JP3367534B2 - High adsorptive carbon material and method for producing the same - Google Patents

High adsorptive carbon material and method for producing the same

Info

Publication number
JP3367534B2
JP3367534B2 JP30938793A JP30938793A JP3367534B2 JP 3367534 B2 JP3367534 B2 JP 3367534B2 JP 30938793 A JP30938793 A JP 30938793A JP 30938793 A JP30938793 A JP 30938793A JP 3367534 B2 JP3367534 B2 JP 3367534B2
Authority
JP
Japan
Prior art keywords
carbon material
iron
metal compound
carbonaceous material
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30938793A
Other languages
Japanese (ja)
Other versions
JPH07155587A (en
Inventor
智次 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP30938793A priority Critical patent/JP3367534B2/en
Publication of JPH07155587A publication Critical patent/JPH07155587A/en
Application granted granted Critical
Publication of JP3367534B2 publication Critical patent/JP3367534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高吸着性炭素材料およ
びその製造方法に関する。さらに詳しくは、本発明は細
孔容積が2.5〜4.0ml/gでかつ平均細孔半径が
21〜40Åである平均細孔半径および細孔容積の大き
な吸着性能の優れた炭素材料およびその製造方法に関す
る。本発明の炭素材料は大きな平均細孔半径および細孔
容積を有し吸着性能に優れているので、特に高分子物質
等の吸着用活性炭として有用なものである。
TECHNICAL FIELD The present invention relates to a highly adsorptive carbon material and a method for producing the same. More specifically, the present invention relates to a carbon material having a large average pore radius and a large pore volume of 2.5 to 4.0 ml / g and an average pore radius of 21 to 40 Å and having excellent adsorption performance. The manufacturing method is related. Since the carbon material of the present invention has a large average pore radius and a large pore volume and is excellent in adsorption performance, it is particularly useful as activated carbon for adsorption of polymer substances and the like.

【0002】[0002]

【従来技術】従来、吸着性能に優れている炭素材料とし
て市販の活性炭が知られているが、近年、中でも高吸着
性に優れているものとして、炭素質材料をアルカリ蒸気
賦活する高比表面積活性炭およびその製造方法が知られ
ている。これらは、例えば特公昭62−61529号公
報、米国特許第3624004号、米国特許第3642
657号、米国特許第3817874号、米国特許第3
833514号、米国特許第4082694号、特開平
1−230414号公報、特開平2−97414号公報
等に提案されている。また、炭素粒子に金属触媒を添着
して賦活する方法が特開平1−141814号公報、特
開平1−141815号公報に報告されている。
2. Description of the Related Art Conventionally, commercially available activated carbon has been known as a carbon material having excellent adsorption performance, but in recent years, as a material having excellent high adsorption performance, activated carbon having a high specific surface area for activating a carbonaceous material with an alkali vapor has been known. And its manufacturing method is known. These are disclosed, for example, in Japanese Examined Patent Publication No. 62-61529, US Pat. No. 3,624,004 and US Pat. No. 3,642.
657, US Pat. No. 3,817,874, US Pat. No. 3
No. 833514, U.S. Pat. No. 4,082,694, JP-A-1-230414, JP-A-2-97414 and the like are proposed. Further, a method of activating a carbon particle by attaching a metal catalyst thereto is reported in JP-A-1-141814 and JP-A-1-141815.

【0003】上記のアルカリ蒸気賦活による方法で得ら
れる炭素材料(活性炭)は、細孔容積2.9ml/g程
度のもので、その平均細孔半径は約12Åであり、いわ
ゆるミクロポアの細孔を多く占める炭素材料である。こ
のような炭素材料は通常の活性炭に比べ吸着性能は高い
が、高吸着性炭素材料というには今一つ十分でない。
The carbon material (activated carbon) obtained by the above-mentioned alkali vapor activation method has a pore volume of about 2.9 ml / g, and its average pore radius is about 12Å. It is a carbon material that occupies a large amount. Such a carbon material has a higher adsorption performance than ordinary activated carbon, but it is still insufficient as a highly adsorptive carbon material.

【0004】このようなアルカリ蒸気賦活による方法
は、炭素質材料に対して水酸化カリウム等のアルカリ金
属化合物を好適には2倍以上の大過剰を添加する必要が
あるため焼成工程での装置の腐食をまねき、かつ炭素質
原料とアルカリ金属化合物との混合物が焼成中に粘着し
流動性がわるく装置を詰まらせる等の問題があり取扱が
難しく連続化が困難である。また、大過剰のアルカリを
用いるため経済面から残存アルカリを回収再使用する必
要があり製造工程が複雑になる等の欠点がある。
In such a method based on alkali vapor activation, it is necessary to add a large excess of alkali metal compound such as potassium hydroxide to the carbonaceous material, preferably twice or more. There is a problem that it causes corrosion, and the mixture of the carbonaceous raw material and the alkali metal compound sticks during firing and the fluidity is poor and the device is clogged. Further, since a large excess of alkali is used, it is necessary to recover and reuse the residual alkali from the economical point of view, and there is a drawback that the manufacturing process becomes complicated.

【0005】さらに、このような炭素材料を製造するに
は、メソカーボンマイクロビーズのような特殊な原料を
使用しなければならず原料的に制約があり、そのうえ原
料のメソカーボンマイクロビーズを得るのに煩雑な製造
工程が必要である等工業的には有利な方法でない。
Further, in order to produce such a carbon material, a special raw material such as mesocarbon microbeads must be used, and there are restrictions on the raw material, and in addition, the raw material mesocarbon microbeads can be obtained. This is not an industrially advantageous method because it requires complicated manufacturing steps.

【0006】一方、入手が容易な石油コ−クスを原料と
した場合は、通常、細孔容積1.8ml/g、平均細孔
半径11Å程度となり平均細孔半径20Å以上の細孔容
積が大きな炭素材料が得られない。
On the other hand, when petroleum coke, which is easily available, is used as a raw material, the pore volume is usually 1.8 ml / g, the average pore radius is about 11 Å, and the pore volume with an average pore radius of 20 Å or more is large. No carbon material can be obtained.

【0007】また、特開平1−141814号公報に
は、炭素粒子に金属触媒を添着して賦活する方法によ
り、吸着能の高い活性炭を短い賦活時間で製造すること
ができることが開示されている。しかしながらこのよう
な方法により得られる活性炭もその吸着能力は公知の吸
着用活性炭と呼ばれるものと大差がなく、これまた高吸
着性炭素材料というには充分とはいい難い。
Further, Japanese Unexamined Patent Publication (Kokai) No. 1-141814 discloses that activated carbon having a high adsorption ability can be produced in a short activation time by a method of activating a metal catalyst by adhering it to carbon particles. However, the activated carbon obtained by such a method has no great difference in its adsorption capacity from that of known activated carbon for adsorption, and it cannot be said that it is sufficient as a highly adsorptive carbon material.

【0008】[0008]

【発明が解決しようとする課題】本発明は、このような
現状に鑑み、比較的廉価であって入手し易い炭素質材料
を原料として使用し、平均細孔半径および細孔容積の極
めて大きな吸着性能の優れた炭素材料および製造装置の
腐食を招かない工業的に有利な製造方法を提供するもの
である。
In view of the above situation, the present invention uses a carbonaceous material, which is relatively inexpensive and easily available, as a raw material and has an extremely large average pore radius and pore volume. It is intended to provide an industrially advantageous manufacturing method that does not cause corrosion of a carbon material having excellent performance and a manufacturing apparatus.

【0009】[0009]

【課題を解決するための手段】本発明者は、平均細孔半
径および細孔容積の大きい吸着性能に優れた高吸着性炭
素材料につき多角的に研究を重ねた結果、比較的廉価に
生産されている炭素質材料に第8族金属化合物を添加し
て賦活することにより従来に類を見ない高吸着性炭素材
料が得られることを見い出し本発明を為した。
Means for Solving the Problems The present inventor has conducted a multifaceted study on a highly adsorptive carbon material having a large average pore radius and a large pore volume and excellent in adsorption performance, and as a result, was produced at a relatively low cost. The present invention has been made by discovering that a highly adsorptive carbon material that is unprecedented in the past can be obtained by adding a Group 8 metal compound to a known carbonaceous material to activate it.

【0010】すなわち、本発明は、細孔容積2.5〜
4.0ml/gで、かつ平均細孔半径21〜40Åの細
孔を有し、比表面積1600〜2500m2 /gである
高吸着性炭素材料およびその製造方法に関する。
That is, the present invention has a pore volume of 2.5 to
The present invention relates to a highly adsorptive carbon material having a pore size of 4.0 ml / g and an average pore radius of 21 to 40Å and a specific surface area of 1600 to 2500 m 2 / g, and a method for producing the same.

【0011】上記の細孔特性を有する本発明の高吸着性
炭素材料は、比表面積が少なくとも100m2 /gであ
る炭素質材料に第8族金属化合物を添加し、賦活するこ
とにより得ることができる。
The highly adsorbent carbon material of the present invention having the above-mentioned pore characteristics can be obtained by adding a Group 8 metal compound to a carbonaceous material having a specific surface area of at least 100 m 2 / g and activating the carbonaceous material. it can.

【0012】本発明における原料炭素質材料は、上記の
ように、少なくとも比表面積が100m2/gの細孔を有し
ていることが必要である。このような本発明において原
料として使用される炭素質材料は、ヤシガラ、麦ガラ、
もみがら、のこくず、木材、及び、パルプ廃液などの植
物系、および 石炭、石油、それらのコ−クス、並びに
ピッチなどの重質歴青物系の活性炭であって上記の要件
を満たすものが使用できる。これら原料として使用され
る炭素質材料は、粉末状、破砕状、顆粒状および円柱状
のいずれでも使用できる。
The raw carbonaceous material in the present invention is required to have pores having a specific surface area of at least 100 m 2 / g as described above. Such carbonaceous material used as a raw material in the present invention is coconut husk, wheat husk,
Activated carbon of plant type such as chaff, sawdust, wood, and pulp effluent, and heavy bituminous activated carbon such as coal, petroleum, cokes thereof, and pitch, which meet the above requirements. Can be used. The carbonaceous material used as these raw materials can be used in the form of powder, crushed particles, granules or cylinders.

【0013】また原料として使用される炭素質材料の粒
度は、1〜300メッシュ通過の大きさの粒径範囲のも
ので粗粒または細粒のいずれも使用できるが、粒径が小
さいほど賦活時間を短くするこができ好ましい。しかし
ながら粒径が大きくても賦活時間を充分長くすれば本発
明の高吸着性炭素材料を得ることができる。
The carbonaceous material used as a raw material has a particle size ranging from 1 to 300 mesh, and either coarse particles or fine particles can be used. The smaller the particle size, the longer the activation time. Can be shortened, which is preferable. However, even if the particle size is large, if the activation time is sufficiently long, the highly adsorptive carbon material of the present invention can be obtained.

【0014】本発明の高吸着性炭素材料は、上記の少な
くとも比表面積100m2 /gである炭素質材料に第8
族金属化合物を添加し、酸化性ガス雰囲気下で賦活処理
に供されるが、本発明においては第8族金属化合物の添
加は、目的とする大きな平均細孔半径と細孔容積とを有
する炭素材料を得るために必要不可欠な工程である。
The highly adsorptive carbon material of the present invention is the above carbonaceous material having a specific surface area of at least 100 m 2 / g.
A group metal compound is added and subjected to activation treatment in an oxidizing gas atmosphere. In the present invention, the addition of the group 8 metal compound is a carbon having a target large average pore radius and pore volume. It is an indispensable process for obtaining materials.

【0015】本発明における第8族金属化合物の種類と
しては、、鉄、コバルト、ニッケル、ルテニウム、ロジ
ウム、パラジウム、白金等の酸化物、水酸化、ケイ化
物、硫化物、窒化物、リン化物、炭化物、ハロゲン化
物、硫酸塩、硝酸塩、燐酸塩、炭酸塩などの無機酸塩、
ギ酸塩、酢酸塩、安息香酸、乳酸塩、クエン酸、シュウ
酸などの有機酸塩、錯化合物等から選ばれた少なくとも
1種が使用される。
Examples of the Group 8 metal compound in the present invention include oxides such as iron, cobalt, nickel, ruthenium, rhodium, palladium and platinum, hydroxides, silicides, sulfides, nitrides, phosphides, Inorganic acid salts such as carbides, halides, sulfates, nitrates, phosphates and carbonates,
At least one selected from organic acid salts such as formate, acetate, benzoic acid, lactate, citric acid, oxalic acid, and complex compounds is used.

【0016】代表的な金属化合物の例としては、水酸化
鉄、塩化鉄、フッ化鉄、臭化鉄、ヨウ化鉄、過塩素酸
鉄、硫化鉄、窒化鉄、リン化鉄、炭化鉄、硫酸鉄、硝酸
鉄、炭酸鉄、燐酸鉄、ケイ酸鉄、等の無機酸塩、酢酸
鉄、七安息香酸二水酸化三鉄、乳酸鉄、クエン酸鉄、シ
ュウ酸鉄等の有機酸塩、ヘキサシアノ鉄酸塩、トリス
(2,2´−ビピリジン)鉄塩、ジシアノビス(2,2
´−ビピリジン)鉄塩、トリス(1,10−フェナント
ロリン)鉄塩、ジシアノビス(1,10−フェナントロ
リン)鉄塩、鉄カルボニル、等の鉄化合物、
Examples of representative metal compounds include iron hydroxide, iron chloride, iron fluoride, iron bromide, iron iodide, iron perchlorate, iron sulfide, iron nitride, iron phosphide, iron carbide, Inorganic acid salts such as iron sulfate, iron nitrate, iron carbonate, iron phosphate, iron silicate, etc., organic acid salts such as iron acetate, ferric trihydroxide heptabenzoate, iron lactate, iron citrate, iron oxalate, etc. Hexacyanoferrate, tris (2,2′-bipyridine) iron salt, dicyanobis (2,2
′ -Bipyridine) iron salt, tris (1,10-phenanthroline) iron salt, dicyanobis (1,10-phenanthroline) iron salt, iron carbonyl, and other iron compounds,

【0017】塩化コバルト、硫酸コバルト、硝酸コバル
ト、炭酸コバルト等の無機酸塩、ギ酸コバルト、酢酸コ
バルト等の有機酸塩、ヘキサフルオロコバルト酸塩、ト
リス(1,10−フェナントロリン)コバルト塩等の錯
化合物等のコバルト化合物、
Inorganic acid salts such as cobalt chloride, cobalt sulfate, cobalt nitrate, and cobalt carbonate, organic acid salts such as cobalt formate and cobalt acetate, hexafluorocobaltate salts, and tris (1,10-phenanthroline) cobalt salt complexes. Cobalt compounds such as compounds,

【0018】塩化ニッケル、硫酸ニッケル、硝酸ニッケ
ル、炭酸ニッケル等の無機酸塩、ギ酸ニッケル、酢酸ニ
ッケル等の有機酸塩、トリフルオロニッケル酸塩、トリ
ス(1,10−フェナントロリン)ニッケル塩等の錯化
合物等のニッケル化合物、
Complexes of inorganic acid salts such as nickel chloride, nickel sulfate, nickel nitrate and nickel carbonate, organic acid salts such as nickel formate and nickel acetate, trifluoronickelate salts, tris (1,10-phenanthroline) nickel salts and the like. Nickel compounds such as compounds,

【0019】塩化パラジウム、硫酸パラジウム、硝酸パ
ラジウム等の無機酸塩、ギ酸パラジウム、酢酸パラジウ
ム等の有機酸塩、ビス(エチレンジアミン)パラジウム
塩、ビス(1,10−フェナントロリン)パラジウム塩
等のパラジウム化合物等が挙げられる。
Inorganic acid salts such as palladium chloride, palladium sulfate and palladium nitrate, organic acid salts such as palladium formate and palladium acetate, palladium compounds such as bis (ethylenediamine) palladium salt, bis (1,10-phenanthroline) palladium salt and the like. Is mentioned.

【0020】これらの金属化合物は粉末あるいは溶液の
状態いずれでも使用し得るが、均一に含浸させるには溶
液の状態が好ましく、通常水溶液として使用されるので
水溶性の化合物が好適に使用される。水不溶性の第8族
金属化合物の場合は、酸に溶解して使用するすることが
できる。
These metal compounds may be used in the form of powder or solution, but a solution state is preferred for uniform impregnation, and a water-soluble compound is preferably used since it is usually used as an aqueous solution. In the case of a water-insoluble Group 8 metal compound, it can be used by dissolving it in an acid.

【0021】これら第8族金属化合物の添加量は、一般
的には炭素質材料に対して重量比で1:0.001〜
1:0.1の範囲であり、好ましくは1:0.01〜
1:0.09の範囲が好適である。上記した範囲より少
ない添加量では、充分な賦活処理を行っても本発明にお
ける如きの大きな細孔容積および平均細孔半径を持つ炭
素材料が得られない。また、上記の範囲を超える多量を
添加た場合は、細孔容積は大きくなるものの炭素材料の
脆化を招き収量も著しく低下し好ましくない。
The addition amount of these Group 8 metal compounds is generally 1: 0.001 to 1: 1 by weight ratio with respect to the carbonaceous material.
It is in the range of 1: 0.1, preferably 1: 0.01 to.
A range of 1: 0.09 is preferred. If the addition amount is less than the above range, a carbon material having a large pore volume and an average pore radius as in the present invention cannot be obtained even if sufficient activation treatment is performed. When a large amount exceeding the above range is added, the pore volume increases, but the carbon material is embrittled and the yield remarkably decreases, which is not preferable.

【0022】本発明において第8族金属化合物を原料の
炭素質材料に添加するに際しては、原料炭素質材料に第
8族金属化合物を添加する前に、予め原料炭素質材料の
細孔内を脱気し存在する吸着物質および溶質物質等を充
分に除去しておくことが好ましい。この除去方法として
は煮沸による方法、真空による脱気などが一般的であ
る。煮沸による方法は原料炭素質材料に所定量、例えば
2〜5倍量の水を加え攪伴下で10分ないし3時間、好
ましくは20分ないし2時間の範囲で煮沸処理を行う。
In the present invention, when the Group 8 metal compound is added to the raw material carbonaceous material, the inside of the pores of the raw material carbonaceous material are removed beforehand before the addition of the Group 8 metal compound to the raw material carbonaceous material. It is preferable to sufficiently remove the adsorbed substances, solute substances, and the like that exist in a vaporized state. As a method for removing this, a method by boiling or deaeration by vacuum is generally used. In the method by boiling, a predetermined amount, for example, 2 to 5 times the amount of water is added to the raw carbonaceous material and the mixture is boiled under stirring for 10 minutes to 3 hours, preferably 20 minutes to 2 hours.

【0023】上記の前処理を行った後、煮沸中の混合液
に所定量の第8族金属化合物の粉末あるいは水溶液を添
加し溶解混合させた後、攪伴下、放冷しながら細孔内全
体に均一に含浸させる。
After performing the above-mentioned pretreatment, a predetermined amount of the powder or aqueous solution of the Group VIII metal compound is added to the mixed solution being boiled to dissolve and mix, and the mixture is allowed to cool in the pores while stirring. The whole is uniformly impregnated.

【0024】含浸時間は、炭素質材料と水の混合割合あ
るいは金属化合物の添加量や濃度の条件により異なり、
一慨には決めることはできないが炭素質材料に金属化合
物が含浸擦るに充分な時間であればよい。通常は、10
分〜30時間の範囲で充分であり、好ましくは30分〜
24時間の範囲である。
The impregnation time differs depending on the mixing ratio of the carbonaceous material and water, or the amount and concentration of the metal compound added.
Although it cannot be determined at once, it is sufficient if the carbonaceous material is impregnated with the metal compound for a sufficient time. Usually 10
Minutes to 30 hours is sufficient, preferably 30 minutes to
The range is 24 hours.

【0025】次いで混合液をろ過し水洗し乾燥して第8
族金属化合物が含浸された炭素質材料が得られる。な
お、炭素質材料に含浸されない余剰の金属は、ろ液を循
環させて再使用することもできる。また、ろ過後、必ず
しも水または溶媒による洗浄、乾燥の必要はなく、ろ過
後に次の賦活処理工程に供することもできる。また、第
8族金属化合物を含浸後、ろ過をしないで乾固してもよ
い。
Next, the mixed solution is filtered, washed with water, dried and then
A carbonaceous material impregnated with a group metal compound is obtained. The excess metal not impregnated in the carbonaceous material can be reused by circulating the filtrate. Further, after filtration, it is not always necessary to wash and dry with water or a solvent, and the product can be subjected to the next activation treatment step after filtration. Further, after impregnating the Group 8 metal compound, the compound may be dried without filtering.

【0026】本発明における賦活処理は、酸化性ガス雰
囲気下で加熱下に実施される。ここに使用される酸化性
ガス雰囲気としては、水蒸気、二酸化炭素、空気、酸
素、オゾン、および、二酸化窒素などが挙げられる。こ
れらの酸化性ガスは所望により燃焼ガスあるいは不活性
ガスとを混合して用いこともできる。特に、水蒸気、二
酸化炭素、及びこれらのガスと燃焼ガスあるいは不活性
ガスとを混合して用いて使用することが好ましい。
The activation treatment in the present invention is carried out under heating in an oxidizing gas atmosphere. Examples of the oxidizing gas atmosphere used here include water vapor, carbon dioxide, air, oxygen, ozone, and nitrogen dioxide. If desired, these oxidizing gases may be used as a mixture with a combustion gas or an inert gas. Particularly, it is preferable to use water vapor, carbon dioxide, and a mixture of these gases with a combustion gas or an inert gas before use.

【0027】上記の賦活工程における加熱温度は、通常
500゜C〜1200゜Cの範囲であり、好ましくは7
00゜C〜1100゜Cの範囲である。加熱温度が50
0゜Cよりも低い場合は充分な賦活処理を行っても所望
する大きさの細孔容積を有するものが得られず好ましく
ない。また、1200゜Cを超える高温では賦活収量が
低下し好ましくない。
The heating temperature in the activation step is usually in the range of 500 ° C to 1200 ° C, preferably 7 ° C.
It is in the range of 00 ° C to 1100 ° C. Heating temperature is 50
When the temperature is lower than 0 ° C, even if sufficient activation treatment is carried out, it is not preferable because those having a desired pore volume cannot be obtained. Further, at a high temperature exceeding 1200 ° C., the activation yield decreases, which is not preferable.

【0028】また賦活時間は、通常は30分〜5時間の
範囲で充分であるが、1〜4時間の範囲が好適である。
賦活時間が30分よりも短い場合は、得られる炭素材料
の細孔容積は小さく高吸着性能を有する炭素材料を得る
ことができない。また、5時間を超えるような長時間で
は、細孔容積が増加するものの賦活収量が低下し生産効
率の面からも好ましくない。
The activation time is usually sufficient in the range of 30 minutes to 5 hours, but is preferably in the range of 1 to 4 hours.
When the activation time is shorter than 30 minutes, the obtained carbon material has a small pore volume and a carbon material having high adsorption performance cannot be obtained. Further, when the time is longer than 5 hours, the pore volume increases, but the activation yield decreases, which is not preferable in terms of production efficiency.

【0029】賦活処理は、静置式でもよいが、混合物が
均一に加熱される方式であることが好ましく移動式、回
転式、および流動式で、加熱方法は内熱式または外熱式
で実施するのがよい。また、賦活処理は、バッチ式でも
よいが、特に混合物が流動性に優れている場合、操作性
が容易なことから連続式で実施することが工業的に実用
的である。
The activation treatment may be a static type, but it is preferably a system in which the mixture is heated uniformly, and is a mobile type, a rotary type, or a flow type, and the heating method is an internal heat type or an external heat type. Is good. The activation treatment may be carried out in a batch system, but it is industrially practical to carry out the activation process in a continuous system because the operability is easy particularly when the mixture has excellent fluidity.

【0030】賦活終了後は、生成物を洗浄、乾燥して製
品とされる。本発明の方法は、使用される原料炭素質材
料の形状を維持した状態の炭素材料が得られるため、必
ずしも成型する必要がなく使用する原料の形状を選択す
ることで製品の形状を任意に帰ることができるため工業
的に有利な製造方法である。
After the activation, the product is washed and dried to obtain a product. According to the method of the present invention, since the carbon material in a state in which the shape of the raw material carbonaceous material used is maintained, the shape of the product can be arbitrarily returned by selecting the shape of the raw material to be used without necessarily molding. This is an industrially advantageous production method because it is possible.

【0031】なお、本発明の方法において細孔容積およ
び細孔半径の形成は、原料炭素質材料の細孔内に第8族
金属化合物が均一に含浸された状態で賦活処理するこに
より形成されることから、金属が主に触媒的な作用を示
して原料炭素質材料と酸化性ガスとの間での反応を促進
して細孔が形成され、形成された細孔が発達して細孔容
積を拡大するものと考えられる。
In the method of the present invention, the pore volume and the pore radius are formed by activating the raw carbonaceous material with the Group 8 metal compound uniformly impregnated in the pores. Therefore, the metal mainly acts as a catalyst to promote the reaction between the raw material carbonaceous material and the oxidizing gas to form fine pores, and the fine pores formed are developed and fine pores are formed. It is thought to expand the volume.

【0032】本発明の高吸着性炭素材料は、市販の活性
炭が、平均細孔半径10Å以下のミクロポアが主として
発達しているのに対して、21Å以上のメソポアが主で
あるため分子サイズの大きいビタミンB12、アッシドブ
ル−90などの吸着分離、着色成分、COD源物質の吸
着除去に好適に使用できる。
In the highly adsorptive carbon material of the present invention, commercially available activated carbon mainly develops micropores having an average pore radius of 10 Å or less, whereas mesopores having a pore size of 21 Å or more are mainly present, so that the molecular size is large. It can be suitably used for adsorption separation of vitamin B 12 , assible-90, etc., and adsorption removal of coloring components and COD source substances.

【0033】さらに、過酸化水素、ヒドラジン等の無機
物質または有機物質の分解に高活性を示し、市販活性炭
の数十倍の分解性能がある。 またその他の有機物の分
解も酸素発生剤存在下で高分解活性を示し、廃水中など
のCODの低減化に有効である。
Further, it has a high activity for decomposing inorganic substances such as hydrogen peroxide and hydrazine or organic substances, and has a decomposing performance several tens of times that of commercially available activated carbon. Decomposition of other organic substances also shows high decomposition activity in the presence of an oxygen generator, and is effective in reducing COD in wastewater.

【0034】この他、オゾンおよびNOX の分解、SO
2 、CO、CO2 等の有害物質の吸着除去、溶存金属の
吸着回収、メタンの吸蔵、ガソリン吸着用キャニスタ
−、電気二重層型コンデンサ−、電池の電極用、およ
び、医薬用などに用いることができる。
Besides, decomposition of ozone and NO x , SO
2 , Adsorption and removal of harmful substances such as CO and CO 2 , Adsorption and recovery of dissolved metals, Occlusion of methane, Canister for adsorbing gasoline, Electric double layer type capacitor, Electrode of battery, Use for medicine, etc. You can

【0035】[0035]

【実施例】次に本発明の方法を実施例によりさらに具体
的に説明する。各炭素材料の物性は、77゜Kにおける
2 ガス吸着法による吸着脱離等温線を求め、BET比
表面積は、P/PO =0.02〜0.3の範囲でBET
プロット(多点法)により求めた。(湯浅アイオニクス
社製のオ−トソ−ブ−6により測定)
EXAMPLES Next, the method of the present invention will be described more specifically by way of examples. For the physical properties of each carbon material, the adsorption / desorption isotherm by the N 2 gas adsorption method at 77 ° K was obtained, and the BET specific surface area was BET within the range of P / P O = 0.02-0.3.
It was determined by plotting (multipoint method). (Measured by Auto-Soave-6 manufactured by Yuasa Ionics)

【0036】実施例1 500ml容積三角フラスコに原料として12〜32メ
ッシュ通過の大きさの市販の活性炭(比表面積140m
2 /g)10gを採り、これにイオン交換水250gを
入れ煮沸させる。 その後、Fe(NO3 3 ・9H2
O 0.9gを添加し攪拌しながら60分を要して冷却
した。冷却後混合液を濾過し水洗した後、真空乾燥器で
1mmHg下、110゜C、2時間乾燥し、鉄化合物が
含浸された炭素質材料を得た。
Example 1 Commercially available activated carbon (specific surface area 140 m) having a size of 12 to 32 mesh as a raw material was put into a 500 ml Erlenmeyer flask.
10 g of 2 / g) is taken, and 250 g of ion-exchanged water is put into this and boiled. Thereafter, Fe (NO 3) 3 · 9H 2
0.9 g of O was added and the mixture was cooled with stirring for 60 minutes. After cooling, the mixed solution was filtered, washed with water, and then dried at 110 ° C. for 2 hours under a vacuum dryer at 1 mmHg to obtain a carbonaceous material impregnated with an iron compound.

【0037】この炭素質材料2gを石英製反応管に仕込
み二酸化炭素気流中で昇温速度25゜C/分で1000
゜Cまで加熱し同温度で60分保持して賦活を行い高吸
着性炭素材料を得た。得られた炭素材料の物性は、細孔
容積3.8ml/g 、平均細孔半径35Å、比表面積21
70m2/g、N2 吸着ガス量2455cc/gである。
2 g of this carbonaceous material was charged into a quartz reaction tube and heated in a carbon dioxide stream at a heating rate of 25 ° C./min to 1000.
The mixture was heated to ° C and kept at the same temperature for 60 minutes for activation to obtain a highly adsorptive carbon material. The physical properties of the obtained carbon material are as follows: pore volume 3.8 ml / g, average pore radius 35Å, specific surface area 21
70 m 2 / g, N 2 adsorption gas amount 2455 cc / g.

【0038】実施例2 Fe(NO3 3 ・9H2 Oに代えて、Co(NO3
2 ・6H2 O、Ni(NO3 2 ・6H2 O、Pd(N
3)2 をそれぞれ0.50g使用すること以外は実施例
1と同様に実施し高吸着性炭素材料を得た。得られた炭
素材料の物性を以下に示す。
[0038] Example 2 Fe (NO 3) in place of 3 · 9H 2 O, Co ( NO 3)
2 · 6H 2 O, Ni ( NO 3) 2 · 6H 2 O, Pd (N
A high adsorptive carbon material was obtained in the same manner as in Example 1 except that 0.50 g of O 3 ) 2 was used. The physical properties of the obtained carbon material are shown below.

【0039】[0039]

【表1】 [Table 1]

【0040】実施例3 Fe(NO3 3 ・9H2 Oに代えて、(COO)2
e・2H2 O、(CH3 COO)2 Niをそれぞれ0.
6g使用する以外は実施例1と同様に実施し高吸着性炭
素材料を得た。得られた炭素材料の物性を以下に示す。
[0040] Example 3 Fe (NO 3) in place of 3 · 9H 2 O, (COO ) 2 F
e.2H 2 O and (CH 3 COO) 2 Ni were added to 0.
A high adsorptive carbon material was obtained in the same manner as in Example 1 except that 6 g was used. The physical properties of the obtained carbon material are shown below.

【0041】[0041]

【表2】 [Table 2]

【0042】実施例4 Fe(NO3 3 ・9H2 Oを0.01g、0.3g、
0.6gおよび1.0g使用する以外は実施例1と同様
に実施し高吸着性炭素材料を得た。得られた炭素材料の
物性を以下に示す。
[0042] Example 4 Fe (NO 3) 3 · 9H 2 O and 0.01 g, 0.3 g,
A high adsorptive carbon material was obtained in the same manner as in Example 1 except that 0.6 g and 1.0 g were used. The physical properties of the obtained carbon material are shown below.

【0043】[0043]

【表3】 [Table 3]

【0044】比較例1 実施例1で使用した原料を未処理のまま賦活時間40分
で行うこと以外は実施例1と同様の賦活条件で行って炭
素材料を得た。得られた炭素材料は、細孔容積0.9 m
l/g 、平均細孔半径11Å、比表面積2060m2/g お
よび吸着ガス量599cc/gであった。
Comparative Example 1 A carbon material was obtained under the same activation conditions as in Example 1 except that the raw material used in Example 1 was treated untreated for 40 minutes. The obtained carbon material has a pore volume of 0.9 m
L / g, average pore radius 11Å, specific surface area 2060 m 2 / g, and amount of adsorbed gas 599 cc / g.

