JP3539434B2 - Manufacturing method of high performance carbon material - Google Patents

Manufacturing method of high performance carbon material Download PDF

Info

Publication number
JP3539434B2
JP3539434B2 JP30938493A JP30938493A JP3539434B2 JP 3539434 B2 JP3539434 B2 JP 3539434B2 JP 30938493 A JP30938493 A JP 30938493A JP 30938493 A JP30938493 A JP 30938493A JP 3539434 B2 JP3539434 B2 JP 3539434B2
Authority
JP
Japan
Prior art keywords
carbon material
acid
hydrogen peroxide
decomposition
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30938493A
Other languages
Japanese (ja)
Other versions
JPH07155608A (en
Inventor
智次 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP30938493A priority Critical patent/JP3539434B2/en
Publication of JPH07155608A publication Critical patent/JPH07155608A/en
Application granted granted Critical
Publication of JP3539434B2 publication Critical patent/JP3539434B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Removal Of Specific Substances (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、COD源物質に対して高い分解能を有し、高比表面積を有する高性能な炭素材料の製造方法に関する。本発明の炭素材料は、COD源物質に対して高い分解能有し、例えば過酸化水素、ヒドラジン等の無機物質または排水中に含有する有機物質に対して極めて優れた分解活性を有することからこれらCOD源物の分解触媒として有用なものである。
【0002】
【従来技術】
一般に活性炭は、炭化水素の分別、工業ガスの精製、食品工業、化学工業における液相精製、水処理剤等の他に、空気分子ふるい材、貴金属塩溶液からの貴金属回収等の吸着の他に、触媒の担体として、またCOD源物質の分解触媒等として広く利用されている。
【0003】
通常、これらの活性炭はヤシガラ、木材、石炭、石炭および石油コク−ス、有機性樹脂等を原料にして炭化後、酸化性ガスと接触反応させて微細な細孔を形成させるガス賦活法、あるいは上記のような原料からの炭素材料に塩化亜鉛、酸、アルカリ蒸気等の薬品を含浸させて不活性ガス中で加熱して薬品の脱水および酸化反応により微細な細孔を形成させる薬品賦活法等が広く知られている。(例えば、特公昭62−61529号公報、米国特許第3624004号明細書、米国特許第3642657号明細書、米国特許第3833514号明細書、特開平1−230414号公報、特開平2−97414号公報)
また、近年蛋白質または蛋白質含有汚泥もしくは廃棄物質を炭化し、賦活して得られる活性炭が開発されている(特開平5−811号公報)。
【0004】
例えば、過酸化水素、ヒドラジン等の無機物質あるいは有機物質を含有する廃液をそのまま排出した場合COD源となるばかりでなく、廃水処理時、生物活性汚泥処理装置に混入した場合、過酸化水素含有排水の場合は分解にともなって発生する酸素ガスが懸濁物を浮上させ、処理水の水質悪化の原因となるなど種々のトラブルの原因となる。そこで、これらの廃液は、予め分解処理して排出する必要があり、その分解方法として活性炭を利用する方法がある。
【0005】
現在、過酸化水素分解能を有する市販の活性炭としては、1000m2 /g程度の比表面積を有する活性炭が知られている。 しかしながら、このような市販の活性炭は、過酸化水素の分解活性が必ずしも充分でなく、触媒寿命も短かく工業的に利用するには十分とはいい難いものである。
【0006】
【発明が解決しようとする課題】
従来公知の活性炭は、いずれも過酸化水素に対する分解能が小さく、またそれらの製造に際しては一般にアルカリ蒸気が使用されるため腐食性の問題がある。
【0007】
また、特開平5−811号公報に示される高活性な過酸化水素分解触媒は、かなり高い過酸化水分解能を有するが、これは、原料として蛋白質含有の汚泥もしくは廃棄物質が用いられるため、製造時に臭気が発生する難点がある。
【0008】
本発明は、このような従来方法に認められる種々の問題点を解決し、過酸化水素、ヒドラジン等の無機物質および有機物質に対して高い分解性能を示す高性能炭素材料、およびその製造方法を提供するものである。
【0009】
【課題を解決するための手段】
本発明者は、COD源物質に対する分解活性が高く触媒寿命も充分な炭素材料につき鋭意研究を重ねた結果、炭素質材料中の含有酸素量が活性に関係があり、一定量以上の酸素を含有する炭素材料を加熱処理することによって高比表面積で過酸化水素等の無機物質および有機物質に対する分解性能に優れた高活性な炭素材料が得られることを見い出し本発明を為した。
【0010】
すなわち、本発明は、酸素を少なくとも4重量%含有する活性炭を、酸化性ガス雰囲気下、700〜1200℃で加熱処理するか、酸化処理により酸素を少なくとも4重量%含有させた活性炭を、酸化性ガス雰囲気下、700〜1200℃で加熱処理することを特徴とする炭素材料の製造方法、並びに該製造方法で得られた炭素材料を使用することを特徴とする過酸化水素の分解方法に関する。
【0011】
本発明における原料の炭素質材料としては、ヤシガラ、麦ガラ、もみがら、のこくず、木材、及び、パルプ廃液などの植物系の炭化物または炭素材料、および石炭、石油、それらのコ−クス、並びにピッチなどの重質青物系炭化物または炭素材料が例示される。
【0012】
本発明においては、これらの原料炭素質材料の形状は、特に制限がなく、粉末状、破砕状、顆粒状、および、円柱状のいずれでも使用できる。
また、粒度は、1〜300メッシュの範囲で粗粒または細粒のいずれも使用できるが粒度が小さいほど、酸化性ガス雰囲気で加熱処理する賦活の時間を短くすることができるので好ましい。しかしながら、粒度が大きくても加熱処理時間を充分長くすれば、高活性な炭素材料を得ることができる。
これらの炭素質材料は、そのまま使用することができるが、水による煮沸処理を行って吸着されている物質および溶質物質を除去して用いることが好ましい。
本発明は、原料の形状を維持したままで目的とする炭素材料が得られるため、必ずしも成型する必要がなく、工業的に有利な製造方法である。
【0013】
本発明においては、酸化性ガス雰囲気下での加熱処理に当たって炭素質材料が4重量%以上の酸素を含有しているものであることが高活性な炭素材料とする上で極めて重要である。通常、市販の炭素質材料は特別な処理が施されたもの以外は酸素含有量は4重量%未満のものが一般的である。このような酸素含有量が低い炭素質材料では、酸化性ガス雰囲気下に加熱処理をしてもCOD源物質に対する分解性能の高い高活性な炭素材料を得ることができない。
従って、酸素含有量が4重量%未満の炭素質材料については、酸化処理し、少なくても4重量%の酸素を含有させた後、加熱処理することが必要である。
【0014】
本発明における酸化処理は、一般的には、炭素質材料と酸を接触させた後、ろ過し、水洗あるいは溶剤で洗浄処理する。これにより炭素質材料中に酸素を付与することができると同時に、炭素質材料中に含有する活性化賦与に好ましくない無機成分の除去を行うことができる。
【0015】
この酸化処理に使用される酸としては、硝酸、塩酸、硫酸、リン酸などの無機酸、ギ酸、酢酸、シュウ酸などの有機酸、または、過酸化水素、オキソ酸等が挙げられる。これらのうち、硝酸、塩酸、硫酸およびギ酸、酢酸が好適である。
これらの酸は通常水溶液として使用され、酸の濃度は、0.001〜100wt%、好ましくは0.1〜80wt%の範囲で使用される。また原料炭素質材料に対する該水溶液は、重量比で1〜40倍、好ましくは2〜20倍の範囲が使用される。
【0016】
この薬品による酸化処理の処理温度は、一般的には50゜C〜200゜C、好ましくは80〜150゜Cの範囲であり、処理時間は、通常10分〜10時間、好ましくは30分〜5時間の範囲である。なお、処理液濃度、処理液量、温度、及び時間の関係は、酸濃度が高いほど酸化温度及び酸化時間を緩和することができ処理液量も少なくすることができる。
【0017】
また、本発明における酸化処理は、上記のような薬品による酸化以外に酸化性ガスを使用することもできる。酸化性ガスによる酸化処理の場合、使用され得る酸化性ガスとしては、水蒸気、二酸化炭素、空気、酸素、オゾン、二酸化窒素および二酸化硫黄などが挙げられる。一般的には、空気の使用が好ましい。
これらの酸化性ガスは必要に応じて、燃焼ガスあるいは不活性ガスを混合して用いることも差し支えない。
【0018】
上記の酸化性ガスによる酸化の場合には、処理温度は200℃〜500℃、好ましくは250℃〜350℃の範囲であり、処理時間は10分〜10時間、好ましくは30分〜5時間である。
【0019】
酸化処理後は、ろ過した後、洗浄、乾燥が行われる。この洗浄は水洗あるいは有機溶剤により行われる。有機溶剤としては一般にアルコール類、エーテル類、ケトン類、アミド類あるいはアミン類等が使用し得る。
なお、場合によってはろ過後、必ずしも水または溶剤による洗浄、乾燥の工程を必要とすることなく、次の加熱処理工程に付することもできる。
【0020】
本発明においては、酸化処理によって原料炭素質材料に付与される酸素含有量を4重量%以上、通常4〜50重量%、好ましくは7〜35重量%の範囲とすることが重要である。酸素含有量が上記範囲よりも低い場合は目的とする十分に高活性なものは得られない。また酸素含有量を上記の範囲を超える量含有させることは困難であり、また上記の範囲よりも高い酸素含有量としても格別活性の向上は認められないばかりか、粉化が進み強度が低下する危険性があり好ましくない。
【0021】
上記の酸化処理により酸素を少なくとも4重量%含有した炭素質材料は、次いで酸化性ガス雰囲気下で加熱処理する。この加熱処理により活性化賦与が行われる。この加熱処理を行うに際して、昇温速度、加熱温度、および保持時間は、特に限定されないが、一般的には昇温速度は5〜500゜C/分、好ましくは10〜400゜C/分の範囲である。
加熱温度は、500゜C〜1200゜C、好ましくは700゜C〜1100゜Cの範囲である。加熱温度が500゜C以下では過酸化水素等のCOD源物質に対して高活性な炭素材料が得られず、逆に余りにも高温下での加熱処理は収率が低下し好ましくない。
【0022】
また加熱処理の保持時間は、通常30分〜5時間、好ましくは1〜4時間の範囲である。 加熱温度が高く、時間が長いほど高性能な炭素材料が得られるが上記範囲よりも高い温度、あるいは時間では収量が低下し、粉化も進み強度が低下するなど好ましくない。
【0023】
酸化性ガスとしては、水蒸気、二酸化炭素、空気、酸素、オゾン、二酸化窒素および二酸化硫黄などが使用される。これらのガスは必要に応じて燃焼ガスあるいは不活性ガスを混合して用いることができる。酸化性ガスは、水蒸気、二酸化炭素、及びこれらのガスと燃焼ガスあるいは不活性ガスとの混合ガスの使用が好ましい。
【0024】
本発明の方法において、加熱処理の工程はいずれの方法でも実施し得るが、被処理炭素質材料が均一に加熱される方式であることが好ましく、移動式、回転式、および流動式により、加熱方法は内熱式または外熱式で実施するのがよい。
また、加熱処理工程は、バッチ式、連続式いずれの方式でも実施し得るが、特に被処理炭素質材料が流動性に富んでいる場合、操作が容易なことから連続式で実施することが実用的である。
【0025】
このようにして得られる本発明の高性能な炭素材料は、比表面積1000〜3000m2/gで、全細孔容積0.7〜2.4ml/g 、平均細孔半径11〜20Åであり、COD源物質に対する極めて高い分解性能を有する。
【0026】
本発明の方法より得られる炭素材料がCOD源物質に対して極めて高い分解性能を有する理由は定かではないが、酸素を含有する炭素質材料を水素の還元ガス雰囲気下で加熱処理(賦活処理)した場合にはCOD源物質に対して分解性能を有するものが得られないこと、また酸素を含有しない炭素質材料を酸化性ガス雰囲気で加熱処理してもCOD源物質に対して分解性能を有するものが得られない等々のことから、おそらく酸素を含有した炭素質材料が酸化性ガス雰囲気下の加熱処理により活性点が形成され、また加熱処理時に起こる酸素の離脱が、炭素と酸化性ガスとの酸化反応を伴って起こり炭素材料中の不純物等が除去され、この過程で活性点が生成されるものと推察される。
【0027】
また、本発明の方法において酸による酸化処理を行うことにより、炭素質材料に含有する不純物としての無機成分が除去されるので加熱処理で得られる高性能炭素材料は、そのまま高品質の製品とするこができる。
製品の形状は、造粒して製品とすることも出来るが、本発明の方法では、原料の形状が維持されるので多くの場合、使用する原料の形状を選択することで製品の形状を任意に代えることができるため経済的である。
【0028】
本発明の高性能炭素材料を分解触媒として使用するCOD源物質の分解には、例えば廃水中の過酸化水素の分解がある。過酸化水素の分解は、一般に過酸化水素を含有する水溶液、過酸化水素含有有機溶剤あるいは過酸化水素含有の酸および塩基溶液等を、本発明の炭素材料と接触させることによって行われるが、このような方法に限定されるものではなく、過酸化水素のミストあるいは蒸気の状態でも分解することができる。
【0029】
また、本発明の高性能炭素材料を用いて被処理液中の過酸化水素を分解する場合、被処理液のpHおよび被処理液中の過酸化水素の濃度等は格別限定されず、広範囲の液性で使用することができる。
本発明の高性能炭素材料を使用した過酸化水素の分解は、回分式、連続式いずれの方式でも実施でき、処理温度、処理時間等は、被処理液の種類により適宜選択できる。
【0030】
本発明の高性能炭素材料はその他の用途としては、ヒドラジンの分解に高活性を示し、市販活性炭の数十倍の分解性能がある。その他の有機物質の分解も酸素発生剤存在下で高分解活性を示し、廃水中などのCODの低減化に有効である。
【0031】
また、着色成分、COD源成分の吸着除去や、オゾンおよびNOX の分解、SO2 、CO、CO2 等有害物質の吸着除去、溶存金属の吸着回収、メタンの吸蔵、ガソリン吸着用キャニスタ−、電気二重層型コンデンサ−、電池の電極用、および、医薬用などに用いることができる。
【0032】
【実施例】
次に本発明の方法を実施例によりさらに具体的に説明する。
なお、「%」は重量基準で表したものである。各炭素材料の物性は、N2 ガス吸着法による吸着脱離等温線を求め、BET比表面積は、P/PO =0.02〜0.3の範囲でBETプロット(多点法)により求めた。(湯浅アイオニクス社製のオ−トソ−ブ−6により測定)
ミクロポアは半径10オングストロ−ム以下の細孔、メソポアは、半径10〜250オングストロ−ムの細孔である。
酸素の元素分析は、カルロエルバ社製EA1108装置で測定した。
COD源物質分解性能の試験例として過酸化水素の分解能を測定した。
【0033】
実施例1
酸素を4wt%含有する重質青系活性炭3gを石英反応管に仕込み、二酸化炭素気流中で昇温速度25℃/分で925℃まで加熱し同温度で20分保持して賦活を行い高性能炭素材料を得た。
得られた炭素材料の物性は、比表面積1029m2/g、細孔容積0.7ml/g、平均細孔半径14Åである。
【0034】
この高性能炭素材料の過酸化水素分解活性を次の方法で調べた。
200ml容積のビ−カ−にpH2の過酸化水素水溶液4000ppmを採り、攪拌しながら上記の高性能炭素材料185ppmを添加し、分解試験を行った。その結果、過酸化水素分解率は15分経過後62%で、40分経過後100%分解した。
【0035】
実施例2
冷却管付200ml容の三角フラスコに61wt%HNO3 水溶液を50g仕込み、その中に原料として4〜8メッシュ通過の大きさの市販の植物系活性炭(酸素含有量1wt%、無機成分含有量5wt%)10gを投入し温度100゜Cで5時間攪拌処理し酸化した。
ろ過後イオン交換水100mlで3回洗浄した後、真空乾燥器で1mmHg下、110゜C、2時間乾燥した。この酸化処理による酸素含有量は、26wt% であった。
【0036】
この生成物3gを石英反応管に仕込み二酸化炭素気流中で昇温速度25゜C/分で1000゜Cまで加熱し同温度で90分保持して賦活を行い高性能炭素材料を得た。得られた炭素材料の無機成分含有量は僅かに1wt% であった。
この高性能炭素材料の物性は、比表面積2963m2/g、細孔容積1.8ml/g、平均細孔半径12Åである。
この炭素材料による過酸化水素の分解試験結果は、実施例1におけると同様に行い、7.5分で98%が分解し、10分で100%分解した。
【0037】
実施例3
実施例2に用いたと同様な市販の原料炭素質材料の酸化処理を、硝酸に代えて、硫酸、塩酸、リン酸、ギ酸および酢酸を用いて実施する以外は実施例2と同様に行った。得られた高性能炭素材料の物性および過酸化水素の分解性能を以下に示す。
【0038】
【表1】
酸の種類 61% 硫酸 36% 塩酸 61% リン酸 61% ギ酸 61% 酢酸
酸化処理後の
酸素含有量 26 7 18 11 10
比表面積(m2/g) 2933 2379 2921 2636 2529
全細孔容積(ml/g) 1.6 2.0 2.4 1.5 1.4
平均細孔半径 (Å) 11 17 16 11 11
H2O2分解率 (%) 80 56 70 61 60
(15 分経過後)
【0039】
実施例4
実施例1に用いたと同様な市販の原料炭素材料を空気で温度350゜Cで4時間酸化処理を行うこと以外は実施例1と同様にして行い高性能炭素材料を得た。
この酸化処理による酸素含有量は、17wt% であった。
得られた高性能炭素材料の物性は、比表面積2000m2/g、細孔容積1.2ml/g、平均細孔半径20Åである。
実施例1と同様に過酸化水素の分解試験を行い、7.5分経過後の過酸化水素分解率は70%で、30分経過後の分解率は100%であった。
【0040】
比較例1
実施例2に用いた市販活性炭を酸化処理を行うことなく加熱処理を実施例2と同様にして行い炭素材料を得た。この炭素材料中の無機成分の含有量は4wt% であった。また得られた炭素材料の物性は、比表面積1721m2/g、細孔容積0.9ml/g、平均細孔半径11Åである。
過酸化水素の分解試験を実施例1と同様に行った。15分経過後の分解率は3%であり、40分経過後も分解率は僅かに10%であった。
【0041】
比較例2
実施例2の酸化処理を、温度25℃で実施すること以外は実施例2と同様にして行い炭素材料を得た。得られた炭素材料中の無機成分含有量は1wt% であった。 また炭素材料の物性は、比表面積3005m2/g、細孔容積1.8ml/g、平均細孔半径12Åである。
過酸化水素の分解試験を行った結果、分解率は15分経過後3%で、40分経過後でも僅かに10%であった。
【0042】
比較例3
加熱処理を水素ガスで行うこと以外は実施例2と同様にして行い炭素材料を得た。 得られた炭素材料の過酸化水素分解試験の結果は、15分経過後分解率は2%であり、40分経過後も僅かに10%であった。
なお、この炭素材料の物性は、比表面積695m2/g、細孔容積0.51ml/g、平均細孔半径14.7Åである。
【0043】
以上の如く、実施例と比較例の結果から、酸素を少なくとも4wt%含有する炭素質材料を、加熱処理(賦活)することにより高性能炭素材料が得られることが明かである。
【0044】
【発明の効果】
本発明の高性能炭素材料は、広範囲の液性(pH領域)で、長期間にわたってCOD源物質に対して極めて高活性な分解性能を有するので、COD源物質となる無機物質および有機物質の分解触媒として有用である。例えば大量の過酸化水素含有液、あるいは高濃度の過酸化水素含有液の処理を短時間で処理することができる。さらに、製造時の酸化処理工程において炭素材料中の不純物としての無機成分が除去され高品質の炭素材料が得られ、二次公害を全く発生させないで使用できる。
また、原料が広範に大量に入手可能で製造方法が極めて容易なため工業的に有利である。
[0001]
[Industrial applications]
The present invention relates to a method for producing a high-performance carbon material having a high resolution for a COD source material and a high specific surface area. Since the carbon material of the present invention has a high resolution for COD source substances and has an extremely excellent decomposition activity for inorganic substances such as hydrogen peroxide and hydrazine or organic substances contained in wastewater, these carbon materials have high resolution. it is useful as a catalyst for decomposing COD source substance.
[0002]
[Prior art]
In general, activated carbon is used for separation of hydrocarbons, purification of industrial gases, liquid-phase purification in the food industry and chemical industry, water treatment agents, etc., as well as air molecular sieve materials, adsorption of precious metals from precious metal salt solutions, etc. It is widely used as a catalyst carrier, as a catalyst for decomposing a COD source material, and the like.
[0003]
Usually, these activated carbons are made from coconut shell, wood, coal, coal and petroleum coke, and organic resin, etc., and carbonized, and then contact-reacted with an oxidizing gas to form fine pores, or A chemical activation method for impregnating a carbon material from the above-described raw materials with a chemical such as zinc chloride, an acid, or an alkali vapor to form fine pores by heating in an inert gas and dehydrating and oxidizing the chemical. Is widely known. (For example, Japanese Patent Publication No. 62-61529, U.S. Pat. No. 3,624,004, U.S. Pat. No. 3,642,657, U.S. Pat. No. 3,833,514, JP-A-1-230414, JP-A-2-97414. )
In recent years, activated carbon obtained by carbonizing and activating protein or protein-containing sludge or waste material has been developed (JP-A-5-811).
[0004]
For example, when a waste liquid containing an inorganic substance or an organic substance such as hydrogen peroxide and hydrazine is discharged as it is, not only does it become a COD source, but also if it is mixed with a biologically activated sludge treatment apparatus during wastewater treatment, the wastewater containing hydrogen peroxide is discharged. In the case of the above, oxygen gas generated by the decomposition causes the suspended matter to float, causing various troubles such as deterioration of the quality of the treated water. Therefore, these waste liquids need to be decomposed in advance and discharged, and as a decomposition method, there is a method using activated carbon.
[0005]
At present, activated carbon having a specific surface area of about 1000 m 2 / g is known as a commercially available activated carbon having hydrogen peroxide decomposability. However, such a commercially available activated carbon does not always have sufficient decomposition activity of hydrogen peroxide, has a short catalyst life, and is not sufficient for industrial use.
[0006]
[Problems to be solved by the invention]
All of the conventionally known activated carbons have a low resolution for hydrogen peroxide, and have a corrosive problem since alkali vapor is generally used for their production.
[0007]
Further, the highly active hydrogen peroxide decomposition catalyst disclosed in Japanese Patent Application Laid-Open No. H5-811 has a considerably high water peroxide decomposability, but it is difficult to produce it because protein-containing sludge or waste material is used as a raw material. Odor sometimes occurs.
[0008]
The present invention solves the various problems observed in such conventional methods, and provides a high-performance carbon material exhibiting high decomposition performance for inorganic substances and organic substances such as hydrogen peroxide and hydrazine, and a method for producing the same. To provide.
[0009]
[Means for Solving the Problems]
The present inventor has conducted intensive studies on carbon materials having a high activity of decomposing a COD source material and having a sufficient catalyst life, and as a result, the oxygen content in the carbonaceous material is related to the activity. The present inventors have found that a highly active carbon material having a high specific surface area and an excellent decomposition performance for inorganic substances and organic substances such as hydrogen peroxide can be obtained by heat-treating the carbon material.
[0010]
That is, according to the present invention, activated carbon containing at least 4% by weight of oxygen is heat-treated at 700 to 1200 ° C. in an oxidizing gas atmosphere , or activated carbon containing at least 4% by weight of oxygen by oxidizing treatment is oxidized. The present invention relates to a method for producing a carbon material, which is characterized by performing a heat treatment at 700 to 1200 ° C. in a gas atmosphere , and a method for decomposing hydrogen peroxide, which comprises using the carbon material obtained by the production method .
[0011]
As the carbonaceous material of the raw material in the present invention, coconut husk, wheat husk, husk, sawdust, wood, and plant-based carbide or carbon material such as pulp waste liquor, and coal, petroleum, their coke, and heavy Vegetable-based carbide or a carbon material such pitch is exemplified.
[0012]
In the present invention, the shape of these raw carbonaceous materials is not particularly limited, and any of powder, crushed, granular, and cylindrical shapes can be used.
The particle size can be either coarse or fine within the range of 1 to 300 mesh, but the smaller the particle size, the shorter the activation time for heat treatment in an oxidizing gas atmosphere. However, even if the particle size is large, a sufficiently active carbon material can be obtained if the heat treatment time is sufficiently long.
These carbonaceous materials can be used as they are, but it is preferable to use them after boiling treatment with water to remove adsorbed substances and solute substances.
The present invention is an industrially advantageous production method which does not necessarily need to be molded, since the desired carbon material can be obtained while maintaining the shape of the raw material.
[0013]
In the present invention, it is extremely important that the carbonaceous material contains 4% by weight or more of oxygen in the heat treatment in an oxidizing gas atmosphere in order to obtain a highly active carbon material. Normally, commercially available carbonaceous materials generally have an oxygen content of less than 4% by weight except for those subjected to special treatment. With such a carbonaceous material having a low oxygen content, it is not possible to obtain a highly active carbon material having high decomposition performance with respect to a COD source substance even if heat treatment is performed in an oxidizing gas atmosphere.
Therefore, a carbonaceous material having an oxygen content of less than 4% by weight needs to be oxidized and heated at least after containing at least 4% by weight of oxygen.
[0014]
In the oxidation treatment in the present invention, generally, after the carbonaceous material is brought into contact with an acid, the carbonaceous material is filtered, washed with water or washed with a solvent. This makes it possible to provide oxygen to the carbonaceous material and at the same time remove inorganic components contained in the carbonaceous material that are not desirable for activation.
[0015]
Examples of the acid used in the oxidation treatment include inorganic acids such as nitric acid, hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as formic acid, acetic acid, and oxalic acid, hydrogen peroxide, and oxo acid. Of these, nitric acid, hydrochloric acid, sulfuric acid, formic acid, and acetic acid are preferred.
These acids are usually used as an aqueous solution, and the concentration of the acid is used in the range of 0.001 to 100% by weight, preferably 0.1 to 80% by weight. The aqueous solution is used in a weight ratio of 1 to 40 times, preferably 2 to 20 times, based on the raw carbonaceous material.
[0016]
The treatment temperature of the oxidation treatment with this chemical is generally in the range of 50 ° C. to 200 ° C., preferably 80 to 150 ° C., and the treatment time is usually 10 minutes to 10 hours, preferably 30 minutes to The range is 5 hours. The relationship among the concentration of the processing solution, the amount of the processing solution, the temperature, and the time is such that as the acid concentration is higher, the oxidation temperature and the oxidation time can be reduced and the amount of the processing solution can be reduced.
[0017]
In the oxidation treatment in the present invention, an oxidizing gas can be used in addition to the above-described oxidation using chemicals. In the case of oxidation treatment with an oxidizing gas, the oxidizing gas that can be used includes water vapor, carbon dioxide, air, oxygen, ozone, nitrogen dioxide, sulfur dioxide, and the like. Generally, the use of air is preferred.
These oxidizing gases may be used by mixing a combustion gas or an inert gas, if necessary.
[0018]
In the case of oxidation using the above-mentioned oxidizing gas, the treatment temperature is in the range of 200 ° C. to 500 ° C., preferably 250 ° C. to 350 ° C., and the treatment time is 10 minutes to 10 hours, preferably 30 minutes to 5 hours. is there.
[0019]
After the oxidation treatment, after filtration, washing and drying are performed. This washing is performed with water or an organic solvent. As the organic solvent, generally, alcohols, ethers, ketones, amides, amines and the like can be used.
In some cases, after the filtration, a subsequent heat treatment step can be performed without necessarily requiring washing or drying steps with water or a solvent.
[0020]
In the present invention, it is important that the oxygen content given to the raw carbonaceous material by the oxidation treatment is 4% by weight or more, usually 4 to 50% by weight, preferably 7 to 35% by weight. If the oxygen content is lower than the above range, the desired sufficiently high activity cannot be obtained. Further, it is difficult to contain the oxygen content in an amount exceeding the above range, and even if the oxygen content is higher than the above range, no particular improvement in the activity is recognized, but the powdering proceeds and the strength decreases. Dangerous and not preferred.
[0021]
The carbonaceous material containing at least 4% by weight of oxygen by the above oxidation treatment is then subjected to a heat treatment in an oxidizing gas atmosphere. Activation is performed by this heat treatment. In carrying out this heat treatment, the heating rate, heating temperature, and holding time are not particularly limited, but generally the heating rate is 5 to 500 ° C./min, preferably 10 to 400 ° C./min. Range.
The heating temperature ranges from 500 ° C to 1200 ° C, preferably from 700 ° C to 1100 ° C. If the heating temperature is 500 ° C. or lower, a carbon material having a high activity with respect to a COD source material such as hydrogen peroxide cannot be obtained. Conversely, heat treatment at an excessively high temperature undesirably lowers the yield.
[0022]
The holding time of the heat treatment is usually in the range of 30 minutes to 5 hours, preferably 1 to 4 hours. The higher the heating temperature and the longer the time, the higher the performance of the carbon material is obtained. However, if the temperature or the time is higher than the above range, the yield decreases, the powdering proceeds, and the strength decreases.
[0023]
As the oxidizing gas, steam, carbon dioxide, air, oxygen, ozone, nitrogen dioxide, sulfur dioxide, and the like are used. These gases can be used by mixing a combustion gas or an inert gas as required. As the oxidizing gas, it is preferable to use steam, carbon dioxide, or a mixed gas of these gases with a combustion gas or an inert gas.
[0024]
In the method of the present invention, the step of the heat treatment can be carried out by any method, but it is preferable that the heat treatment is performed in such a manner that the carbonaceous material to be treated is uniformly heated. The method may be carried out internally or externally.
The heat treatment step can be carried out by either a batch method or a continuous method. However, particularly when the carbonaceous material to be treated is rich in fluidity, it is practical to carry out the heat treatment step in a continuous manner because the operation is easy. It is a target.
[0025]
The high-performance carbon material of the present invention thus obtained has a specific surface area of 1000 to 3000 m 2 / g, a total pore volume of 0.7 to 2.4 ml / g, and an average pore radius of 11 to 20 °. It has extremely high decomposition performance for COD source materials.
[0026]
The reason why the carbon material obtained by the method of the present invention has an extremely high decomposition performance with respect to the COD source substance is not clear, but the carbonaceous material containing oxygen is subjected to heat treatment (activation treatment) in a reducing gas atmosphere of hydrogen. In this case, it is impossible to obtain a material having a decomposition performance for the COD source material, and has a decomposition performance for the COD source material even when the oxygen-free carbonaceous material is heat-treated in an oxidizing gas atmosphere. Probably, the carbon-containing material containing oxygen is likely to have active points formed by heat treatment in an oxidizing gas atmosphere, and desorption of oxygen occurring during the heat treatment is caused by carbon and oxidizing gas. It is supposed that impurities and the like in the carbon material are removed due to the oxidation reaction of, and active sites are generated in this process.
[0027]
In addition, by performing the oxidation treatment with an acid in the method of the present invention, an inorganic component as an impurity contained in the carbonaceous material is removed, so that the high-performance carbon material obtained by the heat treatment becomes a high-quality product as it is. I can do this.
The shape of the product can be granulated into a product, but in the method of the present invention, since the shape of the raw material is maintained, in many cases, the shape of the product can be freely determined by selecting the shape of the raw material to be used. It is economical because it can be replaced with
[0028]
The decomposition of the COD source substance using the high-performance carbon material of the present invention as a decomposition catalyst includes, for example, decomposition of hydrogen peroxide in wastewater. Decomposition of hydrogen peroxide is generally carried out by bringing an aqueous solution containing hydrogen peroxide, an organic solvent containing hydrogen peroxide or an acid and base solution containing hydrogen peroxide into contact with the carbon material of the present invention. It is not limited to such a method, and it can be decomposed even in the state of mist or vapor of hydrogen peroxide.
[0029]
Further, when hydrogen peroxide in the liquid to be treated is decomposed using the high-performance carbon material of the present invention, the pH of the liquid to be treated, the concentration of hydrogen peroxide in the liquid to be treated, and the like are not particularly limited. It can be used in liquid form.
The decomposition of hydrogen peroxide using the high-performance carbon material of the present invention can be carried out by a batch system or a continuous system, and the processing temperature, the processing time, and the like can be appropriately selected depending on the type of the liquid to be processed.
[0030]
As another application, the high-performance carbon material of the present invention has high activity in decomposing hydrazine, and has a decomposition performance several tens times that of commercial activated carbon. Decomposition of other organic substances also shows high decomposition activity in the presence of the oxygen generating agent, and is effective in reducing COD in wastewater and the like.
[0031]
Further, coloring components, the adsorption removal or COD source component, decomposition of the ozone and NO X, SO 2, CO, adsorptive removal of CO 2 such as hazardous substances, adsorption and recovery of dissolved metals, methane storage canister for gasoline adsorption -, It can be used for electric double layer capacitors, electrodes for batteries, and pharmaceuticals.
[0032]
【Example】
Next, the method of the present invention will be described more specifically with reference to examples.
Note that “%” is expressed on a weight basis. The physical properties of each carbon material were determined by an adsorption-desorption isotherm by the N 2 gas adsorption method, and the BET specific surface area was determined by a BET plot (multipoint method) in the range of P / P O = 0.02 to 0.3. Was. (Measured with Autosorb-6 manufactured by Yuasa Ionics)
Micropores are pores having a radius of 10 Å or less, and mesopores are pores having a radius of 10 to 250 Å.
The elemental analysis of oxygen was measured with an EA1108 device manufactured by Carlo Elba.
As a test example of the COD source material decomposition performance, the resolution of hydrogen peroxide was measured.
[0033]
Example 1
Oxygen was charged heavy blue-based activated carbon 3g containing 4 wt% to quartz reaction tube, carbon dioxide gas stream was heated to 925 ° C. at a heating rate 25 ° C. / min High perform activation and held 20 minutes at the same temperature Performance carbon material was obtained.
Physical properties of the obtained carbon material are a specific surface area of 1029 m 2 / g, a pore volume of 0.7 ml / g, and an average pore radius of 14 °.
[0034]
The hydrogen peroxide decomposition activity of this high-performance carbon material was examined by the following method.
4000 ppm of a hydrogen peroxide aqueous solution having a pH of 2 was taken in a beaker having a capacity of 200 ml, and 185 ppm of the above-mentioned high-performance carbon material was added thereto with stirring to conduct a decomposition test. As a result, the decomposition rate of hydrogen peroxide was 62% after 15 minutes, and 100% after 40 minutes.
[0035]
Example 2
A 200 ml Erlenmeyer flask with a condenser is charged with 50 g of a 61 wt% HNO 3 aqueous solution, into which a commercially available plant-based activated carbon having a size of 4 to 8 mesh (oxygen content 1 wt%, inorganic component content 5 wt%) is used as a raw material. ) 10 g was added, and the mixture was stirred at a temperature of 100 ° C for 5 hours to be oxidized.
After filtration, the filter was washed three times with 100 ml of ion-exchanged water, and then dried in a vacuum drier at 110 ° C. for 2 hours under 1 mmHg. The oxygen content by this oxidation treatment was 26% by weight.
[0036]
3 g of this product was charged into a quartz reaction tube, heated to 1000 ° C. at a heating rate of 25 ° C./min in a stream of carbon dioxide, and kept at the same temperature for 90 minutes for activation to obtain a high-performance carbon material. The resulting carbon material had an inorganic component content of only 1 wt%.
The physical properties of this high-performance carbon material are a specific surface area of 2963 m 2 / g, a pore volume of 1.8 ml / g, and an average pore radius of 12 °.
The decomposition test result of hydrogen peroxide by this carbon material was performed in the same manner as in Example 1, and 98% was decomposed in 7.5 minutes and 100% was decomposed in 10 minutes.
[0037]
Example 3
A commercially available raw carbonaceous material similar to that used in Example 2 was oxidized in the same manner as in Example 2 except that sulfuric acid, hydrochloric acid, phosphoric acid, formic acid, and acetic acid were used instead of nitric acid. The properties of the obtained high-performance carbon material and the decomposition performance of hydrogen peroxide are shown below.
[0038]
[Table 1]
Acid type 61% sulfuric acid 36% hydrochloric acid 61% phosphoric acid 61% formic acid 61% acetic acid
Oxygen content after oxidation 26 7 18 11 10
Specific surface area (m 2 / g) 2933 2379 2921 2636 2529
Total pore volume (ml / g) 1.6 2.0 2.4 1.5 1.4
Average pore radius (Å) 11 17 16 11 11
H 2 O 2 decomposition rate (%) 80 56 70 61 60
(After 15 minutes)
[0039]
Example 4
A high-performance carbon material was obtained in the same manner as in Example 1, except that the same commercially available raw carbon material as used in Example 1 was oxidized with air at 350 ° C. for 4 hours.
The oxygen content by this oxidation treatment was 17% by weight.
Physical properties of the obtained high performance carbon material are a specific surface area of 2000 m 2 / g, a pore volume of 1.2 ml / g, and an average pore radius of 20 °.
A decomposition test of hydrogen peroxide was conducted in the same manner as in Example 1. The decomposition rate of hydrogen peroxide after 7.5 minutes was 70%, and the decomposition rate after 30 minutes was 100%.
[0040]
Comparative Example 1
The commercial activated carbon used in Example 2 was subjected to heat treatment in the same manner as in Example 2 without performing oxidation treatment, to obtain a carbon material. The content of the inorganic component in this carbon material was 4% by weight. The physical properties of the obtained carbon material are a specific surface area of 1721 m 2 / g, a pore volume of 0.9 ml / g, and an average pore radius of 11 °.
A decomposition test of hydrogen peroxide was performed in the same manner as in Example 1. After 15 minutes, the decomposition rate was 3%, and after 40 minutes, the decomposition rate was only 10%.
[0041]
Comparative Example 2
A carbon material was obtained in the same manner as in Example 2 except that the oxidation treatment in Example 2 was performed at a temperature of 25 ° C. The content of the inorganic component in the obtained carbon material was 1% by weight. The physical properties of the carbon material are a specific surface area of 3005 m 2 / g, a pore volume of 1.8 ml / g, and an average pore radius of 12 °.
As a result of a decomposition test of hydrogen peroxide, the decomposition rate was 3% after 15 minutes, and was only 10% even after 40 minutes.
[0042]
Comparative Example 3
A carbon material was obtained in the same manner as in Example 2 except that the heat treatment was performed using hydrogen gas. As a result of the hydrogen peroxide decomposition test of the obtained carbon material, the decomposition rate was 2% after 15 minutes, and was only 10% after 40 minutes.
The physical properties of this carbon material are a specific surface area of 695 m 2 / g, a pore volume of 0.51 ml / g, and an average pore radius of 14.7 °.
[0043]
As described above, it is clear from the results of the examples and comparative examples that a high-performance carbon material can be obtained by heat-treating (activating) a carbonaceous material containing at least 4 wt% of oxygen.
[0044]
【The invention's effect】
The high-performance carbon material of the present invention has a very wide range of liquid properties (pH range) and has an extremely high decomposition performance for the COD source material for a long period of time. Useful as a catalyst. For example, a large amount of hydrogen peroxide-containing liquid or a high-concentration hydrogen peroxide-containing liquid can be treated in a short time. Further, in the oxidation treatment step at the time of production, inorganic components as impurities in the carbon material are removed, so that a high-quality carbon material can be obtained, which can be used without generating any secondary pollution.
In addition, raw materials are widely available in large quantities and the production method is extremely easy, which is industrially advantageous.

Claims (5)

酸素を少なくとも4重量%含有する活性炭を、酸化性ガス雰囲気下、700〜1200℃で加熱処理することを特徴とする炭素材料の製造方法。A method for producing a carbon material, comprising heating an activated carbon containing at least 4% by weight of oxygen at 700 to 1200C in an oxidizing gas atmosphere. 酸化処理により酸素を少なくとも4重量%含有させた活性炭を、酸化性ガス雰囲気下、700〜1200℃で加熱処理することを特徴とする炭素材料の製造方法。A method for producing a carbon material, comprising heating an activated carbon containing at least 4% by weight of oxygen by an oxidation treatment at 700 to 1200 ° C. in an oxidizing gas atmosphere. 酸化処理を、硝酸、硫酸、塩酸、リン酸、ギ酸および酢酸から選ばれる少なくとも1種の酸を使用して50〜200℃にて行い、且つ酸化処理した活性炭を、水または有機溶剤により洗浄後、加熱処理を行うことを特徴とする請求項2記載の炭素材料の製造方法。 The oxidation treatment is performed at 50 to 200 ° C. using at least one acid selected from nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, formic acid, and acetic acid, and the oxidized activated carbon is washed with water or an organic solvent. The method for producing a carbon material according to claim 2 , wherein a heat treatment is performed . 酸化処理を、酸化性ガスを使用して200〜500℃にて行うことを特徴とする請求項2記載の炭素材料の製造方法。 The method for producing a carbon material according to claim 2 , wherein the oxidation treatment is performed at 200 to 500C using an oxidizing gas . 請求項1〜4のいずれかに記載の製造方法で得られた炭素材料を使用することを特徴とする過酸化水素の分解方法。A method for decomposing hydrogen peroxide, comprising using the carbon material obtained by the production method according to claim 1.
JP30938493A 1993-12-09 1993-12-09 Manufacturing method of high performance carbon material Expired - Fee Related JP3539434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30938493A JP3539434B2 (en) 1993-12-09 1993-12-09 Manufacturing method of high performance carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30938493A JP3539434B2 (en) 1993-12-09 1993-12-09 Manufacturing method of high performance carbon material

Publications (2)

Publication Number Publication Date
JPH07155608A JPH07155608A (en) 1995-06-20
JP3539434B2 true JP3539434B2 (en) 2004-07-07

Family

ID=17992362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30938493A Expired - Fee Related JP3539434B2 (en) 1993-12-09 1993-12-09 Manufacturing method of high performance carbon material

Country Status (1)

Country Link
JP (1) JP3539434B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0010935A (en) * 1999-05-25 2002-02-26 Mbr Res Inc Quick activation method, process and apparatus for preparing pelleted activated carbon from carbonaceous waste
JP4920813B2 (en) * 2000-04-21 2012-04-18 関東化学株式会社 Activated carbon-containing filler for analysis of dioxins
CA2536473A1 (en) * 2003-08-26 2005-03-03 Osaka Gas Co., Ltd. Hydrocarbon material and method for manufacturing the same
JP2005347517A (en) * 2004-06-03 2005-12-15 Nisshinbo Ind Inc Method of manufacturing activated charcoal for electric double layer capacitor electrode
JP2009126729A (en) * 2007-11-21 2009-06-11 Gunma Prefecture Method for manufacturing active carbonized material having bimodal structure and method for treating exhaust gas using the active carbonized material
JP4894055B2 (en) * 2010-01-18 2012-03-07 英季 柴田 Catalyst for cracking and carbonizing organic matter
LU91685B1 (en) * 2010-05-07 2011-11-08 Cppe Carbon Process & Plant Engineering S A Process for the catalytic removal of carbon dioxide and sulfur dioxide from exhaust gases
JP5573404B2 (en) * 2010-06-22 2014-08-20 三菱瓦斯化学株式会社 Method for producing activated carbon for electric double layer capacitor electrode
WO2012117567A1 (en) * 2011-02-28 2012-09-07 Shibata Hideki Catalyst for decomposition and carbonization of organic substances

Also Published As

Publication number Publication date
JPH07155608A (en) 1995-06-20

Similar Documents

Publication Publication Date Title
US5891324A (en) Acid-containing activated carbon for adsorbing mercury from liquid hydrocarbons
JP3446771B2 (en) Method for producing high specific surface area carbon material
JP5629578B2 (en) Oxidant-containing wastewater treatment agent, oxidant-containing wastewater treatment method, oxidant-containing wastewater treatment device, organic solvent purification agent, organic solvent purification method, and organic solvent purification device
US8133459B2 (en) Method for purifying aqueous alkaline solution
JPS6265918A (en) Adsorbent for separating and recovering co, its production and method for separating and recovering high-purity co by using its adsorbent
JP3539434B2 (en) Manufacturing method of high performance carbon material
CN111298847B (en) Method for regenerating carbon-based catalyst, carbon-based catalyst and water treatment method
JP3678251B2 (en) Method for producing high specific surface area carbon material
CN113000023A (en) Graphene oxide modified activated carbon, preparation method thereof and water treatment method
CN1277742C (en) Process for preparing granular active carbon
KR101273494B1 (en) Recycle method of spent carbons by chemical impregnation and heating treatments in vacuum
JP2005132696A (en) Activated carbon precursor and activated carbon
EP0145539B1 (en) Mercury adsorbent carbons and carbon molecular sieves
US6225256B1 (en) Activated carbon feedstock
JP2006247527A (en) Adsorbent
JP3367534B2 (en) High adsorptive carbon material and method for producing the same
JPH04219308A (en) Production of formed active coke for desulfurization and denitration having high denitration performance
JPH0986914A (en) Active carbon, its production and adsorption and removal of acidic component
JP3539435B2 (en) Manufacturing method of high performance carbon material
JPH05302216A (en) Modification of carbonaceous fiber
US3386922A (en) Wet air oxidation of combustible materials adsorbed on carbonaceous adsorbent
UA80456C2 (en) Method for removing mercury from solutions contaminated with mercury
JPS62129144A (en) Porous composite structure and its preparation
JP2013203614A (en) Activated carbon and method for producing the same
JP2000203823A (en) Production of activated carbon

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040316

LAPS Cancellation because of no payment of annual fees