JP2005324155A - Refining agent and refining method for inert gas - Google Patents

Refining agent and refining method for inert gas Download PDF

Info

Publication number
JP2005324155A
JP2005324155A JP2004145947A JP2004145947A JP2005324155A JP 2005324155 A JP2005324155 A JP 2005324155A JP 2004145947 A JP2004145947 A JP 2004145947A JP 2004145947 A JP2004145947 A JP 2004145947A JP 2005324155 A JP2005324155 A JP 2005324155A
Authority
JP
Japan
Prior art keywords
inert gas
agent
nickel
purification
purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004145947A
Other languages
Japanese (ja)
Inventor
Takashi Shimada
孝 島田
Noboru Takemasa
登 武政
Yukifumi Ochi
幸史 越智
Takeo Komori
丈雄 古森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP2004145947A priority Critical patent/JP2005324155A/en
Publication of JP2005324155A publication Critical patent/JP2005324155A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a refining agent for an inert gas, which has a high removing performance of carbon dioxide contained as an impurity, can remove a slight amount of carbon dioxide up to an extremely low concentration without heating at the time of refining, and can continuously, easily supply a high purity inert gas without lowering carbon dioxide-removing performance even when it is repeatedly regenerated, in the refining of the inert gas using the refining agent; and to provide a refining method. <P>SOLUTION: Carbon dioxide contained in an inert gas is removed by bringing the inert gas into contact with the refining agent obtained by supporting a nickel compound on activated carbon. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、不活性ガスの精製剤及び精製方法に関する。さらに詳細には、不活性ガス中に不純物として含まれる二酸化炭素、酸素等を除去する能力が高く、これらの不純物を極めて低濃度まで除去し得る不活性ガスの精製剤及び精製方法に関する。   The present invention relates to an inert gas purification agent and a purification method. More specifically, the present invention relates to an inert gas purification agent and a purification method that have a high ability to remove carbon dioxide, oxygen, and the like contained as impurities in an inert gas and that can remove these impurities to an extremely low concentration.

半導体製造工程においては、ヘリウム、窒素、アルゴン等の不活性ガスが頻繁に使用されている。窒素等の不活性ガスは、工業的には液体空気を分留する方法により製造されているが、これらの不活性ガスには、二酸化炭素、酸素等が数ppm〜数百ppm程度含まれている。半導体分野においては、これらの不活性ガスは、成膜技術の進歩とともに極めて高純度であることが強く要求されているとともに、多量に使用されることから、高純度で連続して半導体製造工程に供給することが可能な不活性ガスの精製剤及び精製方法が要求されている。   In semiconductor manufacturing processes, inert gases such as helium, nitrogen, and argon are frequently used. Inert gases such as nitrogen are industrially produced by a method of fractionating liquid air, but these inert gases contain carbon dioxide, oxygen, etc. in the order of several ppm to several hundred ppm. Yes. In the semiconductor field, these inert gases are strongly required to have extremely high purity as the film forming technology advances, and since they are used in large quantities, they are continuously used in semiconductor manufacturing processes with high purity. There is a need for an inert gas purification agent and method that can be supplied.

このため、従来から種々の不活性ガスの精製剤及び精製方法が研究され、例えば、(1)希ガスを、鉄及びジルコニウムからなるゲッター剤と接触させて、希ガス中の不純物を除去する精製方法(特開平4−160010)、(2)希ガスを、バナジウム及びジルコニウムからなるゲッター剤と接触させて、希ガス中の不純物を除去する精製方法(特開平5−4809)、(3)酸素及び/または一酸化炭素を含む不活性ガスを、銅及びマンガンの混合酸化物(ホプカライト)等の多孔質金属酸化物を含む吸着剤に接触させて前記不純物ガスを除去する精製方法(特開平10−137530)等が開発されている。   For this reason, various purifiers and purifying methods for inert gases have been studied in the past.For example, (1) purification in which a rare gas is brought into contact with a getter agent composed of iron and zirconium to remove impurities in the rare gas. Method (Japanese Patent Laid-Open No. 4-160010), (2) purification method (Japanese Patent Laid-Open No. 5-4809) for removing impurities in a rare gas by contacting a rare gas with a getter agent comprising vanadium and zirconium, and (3) oxygen And / or an inert gas containing carbon monoxide is brought into contact with an adsorbent containing a porous metal oxide such as a mixed oxide (hopcalite) of copper and manganese to remove the impurity gas (Japanese Patent Laid-Open No. Hei 10). -137530) and the like have been developed.