【0045】実施例5 実施例1および比較例1で得られた炭素材料を用いて、
ビタミンB12の吸着性能を測定した。ビタミンB12濃度
300ppmの水溶液100ml中に炭素材料25mg
を入れて25゜C、24時間振とうした後、溶液中のビ
タミンB12の残留濃度を比色計で(波長330nm、1
0mm石英セル)測定した。
Example 5 Using the carbon materials obtained in Example 1 and Comparative Example 1,
The adsorption performance of vitamin B 12 was measured. 25 mg of carbon material in 100 ml of aqueous solution containing 300 ppm of vitamin B 12
After shaking and shaking at 25 ° C for 24 hours, the residual concentration of vitamin B 12 in the solution was measured with a colorimeter (wavelength 330 nm, 1
0 mm quartz cell) was measured.

【0046】[0046]

【表4】 [Table 4]

【0047】比較例2 比表面積84m2 /gのヤシガラ木炭を原料として用い
ること以外は実施例1と同様にして炭素材料を得た。得
られた炭素材料の物性は、細孔容積0.8ml/g、平均細
孔半径12.5Å、比表面積1269m2/g、吸着ガス量
514cc/gである。
Comparative Example 2 A carbon material was obtained in the same manner as in Example 1 except that coconut husk charcoal having a specific surface area of 84 m 2 / g was used as a raw material. The physical properties of the obtained carbon material are: pore volume 0.8 ml / g, average pore radius 12.5Å, specific surface area 1269 m 2 / g, adsorbed gas amount 514 cc / g.

【0048】比較例3 Fe(NO3 3 ・9H2 Oに代えてMg(NO3 )・
6H2 O 1.0g添加すること以外は実施例1と同様
にして行い炭素材料を得た。得られた炭素材料の物性
は、細孔容積1.5ml/g、平均細孔半径13Å、比表面
積2356m2/g、吸着ガス量980cc/gである。この結
果、周期律表第8族金属化合物以外の添加は、本発明の
高吸着性炭素材料が得られないことが明かである。
[0048] Comparative Example 3 Fe (NO 3) in place of 3 · 9H 2 O Mg (NO 3) ·
A carbon material was obtained in the same manner as in Example 1 except that 1.0 g of 6H 2 O was added. The physical properties of the obtained carbon material are a pore volume of 1.5 ml / g, an average pore radius of 13Å, a specific surface area of 2356 m 2 / g, and an adsorbed gas amount of 980 cc / g. As a result, it is clear that the addition of a metal compound other than the Group 8 metal compound in the periodic table cannot provide the highly adsorbent carbon material of the present invention.

【0049】[0049]

【発明の効果】以上の如く、比表面積100m2 /g以
上の細孔を有する原料炭素質材料に、第8族金属化合物
を添加し賦活を行うことにより、細孔容積および平均細
孔半径が大きい細孔を持ち、高い吸着性能を示す高吸着
性炭素材料が得られる。本発明の炭素材料は、主として
メソポアの大きさの細孔からなり、大きな細孔容積およ
び平均細孔半径を有する高吸着性炭素材料でり、高分子
物質の吸着性能に優れていることから物質分離剤として
有用である。また、無機化合物及び有機化合物に対して
高い分解活性を有しCOD低減化触媒として有用であ
る。本発明の炭素材料は、原料炭素質材料として、市販
の活性炭が使用できるため広範に大量に入手可能で工業
的に有利であり、また本発明の製造方法は、アルカリ蒸
気を使用しないため装置の腐食がなく、流動性もよく、
しかも工程も少なく極めて容易な製造方法であり工業的
に有利な方法である。
As described above, by adding a Group 8 metal compound to a raw material carbonaceous material having pores having a specific surface area of 100 m 2 / g or more and activating it, the pore volume and the average pore radius are A highly adsorptive carbon material having large pores and high adsorption performance can be obtained. The carbon material of the present invention is a highly adsorbent carbon material mainly composed of mesopore-sized pores, having a large pore volume and an average pore radius, and is excellent in the adsorption performance of a polymer substance. It is useful as a separating agent. Further, it has a high decomposition activity for inorganic compounds and organic compounds and is useful as a COD reduction catalyst. The carbon material of the present invention is industrially advantageous because it can be obtained in a large amount in a wide range because commercially available activated carbon can be used as a raw material carbonaceous material. No corrosion, good flowability,
Moreover, it is an industrially advantageous method because it is a very easy manufacturing method with few steps.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01J 20/20 C01B 31/08 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) B01J 20/20 C01B 31/08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 細孔容積2.5〜4.0ml/gで、か
つ平均細孔半径21〜40Åであり、比表面積1600
〜2500m2 /gである高吸着性炭素材料。
1. A pore volume of 2.5 to 4.0 ml / g, an average pore radius of 21 to 40 Å, and a specific surface area of 1600.
A highly adsorptive carbon material having a value of 2,500 m 2 / g.
【請求項2】 比表面積が少なくとも100m2/gの細孔
を有する炭素質材料に第8族金属化合物を、重量比で
1:0.001〜1:0.1の範囲で添加し、酸化性ガ
ス雰囲気下、500〜1200℃で賦活処理することを
特徴とする請求項1記載の高吸着性炭素材料の製造方
法。
2. A Group 8 metal compound is added to a carbonaceous material having pores having a specific surface area of at least 100 m 2 / g in a weight ratio of 1: 0.001 to 1: 0.1 to perform oxidation. The method for producing a highly adsorptive carbon material according to claim 1, wherein the activation treatment is carried out at 500 to 1200 ° C. in a reactive gas atmosphere.
【請求項3】 第8族金属化合物が、鉄またはニッケル
の無機酸塩、または有機酸塩である請求項2記載の製造
方法。
3. The method according to claim 2, wherein the Group 8 metal compound is an inorganic acid salt or an organic acid salt of iron or nickel.
【請求項4】 炭素質材料に対する第8族金属化合物の
添加量が、重量比で1:0.01〜0.1の範囲である
請求項2記載の方法。
4. The method according to claim 2, wherein the addition amount of the Group 8 metal compound to the carbonaceous material is in the range of 1: 0.01 to 0.1 by weight.
JP30938793A 1993-12-09 1993-12-09 High adsorptive carbon material and method for producing the same Expired - Fee Related JP3367534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30938793A JP3367534B2 (en) 1993-12-09 1993-12-09 High adsorptive carbon material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30938793A JP3367534B2 (en) 1993-12-09 1993-12-09 High adsorptive carbon material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07155587A JPH07155587A (en) 1995-06-20
JP3367534B2 true JP3367534B2 (en) 2003-01-14

Family

ID=17992403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30938793A Expired - Fee Related JP3367534B2 (en) 1993-12-09 1993-12-09 High adsorptive carbon material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3367534B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2683225B2 (en) * 1994-05-26 1997-11-26 東曹産業株式会社 Method for producing activated carbon and method for using the activated carbon for water treatment
US20030038084A1 (en) * 2001-08-23 2003-02-27 The Procter & Gamble Company Water filters and processes for using the same
US20030096703A1 (en) * 2001-08-23 2003-05-22 The Procter & Gamble Company Processes for manufacturing water filters
JP2005324155A (en) * 2004-05-17 2005-11-24 Japan Pionics Co Ltd Refining agent and refining method for inert gas
JP5143469B2 (en) * 2006-06-16 2013-02-13 地方独立行政法人 大阪市立工業研究所 Method for producing iron-containing carbon material
KR101272200B1 (en) * 2012-05-23 2013-06-07 한국에너지기술연구원 Preparation method for highly loaded and dispersed metal-oxide on carbon nanocatalyst support using porous carbon templates via melt-infiltration process and highly loaded and dispersed metal-oxide on carbon nanocatalyst support thereof
KR101675457B1 (en) * 2013-02-12 2016-11-14 한국화학연구원 A fabrication method of metal-containg particles using ordered porous carbon templates
CN104162406A (en) * 2014-07-14 2014-11-26 宁夏宝塔石化科技实业发展有限公司 Composition and configuration of microporous material used for adsorbing natural gas
CN110915041B (en) * 2017-06-29 2022-08-30 日铁化学材料株式会社 Solid polymer fuel cell catalyst support, method for producing same, and fuel cell
WO2020218370A1 (en) * 2019-04-26 2020-10-29 株式会社クラレ Carbonaceous material, method for producing same, filter for water purification and water purifier

Also Published As

Publication number Publication date
JPH07155587A (en) 1995-06-20

Similar Documents

Publication Publication Date Title
JP3446771B2 (en) Method for producing high specific surface area carbon material
DE3853824T2 (en) ACTIVATED CARBON AND PRODUCTION METHOD.
US5529763A (en) CO adsorbents with hysteresis
CN104583120B (en) Activated carbon with high active surface area
DE3232236C2 (en)
JP3367534B2 (en) High adsorptive carbon material and method for producing the same
JPS6265918A (en) Adsorbent for separating and recovering co, its production and method for separating and recovering high-purity co by using its adsorbent
JPH01155945A (en) Production of adsorbent for separating and recovering co
KR20150102036A (en) Carbon bodies and ferromagnetic carbon bodies
JPH08239279A (en) Nitrogen-containing molecular sieve activated carbon, production and use thereof
CN111203179A (en) Preparation method and application of renewable phenol-containing organic wastewater catalytic adsorption material
Chouikhi et al. Valorization of agricultural waste as a carbon materials for selective separation and storage of CO2, H2 and N2
CN114768857A (en) Nano zero-valent iron composite material and preparation method and application thereof
Sotiriou et al. Synthesis and application of tuneable carbon–silica composites from the microwave pyrolysis of waste paper for selective recovery of gold from acidic solutions
CN115193410A (en) Modified activated carbon and preparation method and application thereof
JPH0881210A (en) Carbon material having high specific surface area and its production
CN111203199A (en) Porous β -cyclodextrin cross-linked polymer nanofiber, preparation method thereof and application thereof in removing bisphenol organic pollutants in water body
Manirajah et al. Evaluation of Low Cost-Activated Carbon Produced from Waste Tyres Pyrolysis for Removal of 2-Chlorophenol.
JP3539434B2 (en) Manufacturing method of high performance carbon material
JP2003342014A (en) Activated carbon and its manufacturing method
JP2934838B2 (en) Catalyst for decomposing nitrous oxide and method for removing nitrous oxide
JP3539435B2 (en) Manufacturing method of high performance carbon material
KR100599254B1 (en) High porous activated carbon for hydrogen storage and preparation thereof
Koskin et al. Study of palladium catalyst deactivation in synthesis of 4, 10-diformyl-2, 6, 8, 12-tetraacetyl-2, 4, 6, 8, 10, 12-hexaazaisowurtzitane
JP2003286022A (en) Method for manufacturing molecular sieve active carbon

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees