurement results obtained by the above. In addition, this correlation table calculates the measurement error Δu by comparing the height (position) of the substrate 5 predicted from the thickness t of the substrate 5 calculated by the above-described method and the measurement result by the measurement device 22. May be created. However, in this correlation table, for example, as shown in FIG. 7, the measurement error when the detection signals A and B of the front surface reflected light 17a and the back surface reflected light 17b do not overlap is set as the reference value u0. Further, as the detection light 16 when creating the correlation table, the detection light 16 for actually measuring the substrate 5 to be measured or the detection light having a waveform substantially equivalent thereto is used.

処理部15は、計測対象の基板5を計測した際に検出器14から出力された信号波形から上述の方法で基板5の厚さtを算出し、予め作成した相関テーブルにおいてその厚さtに相当する計測誤差Δuを決定する。そして、処理部15は、検出器14からの信号波形に基づき算出した生値(u0+Δu)から、厚さtに応じた計測誤差Δuを差し引く。これにより、表面反射光17aの検出信号Aを特定することができ、裏面反射光17bに起因する誤差を含まない基板5の面位置の真値を求めることができる。   The processing unit 15 calculates the thickness t of the substrate 5 from the signal waveform output from the detector 14 when measuring the measurement target substrate 5 by the above-described method, and sets the thickness t in the correlation table created in advance. The corresponding measurement error Δu is determined. Then, the processing unit 15 subtracts the measurement error Δu corresponding to the thickness t from the raw value (u0 + Δu) calculated based on the signal waveform from the detector 14. Thereby, the detection signal A of the front surface reflected light 17a can be specified, and the true value of the surface position of the substrate 5 which does not include an error due to the back surface reflected light 17b can be obtained.

このように、本実施形態によれば、基板5の厚さtおよび各反射光の重なりにより発生する計測誤差Δuを算出することにより、計測対象である基板5の厚さtのばらつきを考慮し、精度良く基板5の面位置を計測することができる。   As described above, according to the present embodiment, the thickness t of the substrate 5 and the measurement error Δu caused by the overlap of each reflected light are calculated, thereby taking into account the variation in the thickness t of the substrate 5 to be measured. The surface position of the substrate 5 can be measured with high accuracy.

なお、本実施形態の計測装置22は、基板5の厚さtと計測誤差Δuとの関係を示す相関テーブルを使用するものとした。しかし、基板5の素材や厚み等により表面反射光17aと裏面反射光17bとの強度比が異なる場合がある。この場合、計測誤差Δuとなる表面反射光17aと裏面反射光17bとの重なり状態は、表面反射光17aに対する裏面反射光17bの光の強度の関係に依存する。そこで、反射光強度比毎に相関テーブルを作成し、該相関テーブルを用いて計測誤差Δuを求める構成としてもよい。図12は、反射光強度比毎の、基板5の厚みtと計測誤差Δuとの相関テーブルを示すグラフである。この相関テーブルにおいて、反射光強度比とは、表面反射光強度に対する裏面反射光強度を意味し、一例として、0.33〜1.0の値で作成されている。処理部15は、検出器14から取得した信号波形から基板5の厚さtに加え、反射光強度比を算出し、算出された反射光強度比および基板5の厚さtに対応する計測誤差Δuを求める。   Note that the measurement apparatus 22 of the present embodiment uses a correlation table indicating the relationship between the thickness t of the substrate 5 and the measurement error Δu. However, the intensity ratio between the front surface reflected light 17a and the back surface reflected light 17b may differ depending on the material, thickness, and the like of the substrate 5. In this case, the overlapping state of the front surface reflected light 17a and the back surface reflected light 17b that causes the measurement error Δu depends on the relationship of the intensity of the back surface reflected light 17b with respect to the front surface reflected light 17a. Therefore, a configuration may be adopted in which a correlation table is created for each reflected light intensity ratio and the measurement error Δu is obtained using the correlation table. FIG. 12 is a graph showing a correlation table between the thickness t of the substrate 5 and the measurement error Δu for each reflected light intensity ratio. In this correlation table, the reflected light intensity ratio means the back surface reflected light intensity with respect to the front surface reflected light intensity, and is created with a value of 0.33 to 1.0 as an example. The processing unit 15 calculates a reflected light intensity ratio from the signal waveform acquired from the detector 14 in addition to the thickness t of the substrate 5, and a measurement error corresponding to the calculated reflected light intensity ratio and the thickness t of the substrate 5. Find Δu.

また、開口部として3本のスリットを有する遮光部材11を備え、3本の検出光16を基板5に照射する計測装置22を例に挙げて説明したが、この構成に限定せず、少なくとも2本以上の検出光16を基板5に照射する構成であればよい。   In addition, the measurement apparatus 22 that includes the light shielding member 11 having three slits as the opening and irradiates the substrate 5 with the three detection lights 16 has been described as an example. However, the present invention is not limited to this configuration. Any structure that irradiates the substrate 5 with more than 16 detection lights 16 may be used.

また、本実施形態では、リソグラフィ装置として露光装置の例を説明したが、リソグラフィ装置は、それに限らず、他のリソグラフィ装置であってもよい。例えば、電子線のような荷電粒子線で基板(上の感光剤)に描画を行う描画装置であってもよく、または基板上のインプリント材を型(モールド)で成形(成型)して基板上にパターンを形成するインプリント装置等であってもよい。   In this embodiment, an example of an exposure apparatus has been described as the lithography apparatus. However, the lithography apparatus is not limited to this and may be another lithography apparatus. For example, it may be a drawing apparatus that performs drawing on a substrate (upper photosensitive agent) with a charged particle beam such as an electron beam, or an imprint material on the substrate is molded (molded) with a mold (mold). An imprint apparatus or the like that forms a pattern thereon may also be used.

(物品の製造方法)
一実施形態に係る物品の製造方法は、例えば、半導体デバイスなどのマイクロデバイスや微細構造を有する素子などの物品を製造するのに好適である。当該製造方法は、物体(例えば、感光剤を表面に有する基板)上に上記のリソグラフィ装置を用いてパターン(例えば潜像パターン)を形成する工程と、該工程でパターンを形成された物体を処理する工程(例えば、現像工程)とを含み得る。さらに、該製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージングなど)を含み得る。本実施形態の物品の製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
(Product manufacturing method)
The method for manufacturing an article according to an embodiment is suitable for manufacturing an article such as a micro device such as a semiconductor device or an element having a fine structure. The manufacturing method includes a step of forming a pattern (for example, a latent image pattern) on an object (for example, a substrate having a photosensitive agent on the surface) by using the above-described lithography apparatus, and a processing of the object on which the pattern is formed in the step. (For example, a development step). Further, the manufacturing method may include other well-known steps (oxidation, film formation, vapor deposition, doping, planarization, etching, resist stripping, dicing, bonding, packaging, and the like). The method for manufacturing an article according to the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.

以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形または変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation or change is possible within the range of the summary.

11 遮光部材
14 検出器
15 処理部
17a 表面反射光
17b 裏面反射光
DESCRIPTION OF SYMBOLS 11 Light shielding member 14 Detector 15 Processing part 17a Front surface reflected light 17b Back surface reflected light

Claims (6)

物体の表面の位置を計測する計測装置であって、
複数の開口部を有し、光源からの光を前記複数の開口部を用いて複数の光束に分配する遮光部材と、
前記複数の光束が前記物体の表面で反射した表面反射光と、前記物体の裏面で反射した裏面反射光とを検出して、前記表面反射光の複数のピーク波形と前記裏面反射光の複数のピーク波形とを含む信号波形を出力する検出器と、
前記信号波形において前記裏面反射光の複数のピーク波形と重なりのない前記表面反射光のピーク波形と、前記表面反射光の複数のピーク波形と重なりのない前記裏面反射光のピーク波形とに基づいて前記物体の厚さを算出し、前記厚さと前記重なりによる計測誤差との関係を取得し、前記厚さと前記関係とに基づいて前記表面反射光のピーク波形を特定し、前記物体の表面の位置を算出する処理部と
を備えることを特徴とする計測装置。
A measuring device for measuring the position of the surface of an object,
A light shielding member that has a plurality of openings and distributes light from a light source into a plurality of light fluxes using the plurality of openings;
The plurality of light fluxes are detected from the surface reflected light reflected from the surface of the object and the back surface reflected light reflected from the back surface of the object, and a plurality of peak waveforms of the surface reflected light and a plurality of the back surface reflected light are detected. A detector that outputs a signal waveform including a peak waveform;
Based on the peak waveform of the surface reflected light that does not overlap with the plurality of peak waveforms of the back surface reflected light in the signal waveform and the peak waveform of the back surface reflected light that does not overlap with the plurality of peak waveforms of the surface reflected light. The thickness of the object is calculated, the relationship between the thickness and the measurement error due to the overlap is obtained, the peak waveform of the surface reflected light is specified based on the thickness and the relationship, and the position of the surface of the object A measurement device comprising: a processing unit that calculates
前記重なりのない前記表面反射光および前記裏面反射光のピーク波形は、前記信号波形において、両端に存在することを特徴とする、請求項1に記載の計測装置。   The measurement apparatus according to claim 1, wherein the peak waveforms of the front surface reflected light and the back surface reflected light that do not overlap exist at both ends in the signal waveform. 前記処理部は、前記重なりのない前記表面反射光および前記裏面反射光のピーク波形に基づいて前記表面反射光と前記裏面反射光との反射光強度比を算出し、前記反射光強度比ごとに前記関係を取得することを特徴とする請求項1または2に記載の計測装置。   The processing unit calculates a reflected light intensity ratio between the front surface reflected light and the back surface reflected light based on the peak waveforms of the front surface reflected light and the back surface reflected light that do not overlap, and for each reflected light intensity ratio The measurement apparatus according to claim 1, wherein the relationship is acquired. 物体の表面の位置を計測する計測方法であって、
複数の光束を前記物体に照射する工程と、
前記複数の光束が前記物体の表面で反射した表面反射光と、前記物体の裏面で反射した裏面反射光とを検出し、前記表面反射光の複数のピーク波形と前記裏面反射光の複数のピーク波形とを含む信号波形を出力する工程と、
前記信号波形において前記裏面反射光の複数のピーク波形と重なりのない前記表面反射光のピーク波形と、前記表面反射光の複数のピーク波形と重なりのない前記裏面反射光のピーク波形とに基づいて前記物体の厚さを算出する工程と、
前記厚さと前記重なりによる計測誤差との関係を取得し、前記厚さと前記関係とに基づいて前記表面反射光のピーク波形を特定し、前記物体の表面の位置を算出する工程と
を含むことを特徴とする計測方法。
A measurement method for measuring the position of the surface of an object,
Irradiating the object with a plurality of luminous fluxes;
Detecting the surface reflected light reflected by the surface of the object and the back reflected light reflected by the back surface of the object, the plurality of peak waveforms of the surface reflected light and the plurality of peaks of the back reflected light. Outputting a signal waveform including a waveform;
Based on the peak waveform of the surface reflected light that does not overlap with the plurality of peak waveforms of the back surface reflected light in the signal waveform and the peak waveform of the back surface reflected light that does not overlap with the plurality of peak waveforms of the surface reflected light. Calculating the thickness of the object;
Obtaining a relationship between the thickness and a measurement error due to the overlap, specifying a peak waveform of the surface reflected light based on the thickness and the relationship, and calculating a position of the surface of the object. Characteristic measuring method.
パターンを基板に形成するリソグラフィ装置であって、
前記物体としての前記基板の表面の位置を計測する請求項1ないし請求項3のいずれか1項に記載の計測装置を有する、
ことを特徴とするリソグラフィ装置。
A lithographic apparatus for forming a pattern on a substrate,
The measurement apparatus according to any one of claims 1 to 3, which measures a position of a surface of the substrate as the object.
A lithographic apparatus, comprising:
請求項5に記載のリソグラフィ装置を用いてパターンを基板に形成する工程と、
前記工程で前記パターンを形成された基板を処理する工程と、
を含むことを特徴とする物品の製造方法。
Forming a pattern on a substrate using the lithographic apparatus according to claim 5;
Processing the substrate on which the pattern is formed in the step;
A method for producing an article comprising:
JP2014212493A 2014-10-17 2014-10-17 Measuring apparatus, measuring method, lithography apparatus, and article manufacturing method Active JP6415235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014212493A JP6415235B2 (en) 2014-10-17 2014-10-17 Measuring apparatus, measuring method, lithography apparatus, and article manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014212493A JP6415235B2 (en) 2014-10-17 2014-10-17 Measuring apparatus, measuring method, lithography apparatus, and article manufacturing method

Publications (3)

Publication Number Publication Date
JP2016080525A true JP2016080525A (en) 2016-05-16
JP2016080525A5 JP2016080525A5 (en) 2017-11-24
JP6415235B2 JP6415235B2 (en) 2018-10-31

Family

ID=55958387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014212493A Active JP6415235B2 (en) 2014-10-17 2014-10-17 Measuring apparatus, measuring method, lithography apparatus, and article manufacturing method

Country Status (1)

Country Link
JP (1) JP6415235B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018179966A (en) * 2017-04-04 2018-11-15 パナソニックIpマネジメント株式会社 Liquid droplet measurement method and liquid droplet measuring apparatus, method for manufacturing device, and device manufacturing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281458A (en) * 1992-03-31 1993-10-29 Canon Inc Automatic focusing device
JP2002246302A (en) * 2001-02-21 2002-08-30 Nikon Corp Position detector and exposure system
JP2010156603A (en) * 2008-12-26 2010-07-15 Sunx Ltd Device and method for measuring thickness
JP2014203984A (en) * 2013-04-05 2014-10-27 キヤノン株式会社 Measuring device, measuring method, lithography device, and method of manufacturing article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281458A (en) * 1992-03-31 1993-10-29 Canon Inc Automatic focusing device
JP2002246302A (en) * 2001-02-21 2002-08-30 Nikon Corp Position detector and exposure system
JP2010156603A (en) * 2008-12-26 2010-07-15 Sunx Ltd Device and method for measuring thickness
JP2014203984A (en) * 2013-04-05 2014-10-27 キヤノン株式会社 Measuring device, measuring method, lithography device, and method of manufacturing article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018179966A (en) * 2017-04-04 2018-11-15 パナソニックIpマネジメント株式会社 Liquid droplet measurement method and liquid droplet measuring apparatus, method for manufacturing device, and device manufacturing apparatus

Also Published As

Publication number Publication date
JP6415235B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
KR101319136B1 (en) Detection apparatus, exposure apparatus, and device fabrication method
JP6025346B2 (en) Detection apparatus, exposure apparatus, and device manufacturing method
TWI534558B (en) Detection device, exposure apparatus, and device manufacturing method using same
KR101642552B1 (en) Measuring method, and exposure method and apparatus
JPH0821531B2 (en) Projection optical device
US20110058151A1 (en) Exposure apparatus and device manufacturing method
TWI487001B (en) A surface position detecting device, a surface position detecting method, an exposure apparatus, and an element manufacturing method
JP6267530B2 (en) Exposure apparatus and article manufacturing method
TW201312299A (en) Level sensor arrangement for lithographic apparatus, lithographic apparatus and device manufacturing method
JP6415235B2 (en) Measuring apparatus, measuring method, lithography apparatus, and article manufacturing method
US9557523B2 (en) Focusing method, focusing apparatus, exposure method, and device manufacturing method
JP5773735B2 (en) Exposure apparatus and device manufacturing method
JP3854734B2 (en) Surface position detection apparatus and device manufacturing method using the same
JP2014203984A (en) Measuring device, measuring method, lithography device, and method of manufacturing article
JP2010135475A (en) Exposure apparatus and device manufacturing method
US11333986B2 (en) Detection apparatus, exposure apparatus, and article manufacturing method
US8237917B2 (en) Exposure apparatus and device manufacturing method
JP2017215219A (en) Measurement device, pattern formation device, and article manufacturing method
JPH08298238A (en) Projection aligner
KR20230061248A (en) Exposure apparatus, exposure method, and method of manufacturing article
JP2015220343A (en) Detector, lithographic apparatus and article manufacturing method
KR20220138803A (en) Exposure apparatus, exposure method, and article manufacturing method
JP2017215218A (en) Measurement device, pattern formation device, and article manufacturing method
JPH04290217A (en) Lighography
JPH11317347A (en) Position detecting device and aligner using it the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181002

R151 Written notification of patent or utility model registration

Ref document number: 6415235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151