JPH05306191A - Production of silicon single crystal - Google Patents

Production of silicon single crystal

Info

Publication number
JPH05306191A
JPH05306191A JP14016792A JP14016792A JPH05306191A JP H05306191 A JPH05306191 A JP H05306191A JP 14016792 A JP14016792 A JP 14016792A JP 14016792 A JP14016792 A JP 14016792A JP H05306191 A JPH05306191 A JP H05306191A
Authority
JP
Japan
Prior art keywords
single crystal
pulling
cylinder
protective gas
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14016792A
Other languages
Japanese (ja)
Other versions
JP2735741B2 (en
Inventor
Masahiro Sakurada
昌弘 桜田
Toshiharu Uesugi
敏治 上杉
Shinichi Furuse
信一 古瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP14016792A priority Critical patent/JP2735741B2/en
Publication of JPH05306191A publication Critical patent/JPH05306191A/en
Application granted granted Critical
Publication of JP2735741B2 publication Critical patent/JP2735741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the generation of microdefects in the silicon single crystal and to effectively prevent the generation of OSF. CONSTITUTION:The pressure in a pulling up chamber is set at <=500mbar by using the device for producing the silicon single crystal by a Czochralski method constituted to provide a cylinder for coaxially enclosing a pulling up single crystal rod and to introduce a protective gas into this cylinder. In addition, the single crystal rod is pulled up and grown by setting the flow rate per unit area of the protective gas in the cylinder at >=0.251/min.cm<2> in the state of pulling up the single crystal rod. The single crystal rod with which the growth is completed is then held for at least 90 minutes in an atmosphere region kept at 50 to 300 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、チョクラルスキー法
によってシリコン単結晶を製造するに際し、スワール等
の微小欠陥の発生を抑止し、またOSFの発生を防止抑
制することができるシリコン単結晶棒の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon single crystal ingot which can suppress the generation of minute defects such as swirl when manufacturing a silicon single crystal by the Czochralski method and can prevent and suppress the generation of OSF. The present invention relates to a manufacturing method of.

【0002】[0002]

【従来の技術】チョクラルスキー法でシリコン単結晶棒
を製造する場合を説明すると、引上室(金属製チャンバ
ー)のほぼ中央に黒鉛サセプタに保持された石英るつぼ
を設け、黒鉛サセプタの底部中央を回転・上下自在の支
持軸で下方より支持する。石英るつぼの中に原料の多結
晶シリコンを装填し、該多結晶シリコンを保温体で囲繞
された黒鉛ヒータにより加熱、溶融して溶融体とする。
引上室の天井中央には開口部を有し、これに接続したサ
ブチャンバーの中を通って先端に種結晶を保持した回転
・上下自在の引上軸を降下し、溶融体に浸漬した後引上
軸及び石英るつぼを回転しながら種結晶を引き上げる
と、その下に単結晶棒を成長させることができる。この
間、アルゴンガス等の保護ガスをサブチャンバーの上部
より導入し、引上室の下部にある排出口より排出する。
2. Description of the Related Art Explaining the case of manufacturing a silicon single crystal ingot by the Czochralski method, a quartz crucible held by a graphite susceptor is provided at approximately the center of a pulling chamber (metal chamber) and the center of the bottom of the graphite susceptor Is supported from below by a support shaft that can be rotated and moved up and down. Raw material polycrystal silicon is loaded into a quartz crucible, and the polycrystal silicon is heated and melted by a graphite heater surrounded by a heat insulator to form a melt.
There is an opening in the center of the ceiling of the pulling chamber, and a rotating / upward / downward pulling shaft holding a seed crystal at the tip is lowered through a subchamber connected to this, and after immersion in the melt By pulling the seed crystal while rotating the pulling shaft and the quartz crucible, a single crystal rod can be grown under the seed crystal. During this time, a protective gas such as argon gas is introduced from the upper part of the sub chamber and discharged from the discharge port at the lower part of the pulling chamber.

【0003】導入する保護ガスはきわめて高純度である
が、引上室内において石英るつぼとシリコン溶融体とが
反応して生成したSiO蒸気を含む。このSiO蒸気の
大部分は排出口より引上室外に排出されるが、一部は石
英るつぼの上端縁や引上室内壁にそれぞれアモルファス
凝集体となって付着する。これが引き上げる単結晶棒と
溶融体表面の周辺とに発生する乱流によって導かれ、単
結晶棒と溶融体との界面近くに落下して単結晶棒の有転
位化や多結晶化の原因となっていた。
The protective gas introduced has an extremely high purity, but contains SiO vapor generated by the reaction between the quartz crucible and the silicon melt in the pulling chamber. Most of the SiO vapor is discharged to the outside of the pulling chamber through the discharge port, but some of it is deposited as amorphous aggregates on the upper edge of the quartz crucible and the pulling chamber inner wall. This is guided by the turbulent flow generated in the pulled single crystal rod and around the surface of the melt, and it falls near the interface between the single crystal rod and the melt and causes dislocation and polycrystallization of the single crystal rod. Was there.

【0004】また、黒鉛サセプタ、黒鉛ヒータ、保温体
(黒鉛フェルト)等の素材に含まれ、空焼きによっても
除去し得なかった吸蔵酸素や水分が高温に加熱されたこ
れらの炭素質材と反応してCOやCO2 ガスを生成し、
引上室の排気置換が不充分なために引上室内に滞留して
いる不純物ガスと共に、前記乱流に導かれて溶融体表面
に還流接触し、単結晶シリコン棒中の炭素等の不純物濃
度を高め、この単結晶棒より作ったウェーハの集積回路
素子の特性を劣化させる原因となっていた。
Further, stored oxygen and water contained in materials such as a graphite susceptor, a graphite heater and a heat retaining body (graphite felt) and which cannot be removed even by air reaction react with these carbonaceous materials heated to a high temperature. To produce CO and CO 2 gas,
Concentration of impurities such as carbon in the single-crystal silicon rod with the impurity gas staying in the pulling chamber due to insufficient exhaust gas displacement in the pulling chamber and being brought into reflux contact with the surface of the melt due to the turbulent flow. It has been a cause of deteriorating the characteristics of the integrated circuit element of the wafer made from this single crystal ingot.

【0005】そして、シリコン単結晶基板上に集積回路
素子を高密度で形成する場合は、熱酸化処理工程によっ
て基板表面にOSF(Oxidation Induced Stacking Fau
lt:以下OSFという)スワール欠陥(Swirl Defect)
その他の微小欠陥が形成され易く、電子回路素子の特性
を劣化させ、製品収率を著しく低下させるが、従来のチ
ョクラルスキー法による単結晶の製造においては、これ
らの欠陥の発生を抑制することは困難であった。
When forming integrated circuit elements at a high density on a silicon single crystal substrate, an OSF (Oxidation Induced Stacking Fau) is formed on the substrate surface by a thermal oxidation process.
lt: Below OSF) Swirl Defect
Other micro-defects are easily formed, which deteriorates the characteristics of electronic circuit elements and significantly reduces the product yield. However, in the production of single crystals by the conventional Czochralski method, the occurrence of these defects is suppressed. Was difficult.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記した従
来技術の問題点に鑑みてなされたもので、引上げ単結晶
棒を同軸に囲繞した円筒を設けこの円筒内に保護ガスを
導入するようにした装置を用い、引上室内の圧力を50
0mbar以下に設定し、かつ保護ガスの単位面積当り
の流量が0.25l/min・cm2 以上として単結晶
棒を引上げ成長させ、この成長完了した単結晶棒に所定
の熱処理を加えることにより、単結晶内部の微小欠陥の
発生を抑止し、さらにOSFの発生を効果的に抑制する
ことができるようにしたシリコン単結晶の製造方法を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art. A cylinder surrounding a pulling single crystal rod coaxially is provided and a protective gas is introduced into the cylinder. The pressure inside the pulling chamber is adjusted to 50
By setting the flow rate per unit area of the protective gas to 0.25 l / min · cm 2 or more, the single crystal ingot is pulled up and grown, and the predetermined heat treatment is applied to the completed single crystal ingot. It is an object of the present invention to provide a method for producing a silicon single crystal, which can suppress the generation of minute defects inside the single crystal and can effectively suppress the generation of OSF.

