JPH0372203A - Checking method of outer appearance of soldering part - Google Patents

Checking method of outer appearance of soldering part

Info

Publication number
JPH0372203A
JPH0372203A JP20832489A JP20832489A JPH0372203A JP H0372203 A JPH0372203 A JP H0372203A JP 20832489 A JP20832489 A JP 20832489A JP 20832489 A JP20832489 A JP 20832489A JP H0372203 A JPH0372203 A JP H0372203A
Authority
JP
Japan
Prior art keywords
area
soldering
wiring board
printed wiring
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20832489A
Other languages
Japanese (ja)
Other versions
JPH0739997B2 (en
Inventor
Osao Hamada
長生 濱田
Shinji Okamoto
岡本 紳二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP20832489A priority Critical patent/JPH0739997B2/en
Publication of JPH0372203A publication Critical patent/JPH0372203A/en
Publication of JPH0739997B2 publication Critical patent/JPH0739997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To correctly detect good or bad of the soldering state by measuring the periphery of a lead soldered to a printed circuit board in the three- dimensional manner. CONSTITUTION:A printed circuit board 1 with parts mounted thereon is set at a predetermined position of a measuring stage. A sensor part 11 measures a preset measuring area A1 in the periphery of a lead 2 inserted and soldered to the substrate 1 in the three-dimensional manner, and the measuring value is stored in a memory part 13. A checking area setting part 14 of a checking/ processing part 10 obtains, based on the three-dimensional measuring value stored in the memory part 13, the maximum projecting size from the surface of the substrate 1 within the measuring area A1. An area where the projecting size from the surface of the substrate 1 is smaller than the size obtained by subtracting a predetermined preset size from the maximum projecting size is rendered a checking area A2. A judging part 15 judges the soldering state on the basis of the soldering amount and soldering shape within the checking area A2.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、印刷配線基板に挿入されたリードの半田付は
部の外観検査により半田付は状態の良否を判定する半田
付は部の外観検査方法に関するものである。
The present invention relates to a method for visually inspecting a soldering part of a lead inserted into a printed wiring board to determine whether the condition of the soldering part is good or bad by visually inspecting the soldering part.

【従来の技術】[Conventional technology]

従来より、リードを有する部品の半田付は状部の検査方
法として、半田付は部を照射する光源を設け、半田付は
部での反射光をITVカメラで検出することにより、半
田付は部の外観を検査方法が知られている(特開昭62
−299709号公報参照)。すなわち、光源からの光
線の入射角度に対する半田付は部の傾斜角度の変化に基
づく反射光量の変化を測定して半田付は状態の良否を判
定するのである。
Conventionally, soldering of parts with leads has been inspected by installing a light source that illuminates the parts, and by detecting the reflected light from the soldering parts with an ITV camera. There is a known method for inspecting the appearance of
(Refer to Publication No.-299709). That is, the quality of the soldering is determined by measuring the change in the amount of reflected light based on the change in the angle of inclination of the soldering part with respect to the incident angle of the light beam from the light source.

【発明が解決しようとする課B】[Question B that the invention attempts to solve]

上記検査方法によると、半田付は部からの反射光量の変
化に基づいて半田付は状態の良否判定を行うから、半田
付は部の3次元形状が完全に把握できるものではなく、
判定精度が低いという問題がある。この問題を解決する
ために、光源の形状や配置位置などが工夫されているが
、ITVカメラを1台用いて反射光量を測定するのみで
は、実質的には2次元の処理になるから、判定精度を高
めるのは困難である。 本発明は上記問題点を解決することを目的とするもので
あり、印刷配線基板に半田付けされたリードの周囲を3
次元計測することにより、半田付は状態の正確な良否判
定が行えるようにした半田付は部の外観検査方法を提供
しようとするものである。
According to the above inspection method, the quality of soldering is judged based on the change in the amount of light reflected from the soldering part, so it is not possible to completely grasp the three-dimensional shape of the soldering part.
There is a problem that the judgment accuracy is low. In order to solve this problem, the shape and position of the light source have been devised, but simply measuring the amount of reflected light using a single ITV camera is essentially a two-dimensional process, so it is difficult to make judgments. It is difficult to improve accuracy. The purpose of the present invention is to solve the above-mentioned problems.
The present invention aims to provide a method for visually inspecting soldering parts that allows accurate determination of the quality of soldering by dimensional measurement.

【課題を解決するための手段】[Means to solve the problem]

上記目的を遠戚するために、請求項1の発明では、印刷
配線基板に挿入されたリードの半田付は部を含む測定領
域内の3次元計測値に基づいて、測定領域内の印刷配線
基板の表面からの最大突出寸法を求め、あらかじめ設定
された一定寸法を上記最大突出寸法から減じた寸法より
も印刷配線基板の表面からの突出寸法が小さい領域を検
査領域とし、検査領域内の半田量や半田形状に基づいて
半田付は状態の良否を判定するのである。 また、請求項2の発明では、印刷配線基板に挿入された
リードの半田付は部を含む測定領域内の3次元計測値に
基づいて、印刷配線基板の表面からの測定領域内での突
出量の変化率を求め、あらかじめ設定された基準値と上
記変化率との大小関係に基づいて検査領域を設定し、検
査領域内の半田量や半田形状に基づいて半田付は状態の
良否を判定するのである。
In order to achieve the above object distantly, in the invention of claim 1, the soldering of the leads inserted into the printed wiring board is determined based on the three-dimensional measurement value within the measurement area including the printed wiring board within the measurement area. Determine the maximum protrusion dimension from the surface of the printed wiring board, and define the area where the protrusion dimension from the surface of the printed wiring board is smaller than the dimension obtained by subtracting a certain predetermined dimension from the above maximum protrusion dimension as the inspection area, and calculate the amount of solder in the inspection area. The quality of soldering is determined based on the shape of the solder and the shape of the solder. In addition, in the invention of claim 2, the amount of soldering of the leads inserted into the printed wiring board is determined based on the three-dimensional measurement value within the measurement area including the portion, and the amount of protrusion within the measurement area from the surface of the printed wiring board. The rate of change of is determined, an inspection area is set based on the magnitude relationship between a preset reference value and the rate of change, and the quality of the soldering is determined based on the amount of solder and solder shape within the inspection area. It is.

【作用】[Effect]

上記両方法によれば、3次元計測値を用いているから、
半田付は部の形状判定が正確に行えるのである。 しかも、請求項1によれば、測定領域内において印刷配
線基板の表面からの最大突出寸法を求め、この最大突出
寸法に基づいてリードと半田とを識別することにより検
査領域を設定するから、リードの状態に影響されない検
査領域内で半田付は状態の良否が判定でき、判定精度が
高くなるという利点を有する。 また、請求項2によれば、測定領域内での印刷配線基板
の表面からの突出量の変化率に基づいて検査領域を設定
するから、半田付は部が複雑な形状であってもリードと
識別でき、半田付は状態の良否の判定精度が一層高くな
る。
According to both of the above methods, since three-dimensional measurement values are used,
Soldering allows accurate determination of the shape of parts. Moreover, according to claim 1, the maximum protrusion dimension from the surface of the printed wiring board is determined within the measurement area, and the inspection area is set by identifying leads and solder based on this maximum protrusion dimension. Soldering has the advantage of being able to determine whether the condition is good or bad within an inspection area that is not affected by the condition of the soldering device, increasing the accuracy of the determination. Further, according to claim 2, since the inspection area is set based on the rate of change in the amount of protrusion from the surface of the printed wiring board within the measurement area, soldering is possible even if the part has a complicated shape. It can be identified, and the accuracy of determining whether the soldering condition is good or bad becomes even higher.

【実施例1】 第1図に示すように、基本的には、3次元のデータが得
られるセンサ部11と、センサ部11で得られたデータ
に基づいて3次元の座標を演算する座標演算部12と、
座標演算部12で求めた3次元の座標を他のデータとと
もに記憶する記憶部13と、求められた3次元の座標に
基づいて印刷配線基板1に挿入され半田付けされたり一
部2の半田付は部3の検査を行なう検査処理部10とを
備えている。 検査処理部10は、上記3次元座標に基づいて印刷配線
基板1の上に配置されリード2が半田付けされた部品の
リード2と半田付は部3を含む検査領域A2(後述する
)とを識別する検査領域設定部14と、検査領域A2内
の測定データに基づいて半田付は状態の良否を判定する
良否判定部15とで構成される。センサ部11を除く各
処理はコンピュータ等を用いることにより実現される。 センサ部11は、いわゆる3次元スキャナであり、たと
えば、光ビームを検査対象の表面で走査するとともに、
PSDのような位置検知素子を用いて三角測距を行なう
ことにより、3次元のデータを得るようにしたものが用
いられる。一方、印刷配線基板1の表面に沿う面内での
座標は、第2図(b)に示すように、あらかじめ設定さ
れた測定領域A1の中の座標として与えられる。こうし
て、座標演算部12では、印刷配線基板■の表面に沿う
面をXY平面、印刷配線基板1の表面からの高さ方向を
Z方向とする3次元の座標(x、y、z)を求めるので
ある。 次に、検査方法について説明する。まず、部品が実装さ
れた印刷配線基板1を計測ステージの所定位置にセット
し、印刷配線基板1に挿入され半田付けされたリード2
の周囲であ゛らかしめ設定された測定領域A、の中につ
いて3次元計測を行う。 3次元計測値は記憶部13に格納され、検査処理部10
の検査領域設定部14では、記憶部13に格納された3
次元計測値に基づいて、第2図(a)に示す手順に従っ
て検査領域を設定する。すなわち、まず、測定領域A、
の中で印刷配線基板1からの突出量を測定し、最大突出
量を求める。こうして得られた最大突出量を、印刷配線
基板1から突出したリード2の先端とみなす。次に、正
常に半田付けされているときに半田付は部3から突出す
るリード2の寸法に相当するようにあらかじめ設定した
一定値を、上記最大突出量から減算する。 この演算により得られた値を検査領域A2の高さHtと
し、測定領域A1内での3次元計測値のZ座標がこの高
さトitより小さくなる領域を検査領域A、とする。す
なわち、第3図および第4図に示すように、測定頭域A
1のうちZ座標が上記高さH1t!−越える領域を除く
部分が検査領域A2になるのである。ここに、第4図中
の斜線部分は検査領域A2として認識される部位である
。 次に、良否判定部部5では、検査領域A2内において半
田付は状態の良否判定を行う。第5図に示すように、ま
ず、矩形状に設定されている測定頭域A、の4隅の高さ
の平均値を求め基準値H5とする。すなわち、この基準
値Hsは印刷配線基板1の表面の高さに相当する。次に
、検査領域A2内でZ座標の測定値Hが、H> Hsが
っH<Htとなるとき、(H−Hs)を求め、検査領域
A2の中の全領域に互ってこの値を加算する。こうして
得られた加算値は半田の総量に相当するがら、この総量
が、あらかじめ適正半田量として設定された所定の範囲
内にはいるがどうがを判定することにより、適正半田量
の範囲内であれば半田量について良品と判定し、そうで
なければ半田量について不良品と判定するのである。こ
こにおいて、上記測定値Hは、検査領域A2の中で多数
設定された検査ポイントについて求められる。検査ポイ
ントは、記憶部13に記憶されているXY平面上での最
小単位を画像処理との類似により画素と呼称することに
すれば、1画素毎ないし複数画素毎に設定されるのであ
る。 次に、半田量のみではなく半田形状についても判定を行
う。すなわち、第6図に示すように、まず、検査領域A
2内で半田付は部3の周辺の適宜検査ポイントを探索始
点(X+、3’+、Z+)とする。 次に、探索始点と検査領域A2の最大高さとなる部位と
を通る直線上で、探索始点に隣接する検査ポイント(部
2,3’2.部2)を求める。この検査ポイントのZ座
標Z2が、検査領域A2の高さHtより小さければ、探
索始点のZ座標Zlとの差を取り、差分dh=zz  
zlを求める。差分dhは、あらかじめ設定された差分
規格値と比較される。すなわち、探索始点を通る上記直
線上において、半田付は部3の形状が良品であれば、第
7図(a)や第7図(b)に示すように、半田付は部3
を上るときには差分dhは正になり、半田付は部を下る
ときには差分dhは負になり、M後にはOになる。した
がって、差分dhを演算した後、探索始点に隣接してい
た検査ポイントを次の探索始点として、差分dhを順次
求めることにより、半田付は部の形状を検査することが
できる。すなわち、第6図に示すように、半田付は部を
上るときと下るときとを識別するフラグf1gを設けて
初期値をf1g=oとしておき、差分clhが正の差分
規格値(差分dhの正負を判定するときにはOとしても
よいが、通常は、正負にそれぞれ差分規格値を与える)
以上である間はflg−0に保つ。その後、差分dhが
負の差分規格値より小さくなるから、その時点でf1g
=1とし、その後、差分dhが正の差分規格値以上にな
らなければ、半田付は状態が正常であるとみなすのであ
る。 一方、半田が濡れ不足であったり、穴あきがあったりし
て半田付は状態が不良であると、差分dhが一旦負の値
になり(負の差分規格値よりも小さくなり)、その後、
正の値になる〈正の差分規格値以上になる)という変化
をすることが多い。この場合には、第6図に示すように
、f1g=1で半田付は部を下る状態を示しているとき
に、差分dhが正の値になる(正の差分規格値以上にな
る)がら、半田付は状態が不良であると判定できる。
[Embodiment 1] As shown in FIG. 1, basically a sensor unit 11 that obtains three-dimensional data, and a coordinate operation that calculates three-dimensional coordinates based on the data obtained by the sensor unit 11. Part 12 and
A storage unit 13 that stores the three-dimensional coordinates obtained by the coordinate calculation unit 12 together with other data; and a storage unit 13 that stores the three-dimensional coordinates obtained by the coordinate calculation unit 12 together with other data; is equipped with an inspection processing section 10 for inspecting the section 3. The inspection processing unit 10 inspects an inspection area A2 (described later) including the leads 2 and soldering area 3 of the component placed on the printed wiring board 1 and having the leads 2 soldered thereon based on the three-dimensional coordinates. It is comprised of an inspection area setting unit 14 that performs identification, and a quality determination unit 15 that determines whether the soldering condition is good or bad based on the measurement data within the inspection area A2. Each process except for the sensor section 11 is realized by using a computer or the like. The sensor unit 11 is a so-called three-dimensional scanner, and for example, scans the surface of the inspection target with a light beam, and
A device that obtains three-dimensional data by performing triangulation using a position detection element such as a PSD is used. On the other hand, the in-plane coordinates along the surface of the printed wiring board 1 are given as coordinates within a preset measurement area A1, as shown in FIG. 2(b). In this way, the coordinate calculation unit 12 calculates three-dimensional coordinates (x, y, z) where the plane along the surface of the printed wiring board 1 is the XY plane and the height direction from the surface of the printed wiring board 1 is the Z direction. It is. Next, the inspection method will be explained. First, the printed wiring board 1 with components mounted thereon is set at a predetermined position on the measurement stage, and the leads 2 are inserted into the printed wiring board 1 and soldered.
A three-dimensional measurement is performed within the measurement area A, which has been preliminarily set around the area. The three-dimensional measurement values are stored in the storage unit 13 and are sent to the inspection processing unit 10.
The inspection area setting unit 14 selects the 3 data stored in the storage unit 13.
Based on the dimensional measurement values, an inspection area is set according to the procedure shown in FIG. 2(a). That is, first, measurement area A,
The amount of protrusion from the printed wiring board 1 is measured, and the maximum amount of protrusion is determined. The maximum amount of protrusion thus obtained is regarded as the tip of the lead 2 protruding from the printed wiring board 1. Next, a predetermined value, which is set in advance to correspond to the dimension of the lead 2 that protrudes from the soldering portion 3 when soldering is performed normally, is subtracted from the maximum protrusion amount. The value obtained by this calculation is defined as the height Ht of the inspection area A2, and the area where the Z coordinate of the three-dimensional measurement value within the measurement area A1 is smaller than this height it is defined as the inspection area A. That is, as shown in FIGS. 3 and 4, the measurement head area A
The Z coordinate of 1 is the above height H1t! -The part excluding the area exceeding the area becomes the inspection area A2. Here, the shaded area in FIG. 4 is the area recognized as the inspection area A2. Next, the quality determining section 5 determines the quality of the soldering within the inspection area A2. As shown in FIG. 5, first, the average value of the heights of the four corners of the measurement head area A, which is set in a rectangular shape, is determined and set as a reference value H5. That is, this reference value Hs corresponds to the height of the surface of the printed wiring board 1. Next, when the measured value H of the Z coordinate in the inspection area A2 is H>Hs H<Ht, calculate (H-Hs) and apply this value to the entire area in the inspection area A2. Add. The added value obtained in this way corresponds to the total amount of solder, but by determining whether or not this total amount is within a predetermined range set in advance as the appropriate amount of solder, it is possible to determine whether the total amount is within the range of the appropriate amount of solder. If so, the solder amount is determined to be good, and if not, the solder amount is determined to be defective. Here, the measurement value H is obtained for a large number of inspection points set in the inspection area A2. If the minimum unit on the XY plane stored in the storage unit 13 is called a pixel, similar to image processing, the inspection point is set for each pixel or for each plurality of pixels. Next, not only the amount of solder but also the shape of the solder is determined. That is, as shown in FIG. 6, first, the inspection area A
For soldering in 2, appropriate inspection points around section 3 are set as search starting points (X+, 3'+, Z+). Next, inspection points (parts 2, 3' 2, 2) adjacent to the search start point are found on a straight line passing through the search start point and the part of the inspection area A2 having the maximum height. If the Z coordinate Z2 of this inspection point is smaller than the height Ht of the inspection area A2, take the difference from the Z coordinate Zl of the search starting point and calculate the difference dh=zz
Find zl. The difference dh is compared with a preset difference standard value. That is, on the straight line passing through the search starting point, if the shape of the soldering part 3 is good, the soldering will be done in the part 3 as shown in FIG. 7(a) and FIG. 7(b).
When going up the soldering section, the difference dh becomes positive, when going down the soldering section, the difference dh becomes negative, and after M, it becomes O. Therefore, after calculating the difference dh, the shape of the soldering part can be inspected by sequentially finding the differences dh using the inspection point adjacent to the search start point as the next search start point. That is, as shown in FIG. 6, a flag f1g is provided to identify when the soldering goes up and down the part, and the initial value is set as f1g=o, and the difference clh is set to a positive difference specification value (the difference dh When determining positive or negative, it may be set to O, but normally, a standard difference value is given to positive and negative respectively.)
While above, keep flg-0. After that, the difference dh becomes smaller than the negative difference standard value, so at that point f1g
= 1, and thereafter, if the difference dh does not exceed the positive difference standard value, the soldering is considered to be in a normal state. On the other hand, if the solder is in poor condition due to insufficient wetting or holes, the difference dh will temporarily become a negative value (below the negative difference standard value), and then,
It often changes to a positive value (becomes greater than the positive difference standard value). In this case, as shown in Figure 6, when f1g = 1 and the soldering is in a downward state, the difference dh becomes a positive value (becomes more than the positive difference specification value). , it can be determined that the soldering is in poor condition.

【実施例2】 本実施例では、実施例1とは検査処理部10での処理が
異なっている。すなわち、まず実施例1と同様に測定領
域A、内の検査ポインI・について3次元の座標を求め
る。 次に、検査領域設定部14では、第8図(a)に示すよ
うにして検査領域A2を設定する。すなわち、第8図(
b)に示すように、測定領域A、においてX方向とY方
向との中央線1.、IYを設定する。 この中央線ex、IYはり一部2の先端を通るように設
定される。次に、中央線1..2Y上において、隣接す
る検査ポイントの高さの差分を求める。半田1寸は部3
においては、裾付近では差分が小さく、頂上付近では差
分が大きくなるから、差分の差分dh′を求め、この差
分dh′があらかじめ設定された基準値Mよりも大きく
なった位置を半田付は部とリード2との境界とする。し
たがって、この位置でのZ座標を求め、検査領域A2の
高さHtとすれば、検査領域A2が設定されるのである
。 検査領域A2が設定されると、以後は実施例1と同様の
手順によって半田付は状態の良否を判定することができ
る。また、第9図に示すように、半田が濡れ不足である
場合に、検査領域A2の高さHtは、第9図の破線の位
置になるから、検査領域外に半田が存在することを検出
すれば、半田付は状態の良否を判定することが可能にな
る。
[Embodiment 2] In this embodiment, the processing in the inspection processing section 10 is different from that in the first embodiment. That is, first, as in the first embodiment, the three-dimensional coordinates of the inspection point I in the measurement area A are determined. Next, the inspection area setting section 14 sets an inspection area A2 as shown in FIG. 8(a). In other words, Fig. 8 (
As shown in b), in the measurement area A, the center line 1 in the X direction and the Y direction. , set IY. The center line ex and IY are set to pass through the tip of the beam portion 2. Next, center line 1. .. On 2Y, find the difference in height between adjacent inspection points. 1 inch of solder is part 3
Since the difference is small near the hem and large near the top, the difference dh' is calculated, and the soldering is performed at the position where this difference dh' is larger than the preset reference value M. and lead 2. Therefore, by finding the Z coordinate at this position and setting it as the height Ht of the inspection area A2, the inspection area A2 is set. Once the inspection area A2 is set, the quality of the soldering can be determined by following the same procedure as in the first embodiment. Furthermore, as shown in Fig. 9, when the solder is insufficiently wet, the height Ht of the inspection area A2 is at the position indicated by the broken line in Fig. 9, so it is detected that solder exists outside the inspection area. Then, it becomes possible to judge whether the soldering condition is good or bad.

【発明の効果】【Effect of the invention】

上述のように、請求項1の発明では、印刷配線基板に挿
入されたリードの半田付は部を含むJllll定向域内
次元計測値に基づいて、測定領域内の印刷配線基板の表
面からの最大突出寸法を求め、あらかじめ設定された一
定寸法を上記最大突出寸法から減じた寸法よりも印刷配
線基板の表面からの突出寸法が小さい領域を検査領域と
し、検査領域内の半田量や半田形状に基づいて半田付は
状態の良否を判定するものであり、3次元計測値を用い
ているから、半田付は部の形状判定が正確に行えるので
ある。しかも、測定領域内において印刷配線基板の表面
からの最大突出寸法を求め、この最大突出寸法に基づい
てリードと半田とを識別することにより検査領域を設定
するから、リードの状態に影響されない検査領域内で半
田付は状態の良否が判定でき、判定精度が高くなるとい
う利点を有する。 また、請求項2の発明では、印刷配線基板に挿入された
リードの半田付は部を含む測定領域内の3次元計測値に
基づいて、印刷配線基板の表面からの測定領域内での突
出量の変化率を求め、あらかじめ設定された基準値と上
記変化率との大小関係に基づいて検査領域を設定し、検
査領域内の半田量や半田形状に基づいて半田付は状態の
良否を判定するものであり、測定領域内での印刷配線基
板の表面からの突出量の変化率に基づいて検査領域を設
定するから、半田付は部が複雑な形状でもリードとの識
別が可能となり、半田付は状態の良否の判定精度が一層
高くなるという効果を奏するのである。
As described above, in the invention of claim 1, the soldering of the leads inserted into the printed wiring board is performed based on the dimensional measurement value within the Jllll orientation area including the maximum protrusion from the surface of the printed wiring board within the measurement area. The area where the protrusion dimension from the surface of the printed wiring board is smaller than the dimension obtained by subtracting the preset constant dimension from the maximum protrusion dimension above is set as the inspection area, and based on the amount of solder and solder shape within the inspection area. Soldering is used to judge whether the condition is good or bad, and since three-dimensional measurement values are used, soldering can accurately determine the shape of a part. Moreover, since the inspection area is set by determining the maximum protrusion from the surface of the printed wiring board within the measurement area and identifying leads and solder based on this maximum protrusion, the inspection area is not affected by the condition of the leads. Among them, soldering has the advantage that it is possible to judge whether the condition is good or bad and the judgment accuracy is high. In addition, in the invention of claim 2, the amount of soldering of the leads inserted into the printed wiring board is determined based on the three-dimensional measurement value within the measurement area including the portion, and the amount of protrusion within the measurement area from the surface of the printed wiring board. The rate of change of is determined, an inspection area is set based on the magnitude relationship between a preset reference value and the rate of change, and the quality of the soldering is determined based on the amount of solder and solder shape within the inspection area. Since the inspection area is set based on the rate of change in the amount of protrusion from the surface of the printed wiring board within the measurement area, it is possible to identify the soldering part from the lead even if the part has a complicated shape. This has the effect of further increasing the accuracy of determining whether the condition is good or bad.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1を示す概略構成図、第2図は
同上の動作説明図、第3図および第4図は同上における
半田付は状態と検査領域との関係を示す動作説明図、第
5図および第6図は同上の動作説明図、第7図は同上の
半田付は状態と差分の変化との関係を示す動作説明図、
第8図は本発明の実施例2を示す動作説明図、第9図は
同上における半田付は状態と検査領域との関係を示す動
作説明図である。 1・・・印刷配線基板、2・・・リード、3・・・半田
付は部、A1・・・測定領域、A2・・・検査領域。
FIG. 1 is a schematic configuration diagram showing Embodiment 1 of the present invention, FIG. 2 is an explanatory diagram of the same operation as above, and FIGS. 3 and 4 are operation explanations showing the relationship between the soldering state and the inspection area in the same as above. 5 and 6 are explanatory diagrams of the same operation as above, and FIG. 7 is an explanatory diagram of operation showing the relationship between the soldering state and the change in difference,
FIG. 8 is an explanatory diagram of the operation showing the second embodiment of the present invention, and FIG. 9 is an explanatory diagram of the operation showing the relationship between the soldering state and the inspection area in the same as above. DESCRIPTION OF SYMBOLS 1...Printed wiring board, 2...Lead, 3...Soldering part, A1...Measurement area, A2...Inspection area.

Claims (2)

【特許請求の範囲】[Claims] (1) 印刷配線基板に挿入されたリードの半田付け部
を含む測定領域内の3次元計測値に基づいて、測定領域
内の印刷配線基板の表面からの最大突出寸法を求め、あ
らかじめ設定された一定寸法を上記最大突出寸法から減
じた寸法よりも印刷配線基板の表面からの突出寸法が小
さい領域を検査領域とし、検査領域内の半田量や半田形
状に基づいて半田付け状態の良否を判定することを特徴
とする半田付け部の外観検査方法。
(1) Based on the three-dimensional measurement value within the measurement area including the soldered part of the lead inserted into the printed wiring board, the maximum protrusion dimension from the surface of the printed wiring board within the measurement area is determined, and the An area where the protrusion dimension from the surface of the printed wiring board is smaller than the dimension obtained by subtracting a certain dimension from the above maximum protrusion dimension is set as an inspection area, and the quality of the soldering condition is determined based on the amount of solder and the solder shape within the inspection area. A method for inspecting the appearance of soldered parts.
(2) 印刷配線基板に挿入されたリードの半田付け部
を含む測定領域内の3次元計測値に基づいて、印刷配線
基板の表面からの測定領域内での突出量の変化率を求め
、あらかじめ設定された基準値と上記変化率との大小関
係に基づいて検査領域を設定し、検査領域内の半田量や
半田形状に基づいて半田付け状態の良否を判定すること
を特徴とする半田付け部の外観検査方法。
(2) Based on the three-dimensional measurement value in the measurement area including the soldered part of the lead inserted into the printed wiring board, calculate the rate of change in the amount of protrusion from the surface of the printed wiring board within the measurement area, and calculate the rate of change in advance. A soldering section characterized in that an inspection area is set based on the magnitude relationship between a set reference value and the rate of change, and the quality of soldering is determined based on the amount of solder and the shape of solder in the inspection area. Appearance inspection method.
JP20832489A 1989-08-12 1989-08-12 Appearance inspection method for soldered parts Expired - Fee Related JPH0739997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20832489A JPH0739997B2 (en) 1989-08-12 1989-08-12 Appearance inspection method for soldered parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20832489A JPH0739997B2 (en) 1989-08-12 1989-08-12 Appearance inspection method for soldered parts

Publications (2)

Publication Number Publication Date
JPH0372203A true JPH0372203A (en) 1991-03-27
JPH0739997B2 JPH0739997B2 (en) 1995-05-01

Family

ID=16554380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20832489A Expired - Fee Related JPH0739997B2 (en) 1989-08-12 1989-08-12 Appearance inspection method for soldered parts

Country Status (1)

Country Link
JP (1) JPH0739997B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286430A (en) * 2001-03-23 2002-10-03 Ckd Corp Solder printing inspection apparatus
JP2006184022A (en) * 2004-12-24 2006-07-13 Saki Corp:Kk Visual inspection system
JP2006220437A (en) * 2005-02-08 2006-08-24 Omron Corp Substrate inspection device, method and device for setting parameter
JP2021067538A (en) * 2019-10-23 2021-04-30 オムロン株式会社 Visual inspection device and visual inspection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286430A (en) * 2001-03-23 2002-10-03 Ckd Corp Solder printing inspection apparatus
JP2006184022A (en) * 2004-12-24 2006-07-13 Saki Corp:Kk Visual inspection system
JP2006220437A (en) * 2005-02-08 2006-08-24 Omron Corp Substrate inspection device, method and device for setting parameter
JP2021067538A (en) * 2019-10-23 2021-04-30 オムロン株式会社 Visual inspection device and visual inspection method

Also Published As

Publication number Publication date
JPH0739997B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
JPH0348755A (en) Appearance inspection device for electronic parts
CN106651857B (en) A kind of printed circuit board patch defect inspection method
Kim et al. Three-dimensional inspection of ball grid array using laser vision system
JPH0372203A (en) Checking method of outer appearance of soldering part
JP4333349B2 (en) Mounting appearance inspection method and mounting appearance inspection apparatus
US7747066B2 (en) Z-axis optical detection of mechanical feature height
JP3857668B2 (en) Pattern alignment method
JP2005274309A (en) Inspection method and inspection device for three-dimensional object
JP2793947B2 (en) Appearance inspection method of soldering condition
JPH0372204A (en) Checking method of outer appearance of soldering part
JPH05114640A (en) Method and device for measuring lead, and lead tester using same
JPS62233746A (en) Checker for chip mounted board
JPH07104136B2 (en) Terminal tilt detection method
JPH04355946A (en) Inspection of soldered part of electronic component
JP3447538B2 (en) Pattern inspection method
JP2525261B2 (en) Mounted board visual inspection device
CN117808754A (en) Target object detection method, target object detection system, electronic equipment and storage medium
JPH02165004A (en) Object testing apparatus
JP2000121333A (en) Appearance inspection apparatus and method
JPH02253110A (en) Shape checking device for linear object
JPH04369411A (en) Setting method of reference surface for measuring shape of solder
JPH038400A (en) Positional correction of printed substrate
JPH08261733A (en) Inspecting method for electronic component
JP2545570B2 (en) Inclination inspection method for connecting lines by image processing
JP3351313B2 (en) Shape inspection method and device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees