JP3013275B2 - Method for modifying carbonaceous fiber - Google Patents

Method for modifying carbonaceous fiber

Info

Publication number
JP3013275B2
JP3013275B2 JP4107261A JP10726192A JP3013275B2 JP 3013275 B2 JP3013275 B2 JP 3013275B2 JP 4107261 A JP4107261 A JP 4107261A JP 10726192 A JP10726192 A JP 10726192A JP 3013275 B2 JP3013275 B2 JP 3013275B2
Authority
JP
Japan
Prior art keywords
acf
carbonaceous fiber
treatment
fiber
carbonaceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4107261A
Other languages
Japanese (ja)
Other versions
JPH05302216A (en
Inventor
邦太朗 河添
忠弘 森
慶三 梶岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Unitika Ltd
Original Assignee
Osaka Gas Co Ltd
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Unitika Ltd filed Critical Osaka Gas Co Ltd
Priority to JP4107261A priority Critical patent/JP3013275B2/en
Publication of JPH05302216A publication Critical patent/JPH05302216A/en
Application granted granted Critical
Publication of JP3013275B2 publication Critical patent/JP3013275B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、炭素質繊維の改質方法
に関する。
The present invention relates to a method for modifying carbon fiber.

【0002】本明細書において、“%”とあるのは、
“重量%”を意味するものとする。
[0002] In this specification, "%" means
It means “% by weight”.

【0003】[0003]

【従来技術とその問題点】近年、工業用水、都市下水な
どによる河川、湖沼などの汚染の結果として、水道水に
も微量の有機物が含有されるにいたっている。これらの
有機物は、水道水のカビ臭の原因となり、また一部のも
のは塩素と反応して発癌性を有しているともいわれる有
害物質(例えば、トリハロメタンなど)を生成するの
で、水質確保のためには、今後より高度の処理を行なう
必要がある。
2. Description of the Related Art In recent years, tap water contains trace amounts of organic substances as a result of pollution of rivers, lakes and marshes by industrial water, municipal sewage and the like. These organic substances cause the mold odor of tap water, and some of them react with chlorine to generate harmful substances (eg, trihalomethane) which are said to have carcinogenicity. Therefore, it is necessary to perform more advanced processing in the future.

【0004】高度の水処理方法の代表的な例として、活
性炭処理方法が知られている。最近、これまで使用され
てきた粒状活性炭に代えて、廉価で吸着能の高いピッチ
系繊維状活性炭(以下特に必要でない限り、ACFとい
う)を使用して、水処理を行なうことが試みられてい
る。特に、特公昭63−67566号公報は、表面積が
30〜1200m2 /g、且つ細孔直径30〜300オ
ングストロームの細孔容積が0.1cc/g以下の炭素
質繊維にマグネシウム、カルシウム、バリウム、鉄、コ
バルト、ニッケルおよびマンガンの化合物の少なくとも
1種を担持させた落ち、酸化性ガス中または燃焼廃ガス
中で650〜1050℃で加熱処理して、賦活化処理を
施す活性炭素繊維の製造方法を開示しており、処理後に
は細孔直径30〜300オングストロームの細孔容積が
増加することが示されている。しかしながら、トリハロ
メタン(以下THMという)の前駆物質は、分子量の比
較的大きな物質が多いため、一般に半径10オングスト
ローム以下の微細孔(ミクロポア)の割合が多いACF
では、THM前駆物質の十分な吸着除去は、行ない得な
い。また、上記文献に開示された方法では、細孔直径が
20〜300オングストロームの細孔を増加させること
は、難しい。特にピッチ系ACFについては、上記文献
に記載された方法では、20〜300オングストローム
の細孔を増加させることは不可能であることが判明し
た。
[0004] As a typical example of the advanced water treatment method, an activated carbon treatment method is known. Recently, it has been attempted to carry out water treatment using a low-priced, high-adsorbing-pitch fibrous activated carbon (hereinafter referred to as ACF unless otherwise required) in place of the granular activated carbon used so far. . In particular, JP-B-63-67566 discloses magnesium, calcium, barium, carbonaceous fibers having a surface area of 30 to 1200 m 2 / g and a pore diameter of 30 to 300 angstroms and a pore volume of 0.1 cc / g or less. Method for producing activated carbon fiber in which at least one compound of iron, cobalt, nickel and manganese is supported, and the activated carbon fiber is subjected to a heat treatment at 650 to 1050 ° C. in an oxidizing gas or a combustion waste gas to be activated. And shows that the pore volume increases from 30 to 300 angstroms in pore diameter after treatment. However, since many precursors of trihalomethane (hereinafter referred to as THM) have relatively large molecular weights, the ACF generally has a large proportion of micropores having a radius of 10 Å or less.
Then, sufficient adsorption removal of the THM precursor cannot be performed. Further, it is difficult to increase the number of pores having a pore diameter of 20 to 300 Å by the method disclosed in the above document. In particular, with regard to pitch-based ACF, it has been found that it is impossible to increase the number of pores of 20 to 300 Å by the method described in the above document.

【0005】[0005]

【発明が解決しようとする課題】従って、本発明は、T
HM前駆物質の吸着除去を効果的に行ない得るACFの
製造方法を提供することを主な目的とする。
Accordingly, the present invention provides a T
A main object of the present invention is to provide a method for producing an ACF capable of effectively removing and removing an HM precursor.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記の様な
技術の現状に鑑みて種々研究を重ねた結果、炭素質繊維
に酸化剤による親水化処理を施し、触媒として特定の物
質を付与した後、水蒸気により賦活を行なう場合には、
半径が15〜150オングストローム程度の細孔(メソ
ポア)が増大して、THM前駆物質の十分な吸着除去を
行ない得る改質されたACFが得られることを見出し
た。
Means for Solving the Problems The present inventor has conducted various studies in view of the state of the art as described above, and as a result, has performed a hydrophilization treatment with an oxidizing agent on a carbonaceous fiber, and specified a specific substance as a catalyst. After activation, when activating by steam,
It has been found that pores (mesopores) having a radius of about 15 to 150 angstroms are increased to obtain a modified ACF capable of sufficiently adsorbing and removing the THM precursor.

【0007】すなわち、本発明は、下記の炭素質繊維の
改質方法を提供するものである:「比表面積0.1〜1
200m2 /gの炭素質繊維に酸化剤による親水化処理
を施した後、アルカリ土類金属を担持せしめて、賦活処
理を行なうことを特徴とする炭素質繊維の改質方法。」
本発明で原料として使用する炭素質繊維は、BET法に
よる比表面積0.1〜1200m2 /gの炭素質繊維で
ある。
That is, the present invention provides the following method for modifying carbonaceous fibers: "Specific surface area 0.1 to 1".
A method for modifying carbonaceous fiber, comprising: performing a hydrophilization treatment with an oxidizing agent on 200 m 2 / g of carbonaceous fiber, and then carrying an activation treatment by supporting an alkaline earth metal. "
The carbonaceous fiber used as a raw material in the present invention is a carbonaceous fiber having a specific surface area of 0.1 to 1200 m 2 / g by a BET method.

【0008】本発明においては、先ず、炭素繊維に対し
酸化剤による親水化処理(炭素繊維の表面酸化処理)を
施した後、アルカリ土類金属を担持させ、賦活処理を行
なう。酸化剤としては、次亜塩素酸ナトリウム、次亜塩
素酸カリウム、過酸化水素、塩素ガス(含湿)、などが
例示され、アルカリ土類金属源としては、酢酸カルシウ
ム、ギ酸カルシウム、シュウ酸カルシウム、酢酸バリウ
ム、酢酸バリウム、クエン酸カルシウムなどが例示され
る。これら酸化剤による処理およびアルカリ土類金属の
付与方法は、特に限定されるものではないが、炭素質繊
維をこれらを含む水溶液に常圧乃至減圧下に浸漬する方
法、炭素質繊維をこれらを含む水溶液に常圧乃至減圧下
に浸漬し、沸騰させる方法、炭素質繊維にこれらを含む
水溶液をスプレーする方法などがある。次亜塩素酸ナト
リウムなどの酸化剤(以下特に必要でない限り、単に次
亜塩素酸ナトリウムという)による親水化処理および酢
酸カルシウムなどのアルカリ土類金属(以下特に必要で
ない限り、単に酢酸カルシウムという)の担持は、炭素
質繊維を次亜塩素酸ナトリウム水溶液に常圧下に浸漬
し、沸騰させた後、酢酸カルシウム水溶液に浸漬する方
法がより好ましい。
In the present invention, first, the carbon fiber is subjected to a hydrophilic treatment (oxidation treatment of the surface of the carbon fiber) with an oxidizing agent, and then an alkaline earth metal is carried thereon to perform an activation treatment. Examples of the oxidizing agent include sodium hypochlorite, potassium hypochlorite, hydrogen peroxide, and chlorine gas (containing moisture). Examples of the alkaline earth metal source include calcium acetate, calcium formate, and calcium oxalate. , Barium acetate, barium acetate, calcium citrate and the like. The method of treatment with the oxidizing agent and the method of applying the alkaline earth metal are not particularly limited, but a method of immersing the carbonaceous fiber in an aqueous solution containing the same under normal pressure or reduced pressure, including the method of including the carbonaceous fiber There are a method of immersing in an aqueous solution under normal pressure or reduced pressure and boiling, and a method of spraying an aqueous solution containing these on carbonaceous fibers. Hydrophilic treatment with an oxidizing agent such as sodium hypochlorite (hereinafter, unless otherwise required, simply sodium hypochlorite) and treatment of an alkaline earth metal such as calcium acetate (hereinafter, simply referred to as calcium acetate unless otherwise required) It is more preferable that the carbon fiber is immersed in an aqueous solution of sodium hypochlorite under normal pressure, boiled, and then immersed in an aqueous solution of calcium acetate.

【0009】炭素質繊維に対する酸化剤の付与量および
アルカリ土類金属の担持量は、炭素質繊維の改質の程度
などにより変わり得るが、例えば、炭素質繊維に対し、
次亜塩素酸ナトリウム(有効塩素5%以上)1〜25%
程度、酢酸カルシウム(Caとして)0.1〜2%程度
の範囲内にある。次亜塩素酸ナトリウムの量が少なすぎ
る場合には、炭素表面の親水化が十分に行なわれないの
で、触媒としてのCaの担持量が低下して、賦活処理の
反応速度が遅くなる。この際、反応速度を高めるため
に、賦活温度を高くすると、改質ACFの収率が低下す
る。一方、次亜塩素酸ナトリウムの量が多すぎる場合に
は、改質されたACFの強度が低下することがある。こ
れに対し、酢酸カルシウムの量が少なすぎる場合には、
メソ細孔の十分な開孔ができず、ミクロポアのみが増加
する。酢酸カルシウムの量が多すぎる場合には、細孔の
開孔以外でも炭素表面の浸蝕が起こり、収率の低下およ
び改質されたACFの強度低下という問題を生ずる。
The amount of the oxidizing agent applied to the carbonaceous fiber and the amount of the alkaline earth metal carried can vary depending on the degree of modification of the carbonaceous fiber.
Sodium hypochlorite (effective chlorine 5% or more) 1 to 25%
Calcium acetate (as Ca) is in the range of about 0.1 to 2%. When the amount of sodium hypochlorite is too small, the surface of carbon is not sufficiently hydrophilized, so that the amount of Ca supported as a catalyst decreases, and the reaction rate of the activation treatment decreases. At this time, when the activation temperature is increased to increase the reaction rate, the yield of the modified ACF decreases. On the other hand, if the amount of sodium hypochlorite is too large, the strength of the modified ACF may decrease. On the other hand, if the amount of calcium acetate is too small,
Mesopores cannot be sufficiently opened, and only micropores increase. If the amount of calcium acetate is too large, erosion of the carbon surface will occur other than at the opening of the fine pores, which causes a problem of a decrease in the yield and a decrease in the strength of the modified ACF.

【0010】次いで、上記の様にして酸化剤により処理
され、アルカリ土類金属を担持された炭素質繊維は、水
蒸気による賦活処理に供される。この改質のための水蒸
気賦活処理は常法に従って行なえば良く、特に限定され
るものではないが、例えば、酸化剤により処理され、ア
ルカリ土類金属を担持された炭素質繊維を容器内に収容
し、容器内の空気を不活性ガス(He、Ar、N2
ど)により置換した後、400〜900℃程度に昇温
し、次いで水蒸気を導入して、550〜900℃程度で
5〜60分間程度保持する。
Next, the carbonaceous fiber treated with the oxidizing agent and carrying the alkaline earth metal as described above is subjected to activation treatment with steam. The steam activation treatment for this reforming may be performed according to a conventional method, and is not particularly limited. For example, a carbonaceous fiber treated with an oxidizing agent and carrying an alkaline earth metal is contained in a container. After the air in the container is replaced with an inert gas (such as He, Ar, or N 2 ), the temperature is raised to about 400 to 900 ° C., and then steam is introduced. Hold for about a minute.

【0011】改質を終えた炭素質繊維は、必要に応じ、
酸洗浄などにより脱灰され、洗浄されて、目的とする製
品が得られる。
The modified carbonaceous fiber can be
Demineralized by acid washing or the like, and washed to obtain the desired product.

【0012】本発明方法によれば、酸化剤処理の条件、
アルカリ土類金属の担持量、賦活条件などを適宜調整す
ることにより、種々の細孔特性を有する炭素質繊維を製
造することができる。例えば、THM前駆物質の吸着除
去を行なう場合には、孔径15〜150オングストロー
ム程度のメソポアによる細孔容積が0.25〜0.6c
c/g程度である改質炭素質繊維を製造すれば良い。ま
た、その他の用途(触媒担体、気相における有害ガスの
吸着除去材、液相における有害成分の吸着除去材など)
に応じて、異なる細孔特性を有する改質炭素質繊維を得
ることもできる。
According to the method of the present invention, the conditions of the oxidizing agent treatment,
By appropriately adjusting the amount of alkaline earth metal carried, the activation conditions, and the like, carbonaceous fibers having various pore characteristics can be produced. For example, when performing the adsorption removal of the THM precursor, the pore volume of a mesopore having a pore diameter of about 15 to 150 Å is 0.25 to 0.6 c.
What is necessary is just to produce a modified carbonaceous fiber of about c / g. In addition, other uses (catalyst carrier, material for removing and removing harmful gas in gas phase, material for removing and removing harmful components in liquid phase, etc.)
The modified carbonaceous fibers having different pore characteristics can also be obtained depending on the conditions.

【0013】[0013]

【発明の効果】原料炭素質繊維を先ず酸化剤により処理
するという新規な手段を採用する本発明によれば、TH
M前駆物質の吸着除去に適した細孔特性を有する改質さ
れた炭素質繊維が得られる。この様な改質炭素質繊維
は、水道水の高度処理に特に好適である。
According to the present invention, a novel means of first treating raw carbonaceous fiber with an oxidizing agent is used.
A modified carbonaceous fiber having pore characteristics suitable for adsorption removal of the M precursor is obtained. Such a modified carbonaceous fiber is particularly suitable for advanced treatment of tap water.

【0014】また、本発明によれば、酸化剤処理の条
件、アルカリ土類金属の担持量、賦活条件などを適宜調
整することにより、炭素質繊維の細孔特性を任意に調整
し得るので、水道水の処理以外の用途に適した改質炭素
質繊維をも製造することができる。
According to the present invention, the pore characteristics of the carbonaceous fiber can be arbitrarily adjusted by appropriately adjusting the conditions of the oxidizing agent treatment, the supported amount of the alkaline earth metal, the activation conditions, and the like. Modified carbonaceous fibers suitable for uses other than tap water treatment can also be produced.

【0015】さらにまた、本発明方法は、0.1m2
g程度という表面積が極めて小さい炭素質繊維をも改質
することができるので、有用である。
[0015] Furthermore, the method of the present invention is characterized in that 0.1 m 2 /
This is useful because it can modify carbonaceous fibers having an extremely small surface area of about g.

【0016】[0016]

【実施例】以下に実施例および実験例を示し、本発明の
特徴とするところをより一層明確にする。
EXAMPLES Examples and experimental examples will be shown below to further clarify the features of the present invention.

【0017】実施例1 ACF(商標“A−10”、(株)アドール製、BET
法による比表面積1080m2 /g、半径10オングス
トローム以下の細孔による細孔容積が全細孔容積=0.
57ml/gの95%)3gを次亜塩素酸ナトリウム
(有効塩素5%以上)1.8%水溶液400mlに浸漬
し、100℃で20分間沸騰させた後、4.8%酢酸カ
ルシウム水溶液に10分間浸漬し、減圧条件下に置いて
カルシウム成分をACF内の細孔に吸着させ、次いでA
CFを遠心脱水に供した。この結果、ACFには、酢酸
カルシウム3.0%が担持されていた。
Example 1 ACF (trade name "A-10", manufactured by Ador Co., Ltd., BET)
The pore volume of pores having a specific surface area of 1080 m 2 / g and a radius of 10 angstrom or less is determined by the total method.
3 g of 57 ml / g (95%) is immersed in 400 ml of a 1.8% aqueous solution of sodium hypochlorite (effective chlorine 5% or more), boiled at 100 ° C. for 20 minutes, and then placed in a 4.8% aqueous solution of calcium acetate. Immersion for 5 minutes and put under reduced pressure condition to allow the calcium component to be adsorbed on the pores in the ACF.
CF was subjected to centrifugal dehydration. As a result, 3.0% of calcium acetate was supported on the ACF.

【0018】次いで、上記の様にして処理されたACF
を管状炉に入れ、炉内をHeにより置換した後、昇温を
開始し、管内温度が600℃となった時点で、水蒸気を
導入し、水蒸気分圧50%、700℃の条件下に95分
間賦活改質処理を行ない、次いで希釈塩酸溶液に浸漬し
て12時間放置し、さらにイオン交換水中で沸騰させ、
脱灰を行なって、本発明の改質ACF 1.9gを得
た。
Next, the ACF treated as described above
Was placed in a tubular furnace, and the inside of the furnace was replaced with He. Then, the temperature was started. When the temperature in the tube reached 600 ° C., steam was introduced, and 95% of steam was introduced under the conditions of a partial pressure of steam of 50% and 700 ° C. For 5 minutes, then immersed in a diluted hydrochloric acid solution, left for 12 hours, and further boiled in deionized water.
Decalcification was performed to obtain 1.9 g of the modified ACF of the present invention.

【0019】かくして得られた改質ACFは、比表面積
1100m2 /gであり、半径15〜150オングスト
ロームのメソポアによる細孔容積は、全細孔容積(1.
0ml/g)の50%以上であった。
The modified ACF thus obtained has a specific surface area of 1100 m 2 / g, and the pore volume of mesopores having a radius of 15 to 150 Å is the total pore volume (1.
0 ml / g).

【0020】実験例1 実施例1で得られた改質ACF0.2gを糖蜜−リン酸
緩衝液120mlに加え、60℃で60分間振盪して糖蜜
を吸着させた後、濾液を膜濾過し、濾液をUV
(E420 )で色度計測し、その脱色率を求めたところ、
90%以上であった。改質前のACFについて同様にし
て求めた脱色率は、2.3%であった。
Experimental Example 1 0.2 g of the modified ACF obtained in Example 1 was added to 120 ml of molasses-phosphate buffer, and the mixture was shaken at 60 ° C. for 60 minutes to adsorb molasses, and the filtrate was subjected to membrane filtration. UV filtrate
When the chromaticity was measured by ( E420 ) and the decolorization rate was obtained,
90% or more. The bleaching ratio similarly obtained for the ACF before the modification was 2.3%.

【0021】糖蜜分子は半径14オングストローム以上
の細孔により吸着されることが知られているので、上記
の結果から、本発明方法により、ACFの細孔特性が著
るしく改善されていることが明らかである。
Since molasses molecules are known to be adsorbed by pores having a radius of 14 Å or more, the above results indicate that the pore properties of ACF are significantly improved by the method of the present invention. it is obvious.

【0022】実験例2 江戸川河川水に凝集剤として硫酸アルミニウムをアルミ
ニウムとして40ppmの割合で加え、凝集沈澱処理し
た後、濾過した。
Experimental Example 2 Aluminum sulfate was added as a coagulant at a ratio of 40 ppm as aluminum to Edogawa river water, subjected to coagulation sedimentation treatment, and then filtered.

【0023】次いで、上記の処理水300mlを三角フラ
スコに取り、これに実施例1で得られた改質ACF30
mgを添加した後、三角フラスコを密栓し、20℃で3
時間マグネチックスターラーにより攪拌し、処理水中に
含まれるTHM前駆物質を吸着させた。
Next, 300 ml of the above treated water was placed in an Erlenmeyer flask, and the modified ACF30 obtained in Example 1 was added thereto.
After adding mg, the Erlenmeyer flask was stoppered tightly,
The mixture was stirred with a magnetic stirrer for an hour to adsorb the THM precursor contained in the treated water.

【0024】次いで、ヘッドスペース法により、改質A
CFによるTHM前駆物質の吸着性能を測定したとこ
ろ、340μg/gであった。改質前のACFによるT
HM前駆物質(生成能)の吸着性能は60μg/gであ
ったので、THM前駆物質の吸着性能が著しく改善され
ていることが明らかである。
Next, the modified A
When the adsorption performance of the THM precursor by CF was measured, it was 340 μg / g. T by ACF before reforming
Since the adsorption performance of the HM precursor (forming ability) was 60 μg / g, it is clear that the adsorption performance of the THM precursor was significantly improved.

【0025】なお、実験に使用した原水中のTHM前駆
物質の濃度は、43μg/lであった。
The concentration of the THM precursor in the raw water used in the experiment was 43 μg / l.

【0026】実施例2 BET法による比表面積0.2m2 /gのピッチ系炭素
質繊維を筒状炉に入れ、Heで炉内空気を置換した後、
昇温し、700℃で10分間熱処理した。熱処理後のピ
ッチ系炭素質繊維を5%次亜塩素酸ナトリウム水溶液に
浸漬し、100℃で20分間沸騰させた後、9.6%酢
酸カルシウム水溶液に15分間浸漬し、減圧条件下にお
いてカルシウム成分を担持させた。
Example 2 A pitch-based carbonaceous fiber having a specific surface area of 0.2 m 2 / g by a BET method was put into a cylindrical furnace, and the air in the furnace was replaced with He.
The temperature was raised and heat treatment was performed at 700 ° C. for 10 minutes. The heat-treated pitch-based carbonaceous fiber is immersed in a 5% aqueous sodium hypochlorite solution, boiled at 100 ° C. for 20 minutes, and then immersed in a 9.6% aqueous calcium acetate solution for 15 minutes. Was carried.

【0027】次いで、上記の様にして処理されたピッチ
系炭素質繊維を管状炉に入れ、炉内をHeにより置換し
た後、昇温を開始し、管内温度が600℃となった時点
で、水蒸気を導入し、炉内温度820℃で120分間保
持して、賦活改質処理を行ない、本発明の改質炭素質繊
維を得た。
Next, the pitch-based carbonaceous fiber treated as described above is put into a tubular furnace, and the inside of the furnace is replaced with He. Then, the temperature is increased. When the temperature in the tube reaches 600 ° C., Water vapor was introduced, and the temperature was maintained at 820 ° C. in the furnace for 120 minutes to perform an activation reforming treatment, thereby obtaining a modified carbonaceous fiber of the present invention.

【0028】実験例3 実施例2で得られた改質炭素質繊維0.2gを糖蜜−リ
ン酸緩衝液120mlに加え、60℃で60分間にわたり
糖蜜を吸着させた後、濾液を膜濾過し、濾液をUV(E
420 )で色度計測し、その脱色率を求めたところ、7
6.8%以上であった。
Experimental Example 3 0.2 g of the modified carbonaceous fiber obtained in Example 2 was added to 120 ml of molasses-phosphate buffer, the molasses was adsorbed at 60 ° C. for 60 minutes, and the filtrate was subjected to membrane filtration. And the filtrate was UV (E
420 ), the chromaticity was measured, and the decolorization rate was determined.
It was 6.8% or more.

【0029】上記の結果からも、本発明方法により、炭
素質繊維の細孔特性が著しく改質されていることが明ら
かである。
From the above results, it is apparent that the pore characteristics of the carbonaceous fiber are significantly improved by the method of the present invention.

【0030】実施例3 (イ) BET法による比表面積1050m2 /gの炭
素質繊維(A)を水素ガス中800℃で80分間保持
し、冷却し、酢酸カルシウム(Caとして)の0.6%
溶液に10分間浸漬してCaを担持させた後、表1に示
す条件下に水蒸気改質し、ACF(B)を得た。
Example 3 (A) A carbonaceous fiber (A) having a specific surface area of 1050 m 2 / g by a BET method was kept in a hydrogen gas at 800 ° C. for 80 minutes, cooled, and cooled to 0.6% of calcium acetate (as Ca). %
After Ca was immersed in the solution for 10 minutes to carry Ca, steam reforming was performed under the conditions shown in Table 1 to obtain ACF (B).

【0031】(ロ) BET法による比表面積1050
2 /gの炭素質繊維(A)を酢酸カルシウム(Caと
して)の0.6%溶液に10分間浸漬してCaを担持さ
せた後、表1に示す条件下に水蒸気改質し、ACF
(C)を得た。
(B) Specific surface area by BET method 1050
m 2 / g of carbonaceous fiber (A) was immersed in a 0.6% solution of calcium acetate (as Ca) for 10 minutes to carry Ca, then steam reformed under the conditions shown in Table 1, and ACF
(C) was obtained.

【0032】(ハ) BET法による比表面積1050
2 /gの炭素質繊維(A)を0.1%過酸化水素水に
100℃で20分間浸漬(親水化処理)し、次いで酢酸
カルシウム(Caとして)の0.6%溶液に10分間浸
漬してCaを担持させた後、表1に示す条件下に水蒸気
改質し、ACF(D)を得た。
(C) Specific surface area of 1050 by BET method
m 2 / g carbonaceous fiber (A) is immersed (hydrophilized) in 0.1% hydrogen peroxide solution at 100 ° C. for 20 minutes and then in a 0.6% solution of calcium acetate (as Ca) for 10 minutes After immersion to carry Ca, steam reforming was performed under the conditions shown in Table 1 to obtain ACF (D).

【0033】(ニ) BET法による比表面積1050
2 /gの炭素質繊維(A)を20%次亜塩素酸ナトリ
ウム水溶液に100℃で20分間浸漬(親水化処理)
し、次いで酢酸カルシウム(Caとして)の0.6%溶
液に10分間浸漬してCaを担持させた後、表1に示す
条件下に水蒸気改質し、ACF(E)を得た。
(D) Specific surface area by BET method 1050
m 2 / g carbonaceous fiber (A) is immersed in a 20% aqueous sodium hypochlorite solution at 100 ° C. for 20 minutes (hydrophilization treatment)
Then, the resultant was immersed in a 0.6% solution of calcium acetate (as Ca) for 10 minutes to carry Ca, and then subjected to steam reforming under the conditions shown in Table 1 to obtain ACF (E).

【0034】このようにして得られた4種のACFを実
施例3と同様の試験に供して、糖蜜脱色率を測定した。
収率および脱色率の結果を表1に併せて示す。
The four types of ACF thus obtained were subjected to the same test as in Example 3 to measure the molasses decolorization rate.
Table 1 also shows the results of the yield and the decolorization rate.

【0035】 表 1 賦活温度×時 間 収 率 糖蜜脱色率 (℃) (分) (%) (%) ACF(A) − − 2.3 ACF(B) 840×150 65.0 10.7 ACF(C) 830×150 66.2 27.2 ACF(D) 815×150 66.8 39.1 ACF(E) 740×87 61.8 99.0 表1に示す結果から、ACFにCaを付与した後、賦活
することにより(ACF(B)乃至(E)参照)、AC
Fの糖蜜脱色率が改善されていることが明らかである。
Table 1 Activation temperature x time yield Molasses decolorization rate (° C) (min) (%) (%) ACF (A)--2.3 ACF (B) 840 x 150 65.0 10.7 ACF (C) 830 × 150 66.2 27.2 ACF (D) 815 × 150 66.8 39.1 ACF (E) 740 × 87 61.8 99.0 From the results shown in Table 1, Ca was added to the ACF. After activation (see ACF (B) to (E)), AC
It is clear that the molasses decolorization rate of F is improved.

【0036】また、Caの付与に先立って、酸化剤を用
いて予め親水化処理を行なっておく場合(ACF(D)
および(E)参照)には、親水化処理を行なわない場合
(ACF(B)および(C)参照)に比して、糖蜜脱色
率が高く、低温度且つ短時間で賦活を行ない得ることが
明らかである。
In the case where a hydrophilization treatment is performed in advance using an oxidizing agent prior to the application of Ca (ACF (D)
And (E)), the molasses decolorization rate is higher than when no hydrophilization treatment is performed (see ACF (B) and (C)), and activation can be performed at low temperature and in a short time. it is obvious.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI D06M 11/44 D06M 7/00 A D06M 101:04 11/00 B (72)発明者 森 忠弘 京都府宇治市宇治小桜23 ユニチカ株式 会社中央研究所内 (72)発明者 梶岡 慶三 大阪府大阪市中央区平野町四丁目1番2 号 大阪瓦斯株式会社内 (56)参考文献 特開 昭59−1771(JP,A) 特公 昭63−67566(JP,B2) (58)調査した分野(Int.Cl.7,DB名) D01F 9/12 - 11/16 ────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI D06M 11/44 D06M 7/00 A D06M 101: 04 11/00 B (72) Inventor Tadahiro Mori 23 Uji Kozakura, Uji City, Kyoto Unitika (72) Inventor Keizo Kajioka 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Osaka Gas Co., Ltd. (56) References JP-A-59-1771 (JP, A) Akira Tokubo 63-67566 (JP, B2) (58) Field surveyed (Int. Cl. 7 , DB name) D01F 9/12-11/16

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 比表面積0.1〜1200m2 /gの炭
素質繊維に酸化剤による親水化処理を施した後、アルカ
リ土類金属を担持せしめて、賦活処理を行なうことを特
徴とする炭素質繊維の改質方法。
A carbonaceous fiber characterized in that a carbonaceous fiber having a specific surface area of 0.1 to 1200 m 2 / g is subjected to a hydrophilization treatment with an oxidizing agent, and then an alkaline earth metal is carried thereon to perform an activation treatment. For improving the quality of fiber.
JP4107261A 1992-04-27 1992-04-27 Method for modifying carbonaceous fiber Expired - Lifetime JP3013275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4107261A JP3013275B2 (en) 1992-04-27 1992-04-27 Method for modifying carbonaceous fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4107261A JP3013275B2 (en) 1992-04-27 1992-04-27 Method for modifying carbonaceous fiber

Publications (2)

Publication Number Publication Date
JPH05302216A JPH05302216A (en) 1993-11-16
JP3013275B2 true JP3013275B2 (en) 2000-02-28

Family

ID=14454567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4107261A Expired - Lifetime JP3013275B2 (en) 1992-04-27 1992-04-27 Method for modifying carbonaceous fiber

Country Status (1)

Country Link
JP (1) JP3013275B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4704001B2 (en) * 2004-10-04 2011-06-15 クラレケミカル株式会社 Activated carbon and manufacturing method thereof
JP4848135B2 (en) * 2005-04-27 2011-12-28 三菱重工業株式会社 Method for preparing activated carbon fiber for desulfurization catalyst and activated carbon fiber for desulfurization catalyst
CN100347357C (en) * 2006-01-26 2007-11-07 南京大学 Method for preparing nanometer carbon fiber with high specific surface area
DE102006007208B3 (en) * 2006-02-15 2007-07-05 RUHR-UNIVERSITäT BOCHUM Carbon fiber e.g. multi-walled nano fiber, upper surface etching method for e.g. biosensor, involves functionalizing upper surface of carbon nanofibers by oxidative treatment, where fibers are made of polyacrynitrile
JP4819722B2 (en) * 2006-05-30 2011-11-24 東洋鋼鈑株式会社 Flocked metal plate, method for manufacturing flocked metal plate, roofing material and duct for air conditioning equipment
JP2008050193A (en) * 2006-08-23 2008-03-06 Haruo Matsumoto Method for manufacturing high purity carbon, textile including obtained high purity carbon and body fixture using it
JP2008214784A (en) * 2007-02-28 2008-09-18 Mitsubishi Heavy Ind Ltd Activated carbon fiber and exhaust gas purification apparatus
JP5231294B2 (en) * 2009-03-09 2013-07-10 地方独立行政法人 東京都立産業技術研究センター Volatile organic compound adsorbent and method for producing the same
JP5886383B2 (en) 2014-07-25 2016-03-16 関西熱化学株式会社 Activated carbon with excellent adsorption performance and method for producing the same

Also Published As

Publication number Publication date
JPH05302216A (en) 1993-11-16

Similar Documents

Publication Publication Date Title
CA2057184C (en) Active carbon materials, process for the preparation thereof and the use thereof
CN108786893B (en) Copper-doped carbon nitrogen polymer multiphase Fenton catalyst and synthesis and application thereof
JP3013275B2 (en) Method for modifying carbonaceous fiber
WO2010008072A1 (en) Treating agent for oxidizing agent-containing waste water, method for treating oxidizing agent-containing waste water, apparatus for treating oxidizing agent-containing waste water, purifying agent for organic solvent, method for purifying organic solvent, and apparatus for purifying organic solvent
JPH0790219B2 (en) Pure water production apparatus and production method
JPS639076B2 (en)
US5368739A (en) Activated carbon oxidized by air at near ambient temperatures for the control of ph and in water treatment applications
CN110075802B (en) Iron oxide loaded activated carbon and synthesis method and application thereof
JPH0639277A (en) Active paddy husk and water purifying method using same
EP2286886B1 (en) pH stable activated carbon
JP3090277B2 (en) Activated carbon molded body manufacturing method
JP3539434B2 (en) Manufacturing method of high performance carbon material
JP2967389B2 (en) Activated carbon fiber, method for producing the same, and water purifier using the activated carbon fiber as an adsorbent
JP2000313610A (en) Active carbon and water purifier using the same
JP7319619B2 (en) Arsenic-adsorbing cellulose material
EP0634423B1 (en) Modified acrylonitrile polymers, process for their manufacture and use thereof
JPH07155587A (en) Highly adsorptive carbon material and its production
EP0799178A1 (en) Improved process for the purification of aromatic polycarboxylic acids
JP2010274169A (en) Catalyst for decomposing hydrogen peroxide and method for producing the catalyst
Thiruvenkatachari et al. Effect of powdered activated carbon type on the performance of an adsorption-microfiltration submerged hollow fiber membrane hybrid system
Habuda-Stanić et al. Adsorption of humic acid from water using chemically modified bituminous coal-based activated carbons
JPH11240707A (en) Activated carbon
JPH11240708A (en) Fibrous activated carbon
JPS62149917A (en) Production of active carbon yarn
Udayasoorian et al. Carbon supported Zero Valent Iron nanoparticles for treating PCP in Pulp and Paper mill effluent