JPH05302216A - Modification of carbonaceous fiber - Google Patents

Modification of carbonaceous fiber

Info

Publication number
JPH05302216A
JPH05302216A JP4107261A JP10726192A JPH05302216A JP H05302216 A JPH05302216 A JP H05302216A JP 4107261 A JP4107261 A JP 4107261A JP 10726192 A JP10726192 A JP 10726192A JP H05302216 A JPH05302216 A JP H05302216A
Authority
JP
Japan
Prior art keywords
acf
carbonaceous fiber
treatment
carbonaceous
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4107261A
Other languages
Japanese (ja)
Other versions
JP3013275B2 (en
Inventor
Kunitaro Kawazoe
邦太朗 河添
Tadahiro Mori
忠弘 森
Keizo Kajioka
慶三 梶岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Unitika Ltd
Original Assignee
Osaka Gas Co Ltd
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Unitika Ltd filed Critical Osaka Gas Co Ltd
Priority to JP4107261A priority Critical patent/JP3013275B2/en
Publication of JPH05302216A publication Critical patent/JPH05302216A/en
Application granted granted Critical
Publication of JP3013275B2 publication Critical patent/JP3013275B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To provide a process for producing a modified pitch-based carbonaceous fiber capable of effectively adsorbing and removing trihalomethane precursor substances. CONSTITUTION:The modified carbonaceous fiber can be produced by hydrophilizing a carbonaceous fiber having a specific surface area of 0.1-1,200m<2>/g with an oxidizing agent, supporting an alkaline earth metal on the hydrophilized surface and activating the product.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素質繊維の改質方法
に関する。
FIELD OF THE INVENTION The present invention relates to a method for modifying carbonaceous fibers.

【0002】本明細書において、“%”とあるのは、
“重量%”を意味するものとする。
In this specification, "%" means
It shall mean "% by weight".

【0003】[0003]

【従来技術とその問題点】近年、工業用水、都市下水な
どによる河川、湖沼などの汚染の結果として、水道水に
も微量の有機物が含有されるにいたっている。これらの
有機物は、水道水のカビ臭の原因となり、また一部のも
のは塩素と反応して発癌性を有しているともいわれる有
害物質(例えば、トリハロメタンなど)を生成するの
で、水質確保のためには、今後より高度の処理を行なう
必要がある。
2. Description of the Related Art In recent years, trace amounts of organic substances have been contained in tap water as a result of pollution of rivers, lakes and marshes by industrial water, urban sewage and the like. These organic substances cause a musty odor of tap water, and some of them react with chlorine to produce harmful substances (eg, trihalomethane) that are said to have carcinogenicity. In order to do so, it is necessary to perform more advanced processing in the future.

【0004】高度の水処理方法の代表的な例として、活
性炭処理方法が知られている。最近、これまで使用され
てきた粒状活性炭に代えて、廉価で吸着能の高いピッチ
系繊維状活性炭(以下特に必要でない限り、ACFとい
う)を使用して、水処理を行なうことが試みられてい
る。特に、特公昭63−67566号公報は、表面積が
30〜1200m2 /g、且つ細孔直径30〜300オ
ングストロームの細孔容積が0.1cc/g以下の炭素
質繊維にマグネシウム、カルシウム、バリウム、鉄、コ
バルト、ニッケルおよびマンガンの化合物の少なくとも
1種を担持させた落ち、酸化性ガス中または燃焼廃ガス
中で650〜1050℃で加熱処理して、賦活化処理を
施す活性炭素繊維の製造方法を開示しており、処理後に
は細孔直径30〜300オングストロームの細孔容積が
増加することが示されている。しかしながら、トリハロ
メタン(以下THMという)の前駆物質は、分子量の比
較的大きな物質が多いため、一般に半径10オングスト
ローム以下の微細孔(ミクロポア)の割合が多いACF
では、THM前駆物質の十分な吸着除去は、行ない得な
い。また、上記文献に開示された方法では、細孔直径が
20〜300オングストロームの細孔を増加させること
は、難しい。特にピッチ系ACFについては、上記文献
に記載された方法では、20〜300オングストローム
の細孔を増加させることは不可能であることが判明し
た。
An activated carbon treatment method is known as a typical example of a sophisticated water treatment method. Recently, it has been attempted to carry out water treatment by using pitch-type fibrous activated carbon (hereinafter referred to as ACF unless otherwise required), which is inexpensive and has high adsorption ability, in place of the granular activated carbon which has been used so far. .. In particular, Japanese Examined Patent Publication No. 63-67566 discloses a carbonaceous fiber having a surface area of 30 to 1200 m 2 / g and a pore volume of 30 to 300 angstrom and a pore volume of 0.1 cc / g or less. A method for producing activated carbon fibers carrying at least one of iron, cobalt, nickel and manganese compounds, heat-treated at 650 to 1050 ° C. in oxidizing gas or combustion waste gas to carry out activation treatment. Have been shown to increase the pore volume after treatment with pore diameters of 30 to 300 angstroms. However, since many precursors of trihalomethane (hereinafter referred to as THM) have a relatively large molecular weight, ACF generally has a large proportion of fine pores (micropores) having a radius of 10 angstroms or less.
Then, sufficient adsorption removal of the THM precursor cannot be performed. In addition, it is difficult to increase the number of pores having a diameter of 20 to 300 angstroms by the method disclosed in the above document. Especially for pitch-based ACF, it has been found that it is impossible to increase the pore size of 20 to 300 angstrom by the method described in the above-mentioned document.

【0005】[0005]

【発明が解決しようとする課題】従って、本発明は、T
HM前駆物質の吸着除去を効果的に行ない得るACFの
製造方法を提供することを主な目的とする。
Therefore, the present invention is
The main object of the present invention is to provide a method for producing ACF that can effectively remove the HM precursor by adsorption.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記の様な
技術の現状に鑑みて種々研究を重ねた結果、炭素質繊維
に酸化剤による親水化処理を施し、触媒として特定の物
質を付与した後、水蒸気により賦活を行なう場合には、
半径が15〜150オングストローム程度の細孔(メソ
ポア)が増大して、THM前駆物質の十分な吸着除去を
行ない得る改質されたACFが得られることを見出し
た。
Means for Solving the Problems As a result of various studies in view of the current state of the art as described above, the present inventor has performed a hydrophilization treatment on a carbonaceous fiber with an oxidant to give a specific substance as a catalyst. After activation, when activating with steam,
It has been found that the pores (mesopores) having a radius of about 15 to 150 angstroms are increased to obtain a modified ACF capable of sufficiently adsorbing and removing the THM precursor.

【0007】すなわち、本発明は、下記の炭素質繊維の
改質方法を提供するものである:「比表面積0.1〜1
200m2 /gの炭素質繊維に酸化剤による親水化処理
を施した後、アルカリ土類金属を担持せしめて、賦活処
理を行なうことを特徴とする炭素質繊維の改質方法。」
本発明で原料として使用する炭素質繊維は、BET法に
よる比表面積0.1〜1200m2 /gの炭素質繊維で
ある。
That is, the present invention provides the following method for modifying carbonaceous fibers: "Specific surface area 0.1 to 1"
A method for modifying carbonaceous fibers, which comprises subjecting 200 m 2 / g of carbonaceous fibers to hydrophilic treatment with an oxidizing agent, carrying an alkaline earth metal thereon, and then carrying out activation treatment. "
The carbonaceous fiber used as a raw material in the present invention is a carbonaceous fiber having a specific surface area of 0.1 to 1200 m 2 / g according to the BET method.

【0008】本発明においては、先ず、炭素繊維に対し
酸化剤による親水化処理(炭素繊維の表面酸化処理)を
施した後、アルカリ土類金属を担持させ、賦活処理を行
なう。酸化剤としては、次亜塩素酸ナトリウム、次亜塩
素酸カリウム、過酸化水素、塩素ガス(含湿)、などが
例示され、アルカリ土類金属源としては、酢酸カルシウ
ム、ギ酸カルシウム、シュウ酸カルシウム、酢酸バリウ
ム、酢酸バリウム、クエン酸カルシウムなどが例示され
る。これら酸化剤による処理およびアルカリ土類金属の
付与方法は、特に限定されるものではないが、炭素質繊
維をこれらを含む水溶液に常圧乃至減圧下に浸漬する方
法、炭素質繊維をこれらを含む水溶液に常圧乃至減圧下
に浸漬し、沸騰させる方法、炭素質繊維にこれらを含む
水溶液をスプレーする方法などがある。次亜塩素酸ナト
リウムなどの酸化剤(以下特に必要でない限り、単に次
亜塩素酸ナトリウムという)による親水化処理および酢
酸カルシウムなどのアルカリ土類金属(以下特に必要で
ない限り、単に酢酸カルシウムという)の担持は、炭素
質繊維を次亜塩素酸ナトリウム水溶液に常圧下に浸漬
し、沸騰させた後、酢酸カルシウム水溶液に浸漬する方
法がより好ましい。
In the present invention, first, a carbon fiber is subjected to a hydrophilizing treatment (oxidizing treatment of the surface of the carbon fiber) with an oxidizing agent, and then an alkaline earth metal is carried thereon to carry out an activating treatment. Examples of the oxidizing agent include sodium hypochlorite, potassium hypochlorite, hydrogen peroxide, chlorine gas (wet), and the like, and alkaline earth metal sources include calcium acetate, calcium formate, calcium oxalate. , Barium acetate, barium acetate, calcium citrate and the like. The treatment with these oxidizing agents and the method for applying the alkaline earth metal are not particularly limited, but include a method of immersing the carbonaceous fiber in an aqueous solution containing them under normal pressure or reduced pressure, including a carbonaceous fiber There are a method of immersing in an aqueous solution under normal pressure or a reduced pressure and boiling, a method of spraying an aqueous solution containing these on carbonaceous fibers, and the like. Hydrophilizing treatment with an oxidizing agent such as sodium hypochlorite (hereinafter simply referred to as sodium hypochlorite unless otherwise required) and alkaline earth metal such as calcium acetate (hereinafter simply referred to as calcium acetate unless otherwise required) More preferably, the carbon fiber is immersed in an aqueous solution of sodium hypochlorite under atmospheric pressure, boiled, and then immersed in an aqueous solution of calcium acetate.

【0009】炭素質繊維に対する酸化剤の付与量および
アルカリ土類金属の担持量は、炭素質繊維の改質の程度
などにより変わり得るが、例えば、炭素質繊維に対し、
次亜塩素酸ナトリウム(有効塩素5%以上)1〜25%
程度、酢酸カルシウム(Caとして)0.1〜2%程度
の範囲内にある。次亜塩素酸ナトリウムの量が少なすぎ
る場合には、炭素表面の親水化が十分に行なわれないの
で、触媒としてのCaの担持量が低下して、賦活処理の
反応速度が遅くなる。この際、反応速度を高めるため
に、賦活温度を高くすると、改質ACFの収率が低下す
る。一方、次亜塩素酸ナトリウムの量が多すぎる場合に
は、改質されたACFの強度が低下することがある。こ
れに対し、酢酸カルシウムの量が少なすぎる場合には、
メソ細孔の十分な開孔ができず、ミクロポアのみが増加
する。酢酸カルシウムの量が多すぎる場合には、細孔の
開孔以外でも炭素表面の浸蝕が起こり、収率の低下およ
び改質されたACFの強度低下という問題を生ずる。
The amount of the oxidizing agent applied to the carbonaceous fiber and the amount of the alkaline earth metal supported may vary depending on the degree of modification of the carbonaceous fiber.
Sodium hypochlorite (effective chlorine 5% or more) 1-25%
The range is about 0.1 to 2% of calcium acetate (as Ca). When the amount of sodium hypochlorite is too small, the carbon surface is not sufficiently hydrophilized, so that the amount of Ca supported as a catalyst decreases, and the reaction rate of the activation treatment becomes slow. At this time, if the activation temperature is increased to increase the reaction rate, the yield of modified ACF decreases. On the other hand, if the amount of sodium hypochlorite is too large, the strength of the modified ACF may decrease. On the other hand, if the amount of calcium acetate is too small,
Mesopores cannot be fully opened, and only micropores increase. When the amount of calcium acetate is too large, the carbon surface is corroded other than the opening of the pores, which causes a problem that the yield is lowered and the strength of the modified ACF is lowered.

【0010】次いで、上記の様にして酸化剤により処理
され、アルカリ土類金属を担持された炭素質繊維は、水
蒸気による賦活処理に供される。この改質のための水蒸
気賦活処理は常法に従って行なえば良く、特に限定され
るものではないが、例えば、酸化剤により処理され、ア
ルカリ土類金属を担持された炭素質繊維を容器内に収容
し、容器内の空気を不活性ガス(He、Ar、N2
ど)により置換した後、400〜900℃程度に昇温
し、次いで水蒸気を導入して、550〜900℃程度で
5〜60分間程度保持する。
Next, the carbonaceous fiber carrying the alkaline earth metal, which has been treated with the oxidizing agent as described above, is subjected to activation treatment with steam. The steam activation treatment for this reforming may be performed according to a conventional method and is not particularly limited. For example, the carbonaceous fiber treated with an oxidizing agent and carrying an alkaline earth metal is housed in a container. Then, after replacing the air in the container with an inert gas (He, Ar, N 2, etc.), the temperature is raised to about 400 to 900 ° C., then steam is introduced, and the temperature is increased to about 550 to 900 ° C. for 5 to 60 ° C. Hold for about a minute.

【0011】改質を終えた炭素質繊維は、必要に応じ、
酸洗浄などにより脱灰され、洗浄されて、目的とする製
品が得られる。
The carbonaceous fiber after the modification is, if necessary,
The desired product is obtained by deashing and washing by acid washing or the like.

【0012】本発明方法によれば、酸化剤処理の条件、
アルカリ土類金属の担持量、賦活条件などを適宜調整す
ることにより、種々の細孔特性を有する炭素質繊維を製
造することができる。例えば、THM前駆物質の吸着除
去を行なう場合には、孔径15〜150オングストロー
ム程度のメソポアによる細孔容積が0.25〜0.6c
c/g程度である改質炭素質繊維を製造すれば良い。ま
た、その他の用途(触媒担体、気相における有害ガスの
吸着除去材、液相における有害成分の吸着除去材など)
に応じて、異なる細孔特性を有する改質炭素質繊維を得
ることもできる。
According to the method of the present invention, the conditions of the oxidizing agent treatment,
By appropriately adjusting the amount of alkaline earth metal supported, the activation conditions, and the like, carbonaceous fibers having various pore characteristics can be produced. For example, when the THM precursor is adsorbed and removed, the pore volume due to mesopores having a pore diameter of about 15 to 150 angstroms is 0.25 to 0.6 c.
It suffices to produce a modified carbonaceous fiber of about c / g. In addition, other applications (catalyst carrier, adsorption and removal of harmful gas in gas phase, adsorption and removal of harmful component in liquid phase, etc.)
It is also possible to obtain modified carbonaceous fibers having different pore characteristics.

【0013】[0013]

【発明の効果】原料炭素質繊維を先ず酸化剤により処理
するという新規な手段を採用する本発明によれば、TH
M前駆物質の吸着除去に適した細孔特性を有する改質さ
れた炭素質繊維が得られる。この様な改質炭素質繊維
は、水道水の高度処理に特に好適である。
INDUSTRIAL APPLICABILITY According to the present invention which adopts a novel means of treating raw carbonaceous fiber with an oxidizing agent, TH
A modified carbonaceous fiber having pore characteristics suitable for adsorptive removal of M precursor is obtained. Such modified carbonaceous fibers are particularly suitable for advanced treatment of tap water.

【0014】また、本発明によれば、酸化剤処理の条
件、アルカリ土類金属の担持量、賦活条件などを適宜調
整することにより、炭素質繊維の細孔特性を任意に調整
し得るので、水道水の処理以外の用途に適した改質炭素
質繊維をも製造することができる。
Further, according to the present invention, the pore characteristics of the carbonaceous fiber can be arbitrarily adjusted by appropriately adjusting the conditions of the oxidizing agent treatment, the amount of the alkaline earth metal supported, the activation conditions and the like. Modified carbonaceous fibers suitable for applications other than tap water treatment can also be produced.

【0015】さらにまた、本発明方法は、0.1m2
g程度という表面積が極めて小さい炭素質繊維をも改質
することができるので、有用である。
Furthermore, the method of the present invention comprises 0.1 m 2 /
It is useful because carbonaceous fibers having a very small surface area of about g can be modified.

【0016】[0016]

【実施例】以下に実施例および実験例を示し、本発明の
特徴とするところをより一層明確にする。
EXAMPLES Examples and experimental examples will be shown below to further clarify the features of the present invention.

【0017】実施例1 ACF(商標“A−10”、(株)アドール製、BET
法による比表面積1080m2 /g、半径10オングス
トローム以下の細孔による細孔容積が全細孔容積=0.
57ml/gの95%)3gを次亜塩素酸ナトリウム
(有効塩素5%以上)1.8%水溶液400mlに浸漬
し、100℃で20分間沸騰させた後、4.8%酢酸カ
ルシウム水溶液に10分間浸漬し、減圧条件下に置いて
カルシウム成分をACF内の細孔に吸着させ、次いでA
CFを遠心脱水に供した。この結果、ACFには、酢酸
カルシウム3.0%が担持されていた。
Example 1 ACF (trademark "A-10", manufactured by Adol Co., BET
Specific surface area of 1080 m 2 / g and pore volume of pores with a radius of 10 angstroms or less, the total pore volume = 0.
57 g / 95% of 57 ml / g) was immersed in 400 ml of a 1.8% aqueous solution of sodium hypochlorite (effective chlorine 5% or more), boiled at 100 ° C. for 20 minutes, and then added to a 4.8% calcium acetate aqueous solution to give 10 Immerse for a minute and place under reduced pressure to adsorb the calcium component to the pores inside the ACF, then
The CF was subjected to centrifugal dehydration. As a result, 3.0% of calcium acetate was supported on the ACF.

【0018】次いで、上記の様にして処理されたACF
を管状炉に入れ、炉内をHeにより置換した後、昇温を
開始し、管内温度が600℃となった時点で、水蒸気を
導入し、水蒸気分圧50%、700℃の条件下に95分
間賦活改質処理を行ない、次いで希釈塩酸溶液に浸漬し
て12時間放置し、さらにイオン交換水中で沸騰させ、
脱灰を行なって、本発明の改質ACF 1.9gを得
た。
Then, the ACF treated as described above
Was placed in a tubular furnace, and after the inside of the furnace was replaced with He, temperature rising was started, and when the temperature in the tube reached 600 ° C, steam was introduced, and steam partial pressure was 50% and the temperature was 700 ° C under conditions of 95%. Activated modification treatment for minutes, then immersed in dilute hydrochloric acid solution and left for 12 hours, then boiled in ion-exchanged water,
Decalcification was performed to obtain 1.9 g of the modified ACF of the present invention.

【0019】かくして得られた改質ACFは、比表面積
1100m2 /gであり、半径15〜150オングスト
ロームのメソポアによる細孔容積は、全細孔容積(1.
0ml/g)の50%以上であった。
The modified ACF thus obtained has a specific surface area of 1100 m 2 / g, and the pore volume due to mesopores having a radius of 15 to 150 angstroms is the total pore volume (1.
0 ml / g) was 50% or more.

【0020】実験例1 実施例1で得られた改質ACF0.2gを糖蜜−リン酸
緩衝液120mlに加え、60℃で60分間振盪して糖蜜
を吸着させた後、濾液を膜濾過し、濾液をUV
(E420 )で色度計測し、その脱色率を求めたところ、
90%以上であった。改質前のACFについて同様にし
て求めた脱色率は、2.3%であった。
Experimental Example 1 0.2 g of the modified ACF obtained in Example 1 was added to 120 ml of molasses-phosphate buffer solution, shaken at 60 ° C. for 60 minutes to adsorb molasses, and then the filtrate was subjected to membrane filtration. UV of the filtrate
When the chromaticity was measured with (E 420 ) and the decolorization rate was calculated,
It was 90% or more. The decolorization rate similarly obtained for the ACF before modification was 2.3%.

【0021】糖蜜分子は半径14オングストローム以上
の細孔により吸着されることが知られているので、上記
の結果から、本発明方法により、ACFの細孔特性が著
るしく改善されていることが明らかである。
Molasses molecules are known to be adsorbed by pores having a radius of 14 angstroms or more. Therefore, from the above results, the method of the present invention significantly improves the pore characteristics of ACF. it is obvious.

【0022】実験例2 江戸川河川水に凝集剤として硫酸アルミニウムをアルミ
ニウムとして40ppmの割合で加え、凝集沈澱処理し
た後、濾過した。
Experimental Example 2 Aluminum sulfate as a coagulant was added to Edogawa river water at a ratio of 40 ppm as aluminum, and the mixture was subjected to coagulation-precipitation treatment and then filtered.

【0023】次いで、上記の処理水300mlを三角フラ
スコに取り、これに実施例1で得られた改質ACF30
mgを添加した後、三角フラスコを密栓し、20℃で3
時間マグネチックスターラーにより攪拌し、処理水中に
含まれるTHM前駆物質を吸着させた。
Next, 300 ml of the above treated water was placed in an Erlenmeyer flask, and the modified ACF30 obtained in Example 1 was added thereto.
After adding mg, the Erlenmeyer flask was tightly capped and the mixture was kept at 20 ° C. for 3 minutes.
The mixture was stirred by a magnetic stirrer for an hour to adsorb the THM precursor contained in the treated water.

【0024】次いで、ヘッドスペース法により、改質A
CFによるTHM前駆物質の吸着性能を測定したとこ
ろ、340μg/gであった。改質前のACFによるT
HM前駆物質(生成能)の吸着性能は60μg/gであ
ったので、THM前駆物質の吸着性能が著しく改善され
ていることが明らかである。
Then, the modified A is prepared by the headspace method.
When the adsorption performance of the THM precursor by CF was measured, it was 340 μg / g. T by ACF before reforming
Since the adsorption performance of the HM precursor (formability) was 60 μg / g, it is clear that the THM precursor adsorption performance was significantly improved.

【0025】なお、実験に使用した原水中のTHM前駆
物質の濃度は、43μg/lであった。
The THM precursor concentration in the raw water used in the experiment was 43 μg / l.

【0026】実施例2 BET法による比表面積0.2m2 /gのピッチ系炭素
質繊維を筒状炉に入れ、Heで炉内空気を置換した後、
昇温し、700℃で10分間熱処理した。熱処理後のピ
ッチ系炭素質繊維を5%次亜塩素酸ナトリウム水溶液に
浸漬し、100℃で20分間沸騰させた後、9.6%酢
酸カルシウム水溶液に15分間浸漬し、減圧条件下にお
いてカルシウム成分を担持させた。
Example 2 Pitch-based carbonaceous fibers having a specific surface area of 0.2 m 2 / g according to the BET method were placed in a cylindrical furnace, and the air inside the furnace was replaced with He.
The temperature was raised and heat treatment was performed at 700 ° C. for 10 minutes. The pitch-based carbonaceous fiber after the heat treatment is dipped in a 5% sodium hypochlorite aqueous solution, boiled at 100 ° C. for 20 minutes, and then dipped in a 9.6% calcium acetate aqueous solution for 15 minutes to obtain a calcium component under reduced pressure. Was carried.

【0027】次いで、上記の様にして処理されたピッチ
系炭素質繊維を管状炉に入れ、炉内をHeにより置換し
た後、昇温を開始し、管内温度が600℃となった時点
で、水蒸気を導入し、炉内温度820℃で120分間保
持して、賦活改質処理を行ない、本発明の改質炭素質繊
維を得た。
Next, the pitch-based carbonaceous fiber treated as described above is put into a tubular furnace, the inside of the furnace is replaced with He, and then the temperature rise is started, and when the temperature inside the tube reaches 600 ° C., Steam was introduced and the furnace temperature was kept at 820 ° C. for 120 minutes to carry out activation reforming treatment to obtain a modified carbonaceous fiber of the present invention.

【0028】実験例3 実施例2で得られた改質炭素質繊維0.2gを糖蜜−リ
ン酸緩衝液120mlに加え、60℃で60分間にわたり
糖蜜を吸着させた後、濾液を膜濾過し、濾液をUV(E
420 )で色度計測し、その脱色率を求めたところ、7
6.8%以上であった。
Experimental Example 3 0.2 g of the modified carbonaceous fiber obtained in Example 2 was added to 120 ml of molasses-phosphate buffer to adsorb molasses at 60 ° C. for 60 minutes, and then the filtrate was subjected to membrane filtration. , The filtrate is UV (E
The chromaticity was measured at 420 ) and the decolorization rate was calculated to be 7
It was 6.8% or more.

【0029】上記の結果からも、本発明方法により、炭
素質繊維の細孔特性が著しく改質されていることが明ら
かである。
From the above results, it is clear that the pore characteristics of the carbonaceous fiber are remarkably modified by the method of the present invention.

【0030】実施例3 (イ) BET法による比表面積1050m2 /gの炭
素質繊維(A)を水素ガス中800℃で80分間保持
し、冷却し、酢酸カルシウム(Caとして)の0.6%
溶液に10分間浸漬してCaを担持させた後、表1に示
す条件下に水蒸気改質し、ACF(B)を得た。
Example 3 (a) The carbonaceous fiber (A) having a specific surface area of 1050 m 2 / g by the BET method was kept in hydrogen gas at 800 ° C. for 80 minutes and cooled to obtain 0.6 of calcium acetate (as Ca). %
After immersing in the solution for 10 minutes to support Ca, steam reforming was performed under the conditions shown in Table 1 to obtain ACF (B).

【0031】(ロ) BET法による比表面積1050
2 /gの炭素質繊維(A)を酢酸カルシウム(Caと
して)の0.6%溶液に10分間浸漬してCaを担持さ
せた後、表1に示す条件下に水蒸気改質し、ACF
(C)を得た。
(B) Specific surface area of 1050 by BET method
m 2 / g of carbonaceous fiber (A) was immersed in a 0.6% solution of calcium acetate (as Ca) for 10 minutes to support Ca, and then steam reformed under the conditions shown in Table 1 to obtain ACF.
(C) was obtained.

【0032】(ハ) BET法による比表面積1050
2 /gの炭素質繊維(A)を0.1%過酸化水素水に
100℃で20分間浸漬(親水化処理)し、次いで酢酸
カルシウム(Caとして)の0.6%溶液に10分間浸
漬してCaを担持させた後、表1に示す条件下に水蒸気
改質し、ACF(D)を得た。
(C) Specific surface area of 1050 by BET method
Immerse m 2 / g of carbonaceous fiber (A) in 0.1% hydrogen peroxide solution at 100 ° C. for 20 minutes (hydrophilization treatment), and then in a 0.6% solution of calcium acetate (as Ca) for 10 minutes. After immersing and supporting Ca, steam reforming was performed under the conditions shown in Table 1 to obtain ACF (D).

【0033】(ニ) BET法による比表面積1050
2 /gの炭素質繊維(A)を20%次亜塩素酸ナトリ
ウム水溶液に100℃で20分間浸漬(親水化処理)
し、次いで酢酸カルシウム(Caとして)の0.6%溶
液に10分間浸漬してCaを担持させた後、表1に示す
条件下に水蒸気改質し、ACF(E)を得た。
(D) Specific surface area of 1050 by BET method
Immerse m 2 / g carbonaceous fiber (A) in a 20% aqueous solution of sodium hypochlorite for 20 minutes at 100 ° C. (hydrophilization treatment)
Then, it was immersed in a 0.6% solution of calcium acetate (as Ca) for 10 minutes to support Ca, and steam reformed under the conditions shown in Table 1 to obtain ACF (E).

【0034】このようにして得られた4種のACFを実
施例3と同様の試験に供して、糖蜜脱色率を測定した。
収率および脱色率の結果を表1に併せて示す。
The four kinds of ACF thus obtained were subjected to the same test as in Example 3 to measure the molasses decolorization rate.
The results of yield and decolorization rate are also shown in Table 1.

【0035】 表 1 賦活温度×時 間 収 率 糖蜜脱色率 (℃) (分) (%) (%) ACF(A) − − 2.3 ACF(B) 840×150 65.0 10.7 ACF(C) 830×150 66.2 27.2 ACF(D) 815×150 66.8 39.1 ACF(E) 740×87 61.8 99.0 表1に示す結果から、ACFにCaを付与した後、賦活
することにより(ACF(B)乃至(E)参照)、AC
Fの糖蜜脱色率が改善されていることが明らかである。
Table 1 Activation temperature x time yield Molasses decolorization rate (° C) (min) (%) (%) ACF (A) -2.3 ACF (B) 840 x 150 65.0 10.7 ACF (C) 830 × 150 66.2 27.2 ACF (D) 815 × 150 66.8 39.1 ACF (E) 740 × 87 61.8 99.0 From the results shown in Table 1, ACF was provided with Ca. After that, by activating (see ACF (B) to (E)), AC
It is clear that the molasses decolorization rate of F is improved.

【0036】また、Caの付与に先立って、酸化剤を用
いて予め親水化処理を行なっておく場合(ACF(D)
および(E)参照)には、親水化処理を行なわない場合
(ACF(B)および(C)参照)に比して、糖蜜脱色
率が高く、低温度且つ短時間で賦活を行ない得ることが
明らかである。
In the case where a hydrophilic treatment is performed in advance using an oxidizing agent prior to the addition of Ca (ACF (D))
And (E)), the molasses decolorization rate is high and activation can be performed at low temperature and in a short time as compared with the case where no hydrophilic treatment is performed (see ACF (B) and (C)). it is obvious.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/28 D D01F 11/12 D06M 11/07 11/44 7199−3B D06M 7/00 A (72)発明者 森 忠弘 京都府宇治市宇治小桜23 ユニチカ株式会 社中央研究所内 (72)発明者 梶岡 慶三 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location C02F 1/28 D D01F 11/12 D06M 11/07 11/44 7199-3B D06M 7/00 A ( 72) Inventor Tadahiro Mori 23 Uji Kozakura, Uji City, Kyoto Prefecture Central Research Institute, Unitika Ltd. (72) Inventor Keizo Kajioka 4-1-2, Hiranocho, Chuo-ku, Osaka City, Osaka Prefecture Osaka Gas Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 比表面積0.1〜1200m2 /gの炭
素質繊維に酸化剤による親水化処理を施した後、アルカ
リ土類金属を担持せしめて、賦活処理を行なうことを特
徴とする炭素質繊維の改質方法。
1. A carbon which is characterized in that a carbonaceous fiber having a specific surface area of 0.1 to 1200 m 2 / g is subjected to a hydrophilic treatment with an oxidizing agent, and then an alkaline earth metal is supported on the carbonaceous fiber to carry out an activation treatment. Method for quality fiber.
JP4107261A 1992-04-27 1992-04-27 Method for modifying carbonaceous fiber Expired - Lifetime JP3013275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4107261A JP3013275B2 (en) 1992-04-27 1992-04-27 Method for modifying carbonaceous fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4107261A JP3013275B2 (en) 1992-04-27 1992-04-27 Method for modifying carbonaceous fiber

Publications (2)

Publication Number Publication Date
JPH05302216A true JPH05302216A (en) 1993-11-16
JP3013275B2 JP3013275B2 (en) 2000-02-28

Family

ID=14454567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4107261A Expired - Lifetime JP3013275B2 (en) 1992-04-27 1992-04-27 Method for modifying carbonaceous fiber

Country Status (1)

Country Link
JP (1) JP3013275B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104002A (en) * 2004-10-04 2006-04-20 Kuraray Chem Corp Activated carbon and its manufacturing method
JP2006307373A (en) * 2005-04-27 2006-11-09 Mitsubishi Heavy Ind Ltd Method for preparing active carbon fiber for desulfurization catalyst and active carbon fiber for desulfurization catalyst
CN100347357C (en) * 2006-01-26 2007-11-07 南京大学 Method for preparing nanometer carbon fiber with high specific surface area
JP2008006806A (en) * 2006-05-30 2008-01-17 Toyo Kohan Co Ltd Flocked metal plate, method of producing flocked metal plate, and roofing material and duct for air-conditioning system
JP2008050193A (en) * 2006-08-23 2008-03-06 Haruo Matsumoto Method for manufacturing high purity carbon, textile including obtained high purity carbon and body fixture using it
JP2008214784A (en) * 2007-02-28 2008-09-18 Mitsubishi Heavy Ind Ltd Activated carbon fiber and exhaust gas purification apparatus
JP2009526923A (en) * 2006-02-15 2009-07-23 バイエル・テクノロジー・サービシーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Catalytic etching of carbon fiber
JP2010207693A (en) * 2009-03-09 2010-09-24 Tokyo Metropolitan Industrial Technology Research Institute Adsorbent for volatile organic compound and manufacturing method thereof
KR20170035907A (en) 2014-07-25 2017-03-31 간사이네쯔카가꾸가부시끼가이샤 Activated carbon with excellent adsorption performance and process for producing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104002A (en) * 2004-10-04 2006-04-20 Kuraray Chem Corp Activated carbon and its manufacturing method
JP4704001B2 (en) * 2004-10-04 2011-06-15 クラレケミカル株式会社 Activated carbon and manufacturing method thereof
JP2006307373A (en) * 2005-04-27 2006-11-09 Mitsubishi Heavy Ind Ltd Method for preparing active carbon fiber for desulfurization catalyst and active carbon fiber for desulfurization catalyst
CN100347357C (en) * 2006-01-26 2007-11-07 南京大学 Method for preparing nanometer carbon fiber with high specific surface area
JP2009526923A (en) * 2006-02-15 2009-07-23 バイエル・テクノロジー・サービシーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Catalytic etching of carbon fiber
KR101354779B1 (en) * 2006-02-15 2014-01-22 바이엘 인텔렉쳐 프로퍼티 게엠베하 Catalytic etching of carbon fibres
JP2008006806A (en) * 2006-05-30 2008-01-17 Toyo Kohan Co Ltd Flocked metal plate, method of producing flocked metal plate, and roofing material and duct for air-conditioning system
JP2008050193A (en) * 2006-08-23 2008-03-06 Haruo Matsumoto Method for manufacturing high purity carbon, textile including obtained high purity carbon and body fixture using it
JP2008214784A (en) * 2007-02-28 2008-09-18 Mitsubishi Heavy Ind Ltd Activated carbon fiber and exhaust gas purification apparatus
JP2010207693A (en) * 2009-03-09 2010-09-24 Tokyo Metropolitan Industrial Technology Research Institute Adsorbent for volatile organic compound and manufacturing method thereof
KR20170035907A (en) 2014-07-25 2017-03-31 간사이네쯔카가꾸가부시끼가이샤 Activated carbon with excellent adsorption performance and process for producing same
US10105680B2 (en) 2014-07-25 2018-10-23 Kansai Coke And Chemicals Co., Ltd. Activated carbon with excellent adsorption performance and process for producing same

Also Published As

Publication number Publication date
JP3013275B2 (en) 2000-02-28

Similar Documents

Publication Publication Date Title
CA2057184C (en) Active carbon materials, process for the preparation thereof and the use thereof
US6623648B2 (en) Oxidation catalyst, method for preparing the same, method for recycling the same and method for treating wastewater using the same
JP5629578B2 (en) Oxidant-containing wastewater treatment agent, oxidant-containing wastewater treatment method, oxidant-containing wastewater treatment device, organic solvent purification agent, organic solvent purification method, and organic solvent purification device
Li et al. Preparation of activated carbon from Enteromorpha prolifera and its use on cationic red X-GRL removal
JP3013275B2 (en) Method for modifying carbonaceous fiber
US5368739A (en) Activated carbon oxidized by air at near ambient temperatures for the control of ph and in water treatment applications
CN116789133A (en) Olive pomace activated carbon, preparation method thereof and methylene blue removal method
FR2539319A1 (en) METHOD FOR SEPARATING BORATE IONS, ADSORBING THESE IONS AND PROCESS FOR PREPARING THE ADSORBENT
Zhang et al. Regeneration of 4-chlorophenol from spent powdered activated carbon by ultrasound
JP2967389B2 (en) Activated carbon fiber, method for producing the same, and water purifier using the activated carbon fiber as an adsorbent
EP2286886B1 (en) pH stable activated carbon
JP3539434B2 (en) Manufacturing method of high performance carbon material
JP2000313610A (en) Active carbon and water purifier using the same
CN115121232B (en) Titanium dioxide self-cleaning film and preparation method and application thereof
JPH0824636A (en) Production of adsorbent and water purifying apparatus using the same
Habuda-Stanić et al. Adsorption of humic acid from water using chemically modified bituminous coal-based activated carbons
JP2010274169A (en) Catalyst for decomposing hydrogen peroxide and method for producing the catalyst
JPH11240707A (en) Activated carbon
KR101927288B1 (en) Manufacturing method of surface modified activated carbon and the surface modified activated carbon manufacturing by the method
CN111111665A (en) Supported metal catalyst and preparation method thereof
KR100689693B1 (en) Manufacturing method of ultrapure water
JPS62152533A (en) Base material for removing trihalomethane
CN111298804A (en) Ozone catalytic oxidation catalyst for treating wastewater and preparation method thereof
CN114713259B (en) Preparation of cobalt carbon nitrogen hollow polyhedral catalyst and application thereof in degradation of emerging pollutants
JPH0312284A (en) Water treatment method