【0007】[0007]

【課題を解決するための手段】上記した課題を解決する
ために、本発明のシリコン単結晶の製造方法において
は、引上単結晶棒を同軸に囲繞する円筒を設けこの円筒
内に保護ガスを導入するようにしたチョクラルスキー法
によるシリコン単結晶を製造する装置を用い、引上室内
の圧力を500mbar以下に設定し、かつ該円筒内の
保護ガスの単位面積当りの流量を単結晶棒引上状態で
0.25l/min・cm2 以上として単結晶棒を引上
げ成長させ、この成長完了した単結晶棒を成長完了後直
ちに50〜300℃の雰囲気温度領域に少なくとも90
分保持するようにしたものである。
In order to solve the above problems, in the method for producing a silicon single crystal of the present invention, a cylinder surrounding a pulling single crystal rod coaxially is provided and a protective gas is provided in the cylinder. Using the apparatus for producing a silicon single crystal by the Czochralski method, the pressure in the pulling chamber is set to 500 mbar or less, and the flow rate of the protective gas in the cylinder per unit area is set to the single crystal rod drawing. In the above state, the single crystal ingot is pulled up and grown at 0.25 l / min · cm 2 or more, and the single crystal ingot which has completed the growth is immediately heated to 50 to 300 ° C. for at least 90 ° C. in the ambient temperature range.
It is designed to hold minutes.

【0008】上記した引上室内の圧力としては、500
mbar以下、好ましくは100〜150mbarとす
ることが必要であり、500mbarを超えると微小欠
陥を抑制することができず本発明の目的を達成すること
ができない。
The pressure inside the pulling chamber is 500
It is necessary to set it to mbar or less, preferably 100 to 150 mbar, and if it exceeds 500 mbar, it is impossible to suppress minute defects and the object of the present invention cannot be achieved.

【0009】上記した保護ガスの単位面積当りの流量が
単結晶棒引上状態で0.25l/min・cm2 以上、
好ましくは0.25〜1.00l/min・cm2 とす
ることが必要であり、0.25l/min・cm2 に満
たないとやはり微小欠陥を抑制することができず、本発
明の目的を達成することができない。
The flow rate of the above protective gas per unit area is 0.25 l / min · cm 2 or more when the single crystal rod is pulled up,
It is necessary to set it to preferably 0.25 to 1.00 l / min · cm 2, and if it is less than 0.25 l / min · cm 2 , it is still impossible to suppress the minute defects. Cannot be achieved.

【0010】上記した円筒内の保護ガスの流量を0.2
5l/min・cm2 以上とする手段としては、従来の
円筒の内径を狭めて保護ガスの絶対流量は従来と同様と
し、又は従来の円筒をそのまま使用し保護ガスの絶対流
量を増加させてもよい。
The flow rate of the protective gas in the cylinder is 0.2
As a means for increasing the flow rate to 5 l / min · cm 2 or more, the inner diameter of the conventional cylinder is narrowed so that the absolute flow rate of the protective gas is the same as the conventional one, or the conventional cylinder is used as it is and the absolute flow rate of the protective gas is increased. Good.

【0011】[0011]

【作用】本発明方法に従って引上作業を行うには、従来
と同様に石英ルツボに原料の多結晶シリコンを装填し、
引上室を排気し、保護ガスを導入口より導入し、排出口
より排出して引上室内を保護ガス雰囲気に置換する。こ
のとき、引上室の圧力は500mbar以下とする。つ
いで、黒鉛ヒータに所定電流を流して原料を加熱し溶融
体とした後、引上軸を下降しその下端に保持した種結晶
を一旦溶融体に浸漬し、その支持軸、引上軸を回転しな
がら、種結晶を引き上げると、その下端に単結晶棒が成
長する。
In order to carry out the pulling up work according to the method of the present invention, the raw material polycrystalline silicon is charged in the quartz crucible as in the conventional case,
The pulling chamber is evacuated, the protective gas is introduced through the inlet, and is discharged through the outlet to replace the inside of the pulling chamber with the protective gas atmosphere. At this time, the pressure in the pulling chamber is set to 500 mbar or less. Then, a predetermined current is applied to the graphite heater to heat the raw material to form a melt, and then the pulling shaft is lowered and the seed crystal held at its lower end is once immersed in the melt, and its supporting shaft and pulling shaft are rotated. However, when the seed crystal is pulled up, a single crystal rod grows at the lower end thereof.

【0012】この単結晶の成長過程において、本発明で
は、円筒内の保護ガスの流量を0.25l/min・c
2 以上と規定しているから、単結晶内部の微小欠陥を
効果的に抑止し、さらにOSFの発生を効果的に抑制す
ることができるものである。
In the process of growing this single crystal, according to the present invention, the flow rate of the protective gas in the cylinder is 0.25 l / min.c.
Since it is defined as m 2 or more, it is possible to effectively suppress the minute defects inside the single crystal and further effectively suppress the generation of OSF.

【0013】[0013]

【実施例】以下に、本発明方法に用いる装置の一例を添
付図面に基づいて説明する。図1において、2は本発明
に係わるシリコン単結晶の製造装置で、引上室4内の中
央に黒鉛サセプター6に保持された石英ルツボ8が設け
られている。該黒鉛サセプター6は底部中央を回転、上
下自在の支持軸10によって下方より支持される。引上
室4は天井中央に開口部12を有し、サブチャンバー1
4内に回転、上下動自在の引上軸16を備えている。前
記開口部12の縁には、一端を気密に結合し他端を溶融
体18に向かって垂下する円筒20が設けられている。
該円筒20の下端には折り返して外上方に向かって拡開
するカラー21が形成されている。このカラー21は必
須の構成ではなく、取りつけなくともよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of an apparatus used in the method of the present invention will be described below with reference to the accompanying drawings. In FIG. 1, 2 is an apparatus for producing a silicon single crystal according to the present invention, in which a quartz crucible 8 held by a graphite susceptor 6 is provided in the center of a pulling chamber 4. The graphite susceptor 6 is supported from below by a support shaft 10 which is rotatable around the center of the bottom and is vertically movable. The pull-up chamber 4 has an opening 12 at the center of the ceiling, and the sub-chamber 1
A pull-up shaft 16 that can rotate and move up and down is provided in the unit 4. At the edge of the opening 12, a cylinder 20 is provided, one end of which is hermetically coupled and the other end of which is suspended toward the melt 18.
A collar 21 is formed at the lower end of the cylinder 20 and is folded back and spreads outward and upward. The collar 21 is not an essential component and may not be attached.

【0014】該サブチャンバー14の上方には保護ガス
導入口22が設けられており、引上室4の底部には排出
口24が開口している。なお、25は引上室4の上部に
設けられた観察用窓、Hは黒鉛ヒータ、Kは保温体であ
る。
A protective gas inlet 22 is provided above the sub chamber 14, and an outlet 24 is opened at the bottom of the pulling chamber 4. In addition, 25 is an observation window provided in the upper part of the pulling chamber 4, H is a graphite heater, and K is a heat retaining body.

【0015】図1に示した装置の特徴的構成は、円筒2
0の内径が従来装置の円筒の内径に比べて狭められてい
ることである。図示の例では、円筒20の側壁の肉厚を
従来よりも厚くして円筒の内径が狭められている。この
円筒20の内径を狭める手段は、図示の例に限定される
ことはなく、円筒20の径を最初から小さい径として製
造することも勿論可能である。
The characteristic structure of the apparatus shown in FIG.
The inner diameter of 0 is narrower than the inner diameter of the cylinder of the conventional device. In the illustrated example, the wall thickness of the side wall of the cylinder 20 is made thicker than in the conventional case, and the inner diameter of the cylinder is narrowed. The means for narrowing the inner diameter of the cylinder 20 is not limited to the illustrated example, and it is of course possible to manufacture the cylinder 20 with a small diameter from the beginning.

【0016】上記した円筒20の内径を狭める理由は、
円筒内の保護ガスの流量を容易に0.25l/min・
cm2 以上とするためであるが、円筒20の内径は従来
と同様として狭めることなく保護ガスの絶対流量を増加
することも可能である。
The reason for narrowing the inner diameter of the cylinder 20 is as follows.
The flow rate of the protective gas in the cylinder is easily 0.25 l / min.
in order to cm 2 or more, but the inner diameter of the cylinder 20, it is also possible to increase the absolute flow rate of the protective gas without narrowing the same as conventional.

【0017】上述した構成により、その単結晶引上の作
用を説明する。まず石英ルツボ8に原料の多結晶シリコ
ンを装填し、引上室4を排気し、保護ガスを導入口22
より導入し、排出口24より排出して引上室内を保護ガ
ス雰囲気に置換する。このとき、引上室の圧力は500
mbar以下とする。ついで、黒鉛ヒータHに所定電流
を流して原料を加熱し溶融体18とした後、引上軸16
を下降しその下端に保持した種結晶Sを一旦溶融体18
に浸漬し、その支持軸10、引上軸16を回転しなが
ら、種結晶Sを引き上げると、その下端に単結晶棒Gが
成長する。
The operation of pulling the single crystal with the above-mentioned structure will be described. First, the quartz crucible 8 is loaded with polycrystalline silicon as a raw material, the pulling chamber 4 is evacuated, and a protective gas is introduced into the inlet 22.
It is further introduced and discharged from the discharge port 24 to replace the inside of the pulling chamber with a protective gas atmosphere. At this time, the pressure in the pulling chamber is 500
mbar or less. Then, a predetermined current is passed through the graphite heater H to heat the raw material to form the melt 18, and then the pulling shaft 16
The seed crystal S held at the lower end of the melt 18
When the seed crystal S is pulled up while being dipped in, and the supporting shaft 10 and the pulling shaft 16 are rotated, a single crystal rod G grows at the lower end thereof.

【0018】この単結晶の成長過程において、本発明で
は、円筒内の保護ガスの流量を0.25l/min・c
2 以上と規定しているから、単結晶内部の微小欠陥を
効果的に抑止し、さらにOSFの発生を効果的に抑制す
ることができるものである。
In the process of growing this single crystal, according to the present invention, the flow rate of the protective gas in the cylinder is 0.25 l / min · c.
Since it is defined as m 2 or more, it is possible to effectively suppress the minute defects inside the single crystal and further effectively suppress the generation of OSF.

【0019】以下さらに、本発明方法を実施例を挙げて
説明する。 実施例1 前記した図1に示した装置を用い、引上室内の圧力10
0mbar、円筒内の保護ガスの流量0.4l/min
・cm2 の条件で6インチφ、N型<100>の単結晶
インゴットを引上速度1.2mm/minで引き上げ
た。
The method of the present invention will be further described below with reference to examples. Example 1 Using the apparatus shown in FIG.
0 mbar, flow rate of protective gas in the cylinder 0.4 l / min
A 6-inch φ, N-type <100> single crystal ingot was pulled up at a pulling rate of 1.2 mm / min under the condition of cm 2 .

【0020】この成長完了したインゴットを直ちにサブ
チャンバー内に巻き上げた。このときのインゴットの冷
却パターンを図2に示す。即ち、約270℃の雰囲気温
度領域内に巻き上げ90分保持した。図2において、チ
ャンバー内雰囲気温度はインゴットの中央部分に対応す
る雰囲気領域の温度を測定して示した。
The grown ingot was immediately rolled up in the subchamber. The cooling pattern of the ingot at this time is shown in FIG. That is, the film was wound in an atmosphere temperature region of about 270 ° C. and held for 90 minutes. In FIG. 2, the atmospheric temperature in the chamber is shown by measuring the temperature of the atmospheric region corresponding to the central portion of the ingot.

【0021】単結晶インゴットを2mm厚にスライス
し、これを800℃から1200℃に温度勾配10℃/
minで昇温し、1200℃においてwetO2 の状態
で100分間維持し、次いで温度勾配1.5℃/min
で800℃に降温した。この後、弗酸により酸化膜を除
去し、セコ・エッチング液中に2分間浸してセコ・エッ
チングを行い、光学顕微鏡でOSF密度を測定した。図
3の結果からOSFの発生が抑制されていることが確認
できた。
A single crystal ingot was sliced to a thickness of 2 mm, and this was sliced from 800 ° C. to 1200 ° C. with a temperature gradient of 10 ° C. /
The temperature was raised at min, the temperature was maintained at 1200 ° C. in the wetO 2 state for 100 minutes, and then the temperature gradient was 1.5 ° C./min.
The temperature was lowered to 800 ° C. After that, the oxide film was removed with hydrofluoric acid, and immersed in a seco-etching solution for 2 minutes to perform seco-etching, and the OSF density was measured with an optical microscope. From the result of FIG. 3, it was confirmed that the generation of OSF was suppressed.

【0022】また、スワール29は次に示す処理をして
観察した。即ち、上記巻き上げられた単結晶インゴット
からスライスを切出し、これを800℃から1000℃
に昇温し、1000℃においてwetO2 の状態で65
分間維持し、次いで800℃に降温した。この後、弗酸
により酸化膜を除去し、セコ・エッチング液中に15分
間攪拌しながらセコ・エッチングを行い、光学顕微鏡で
スワール29を観察した。スワール29は図5に示すよ
うに外周方向に移動していることがわかった。
The swirl 29 was observed by the following treatment. That is, a slice is cut out from the rolled single crystal ingot, and the slice is cut at 800 ° C to 1000 ° C.
The temperature is raised to 65 ° C. under wetO 2 condition at 1000 ° C.
Hold for a minute and then cool to 800 ° C. After that, the oxide film was removed with hydrofluoric acid, Secco etching was performed in the Secco etching solution for 15 minutes while stirring, and the swirl 29 was observed with an optical microscope. It was found that the swirl 29 was moving in the outer peripheral direction as shown in FIG.

【0023】比較例1 成長完了し引き上げられたインゴットを一定時間(90
分)停止させた後サブチャンバー内に巻き上げた。この
ときのインゴットの冷却パターンを実施例1とともに図
2に示す。即ち、引上直後のチャンバー内雰囲気温度7
00℃を90分保持した。上記した冷却パターンを除い
て、実施例1と同様に処理し、OSF密度を測定して、
実施例1とともに図3に示した。図3の結果から、高密
度のOSFが発生していることが確認できた。
Comparative Example 1 An ingot pulled up after completion of growth is kept for a certain time (90
Min) After stopping, it was wound up in the sub-chamber. The cooling pattern of the ingot at this time is shown in FIG. 2 together with the first embodiment. That is, the atmospheric temperature in the chamber immediately after pulling up is 7
Hold at 00 ° C for 90 minutes. Except for the cooling pattern described above, the same treatment as in Example 1 was performed to measure the OSF density,
This is shown in FIG. 3 together with Example 1. From the result of FIG. 3, it was confirmed that high-density OSFs were generated.

【0024】また、上記巻き上げられた単結晶インゴッ
トからスライスを切出し、これを実施例1と同様にして
光学顕微鏡で観察したところスワール29の存在が図5
に示すようにインゴットの内側に存在することが確認で
きた。
When a slice was cut out from the rolled-up single crystal ingot and observed by an optical microscope in the same manner as in Example 1, the presence of the swirl 29 was observed.
It was confirmed that it exists inside the ingot as shown in.

【0025】比較例2 成長完了し引き上げられたインゴットを2mm/min
の上軸速度でサブチャンバー内に巻き上げた。このとき
のインゴットの冷却パターンを実施例1及び比較例1と
ともに図2に示す。即ち、引上直後のチャンバー内雰囲
気温度700℃を90分かけて徐々に400℃に冷却し
た。
Comparative Example 2 An ingot pulled up after completion of growth was 2 mm / min.
It was wound into the sub-chamber at the upper shaft speed. The cooling pattern of the ingot at this time is shown in FIG. 2 together with Example 1 and Comparative Example 1. That is, the ambient temperature in the chamber immediately after pulling up was 700 ° C. and was gradually cooled to 400 ° C. over 90 minutes.

【0026】上記した冷却パターンを除いて、実施例1
と同様に処理し、OSF密度を測定して、実施例1とと
もに図3に示した。図3の結果から、高密度のOSFが
発生していることが確認できた。
Example 1 except for the above cooling pattern
The same process as in Example 1 was performed, the OSF density was measured, and the results are shown in FIG. From the result of FIG. 3, it was confirmed that high-density OSFs were generated.

【0027】比較例3 円筒内の保護ガス流量を0.2l/min・cm2 とし
た以外は実施例1と同様に処理して、OSF密度を測定
して、図6に示した。図6の結果から、OSFが発生し
ていることが確認できた。
Comparative Example 3 The OSF density was measured in the same manner as in Example 1 except that the flow rate of the protective gas in the cylinder was 0.2 l / min · cm 2, and the results are shown in FIG. From the result of FIG. 6, it was confirmed that OSF was generated.

【0028】比較例4 円筒内の保護ガス流量を0.2l/min・cm2 とし
た以外は比較例1と同様に処理して、OSF密度を測定
して、図6に示した。図6の結果から、高密度のOSF
が発生が確認できた。
Comparative Example 4 The OSF density was measured in the same manner as in Comparative Example 1 except that the flow rate of the protective gas in the cylinder was changed to 0.2 l / min · cm 2, and the results are shown in FIG. From the result of FIG. 6, high-density OSF
Could be confirmed.

【0029】比較例5 円筒内の保護ガス流量を0.2l/min・cm2 とし
た以外は比較例2と同様に処理して、OSF密度を測定
して、図6に示した。図6の結果から、高密度のOSF
の発生が確認できた。
Comparative Example 5 The OSF density was measured in the same manner as in Comparative Example 2 except that the flow rate of the protective gas in the cylinder was 0.2 l / min · cm 2, and the results are shown in FIG. From the result of FIG. 6, high-density OSF
Was confirmed to occur.

【0030】[0030]

【発明の効果】以上述べたごとく、本発明は、引上げ単
結晶棒を同軸に囲繞した円筒を設けこの円筒内に保護ガ
スを導入するようにした装置を用い、引上室内の圧力を
500mbar以下に設定し、かつ保護ガスの単位面積
当りの流量が0.25l/min・cm2 以上として単
結晶棒を引上げ成長させ、この成長完了した単結晶棒に
所定の熱処理を加えることにより、単結晶内部の微小欠
陥の発生を抑止し、さらにOSFの発生を効果的に抑制
することができるという効果を奏する。
As described above, according to the present invention, a cylinder in which a pulling single crystal rod is coaxially surrounded is provided, and a protective gas is introduced into the cylinder. The pressure in the pulling chamber is 500 mbar or less. And the flow rate of the protective gas per unit area is 0.25 l / min · cm 2 or more, the single crystal rod is pulled up and grown, and a predetermined heat treatment is applied to the grown single crystal rod to obtain a single crystal. It is possible to suppress the generation of internal minute defects and further effectively suppress the generation of OSF.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法に用いる装置の一実施例を示す縦断
面概略説明図である。
FIG. 1 is a schematic longitudinal cross-sectional view showing an embodiment of an apparatus used in the method of the present invention.

【図2】実施例1及び比較例1及び2の単結晶成長完了
後の冷却パターンを示すグラフである。
FIG. 2 is a graph showing cooling patterns after completion of single crystal growth in Example 1 and Comparative Examples 1 and 2.

【図3】実施例1及び比較例1及び2のOSFの発生状
況を示すグラフである。
FIG. 3 is a graph showing the OSF generation status of Example 1 and Comparative Examples 1 and 2.

【図4】実施例1のウェーハのスワールの発生位置を示
すグラフである。
FIG. 4 is a graph showing a swirl generation position of the wafer of Example 1.

【図5】比較例1のウェーハのスワールの発生位置を示
すグラフである。
5 is a graph showing a swirl generation position on a wafer of Comparative Example 1. FIG.

【図6】比較例3〜5のOSFの発生状況を示すグラフ
である。
FIG. 6 is a graph showing the OSF generation status of Comparative Examples 3 to 5.

【符号の説明】[Explanation of symbols]

2 シリコン単結晶の製造装置 4 引上室 6 サセプター 8 石英ルツボ 10 支持軸 12 開口部 14 サブチャンバー 16 引上軸 18 溶融体 20 円筒 25 観察用窓 H ヒータ 2 Silicon Single Crystal Manufacturing Device 4 Pulling Up Chamber 6 Susceptor 8 Quartz Crucible 10 Support Shaft 12 Opening 14 Subchamber 16 Pulling Up Shaft 18 Melt 20 Cylinder 25 Observation Window H Heater

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 引上単結晶棒を同軸に囲繞する円筒を設
けこの円筒内に保護ガスを導入するようにしたチョクラ
ルスキー法によるシリコン単結晶を製造する装置を用
い、引上室内の圧力を500mbar以下に設定し、か
つ該円筒内の保護ガスの単位面積当りの流量を単結晶棒
引上状態で0.25l/min・cm2以上として単結
晶棒を引上げ成長させ、この成長完了した単結晶棒を成
長完了後直ちに50〜300℃の雰囲気温度領域に少な
くとも90分保持するようにしたことを特徴とするシリ
コン単結晶の製造方法。
1. An apparatus for producing a silicon single crystal by the Czochralski method, in which a cylinder surrounding a pulling single crystal rod coaxially is provided and a protective gas is introduced into the cylinder, and the pressure in the pulling chamber is used. Was set to 500 mbar or less, and the flow rate of the protective gas in the cylinder per unit area was set to 0.25 l / min · cm 2 or more in the pulled-up state of the single crystal rod, and the single crystal rod was pulled up and grown to complete the growth. A method for producing a silicon single crystal, characterized in that the single crystal ingot is held in an atmosphere temperature region of 50 to 300 ° C. for at least 90 minutes immediately after completion of growth.
JP14016792A 1992-04-30 1992-04-30 Method for producing silicon single crystal Expired - Lifetime JP2735741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14016792A JP2735741B2 (en) 1992-04-30 1992-04-30 Method for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14016792A JP2735741B2 (en) 1992-04-30 1992-04-30 Method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JPH05306191A true JPH05306191A (en) 1993-11-19
JP2735741B2 JP2735741B2 (en) 1998-04-02

Family

ID=15262445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14016792A Expired - Lifetime JP2735741B2 (en) 1992-04-30 1992-04-30 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP2735741B2 (en)

Also Published As

Publication number Publication date
JP2735741B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
JP4147599B2 (en) Silicon single crystal and manufacturing method thereof
JP4020987B2 (en) Silicon single crystal having no crystal defects around the wafer and its manufacturing method
JP4830073B2 (en) Method for growing silicon carbide single crystal
CN114318500B (en) Crystal pulling furnace and method for pulling monocrystalline silicon rod and monocrystalline silicon rod
US3173765A (en) Method of making crystalline silicon semiconductor material
JP2686223B2 (en) Single crystal manufacturing equipment
JPH0639351B2 (en) Apparatus and method for manufacturing single crystal ingot
EP1717355B1 (en) Production apparatus and process for producing silicon single crystal and silicon wafer
US20060191468A1 (en) Process for producing single crystal
WO2023051616A1 (en) Crystal pulling furnace for pulling monocrystalline silicon rod
JPH06340490A (en) Apparatus for production of silicon single crystal
JP2800867B2 (en) Silicon single crystal manufacturing equipment
JP2937109B2 (en) Single crystal manufacturing apparatus and manufacturing method
JPH07277887A (en) Appartus and process for producing single crystal
JP2735740B2 (en) Method for producing silicon single crystal
JP2735741B2 (en) Method for producing silicon single crystal
JP4080657B2 (en) Method for producing silicon single crystal ingot
JPH0543382A (en) Production of silicon single crystal
JP2800482B2 (en) Method for producing silicon single crystal
JPH1112091A (en) Production of spherical single crystal silicon
JPH09278581A (en) Apparatus for producing single crystal and production of single crystal
JP2002293691A (en) Method of manufacturing silicon single crystal and silicon single crystal as well as silicon wafer
JP3900816B2 (en) Silicon wafer manufacturing method
JPH08290995A (en) Silicon single crystal and its production
JPH05330995A (en) Production of silicon carbide single crystal and apparatus therefor