また、精製剤は、不活性ガスを精製した後、再生して再利用することが、資源の有効利用となるばかりでなく、精製剤の詰替えや前処理の手間を大幅に節減でき高純度不活性ガスを連続して容易に供給できる点からも好ましい。そのため、例えば、(4)不活性ガスを、還元された金属ニッケルと接触させて、不活性ガス中に不純物として含まれる酸素を除去する精製方法(特公昭50−6440)が開発されており、このような精製方法においては精製剤(金属ニッケル)の再生が可能である。   In addition, purifying the inert gas after purifying the inert gas is not only an effective use of resources, but also a high purity that can greatly reduce the refilling and pre-treatment of the purifier. It is also preferable from the viewpoint that the inert gas can be easily supplied continuously. Therefore, for example, (4) a purification method (Japanese Patent Publication No. 50-6440) has been developed in which an inert gas is brought into contact with reduced metallic nickel to remove oxygen contained as an impurity in the inert gas. In such a purification method, the purification agent (metallic nickel) can be regenerated.

特公昭50−6440号公報Japanese Patent Publication No. 50-6440 特開平3−12315号公報Japanese Patent Laid-Open No. 3-12315 特開平4−160010号公報Japanese Patent Laid-Open No. 4-160010 特開平5−4809号公報Japanese Patent Laid-Open No. 5-4809 特開平10−137530号公報JP-A-10-137530

しかしながら、前述の(1)あるいは(2)のようなゲッター剤を用いた精製方法は、一般的に不活性ガスを精製する際にはゲッター剤を加熱する必要があり、またゲッター剤を再生することが困難なため剤を交換する必要があって、ランニングコストが高くなるという短所があった。また、(3)及び(4)の精製方法に使用される精製剤は、元々不活性ガス中の不純物の除去能力(精製剤の単位量当たりの不純物除去量)が低く、特に二酸化炭素の除去能力が低く、精製筒を大きくする必要があった。さらに(3)の精製方法に使用される精製剤は、繰返して再生を行なうと劣化し、除去能力がより低下するという不都合があった。   However, the purification method using the getter agent as described in (1) or (2) above generally requires heating the getter agent when purifying the inert gas, and regenerates the getter agent. Therefore, it is necessary to replace the agent, and there is a disadvantage that the running cost becomes high. In addition, the purifying agent used in the purification methods (3) and (4) originally has a low ability to remove impurities in the inert gas (impurity removal amount per unit amount of the purifying agent), especially the removal of carbon dioxide. The capacity was low and it was necessary to enlarge the purification cylinder. Further, the purification agent used in the purification method (3) has a disadvantage that it is deteriorated by repeated regeneration and the removal ability is further lowered.

従って、本発明が解決しようとする課題は、不活性ガスに不純物として含まれる二酸化炭素、酸素等の除去能力、特に二酸化炭素の除去能力が高く、精製の際に加熱することなく微量の前記不純物を極めて低濃度になるまで除去できるとともに、繰返して精製剤の再生を行なっても不純物の除去能力が低下することなく、高純度の不活性ガスを連続して容易に供給できる不活性ガスの精製剤及び精製方法を提供することである。   Therefore, the problem to be solved by the present invention is to remove carbon dioxide, oxygen and the like contained as impurities in the inert gas, in particular, the ability to remove carbon dioxide is high, and a small amount of the impurities without heating during purification. Can be removed to a very low concentration, and refinement of an inert gas that can continuously supply a high-purity inert gas easily without reducing the impurity removal ability even if the purification agent is regenerated repeatedly. It is to provide a formulation and purification method.

本発明者らは、これらの課題を解決すべく鋭意検討した結果、精製剤として、活性炭にニッケル化合物を担持させてなる精製剤を用いることにより、不活性ガスに不純物として含まれる二酸化炭素、酸素、一酸化炭素、水素等の除去能力、特に二酸化炭素の除去能力が高く、加熱することなく微量の前記不純物を極めて低濃度になるまで除去できるとともに、繰返して精製剤の再生を行なっても精製剤の劣化がなく、精製剤の寿命が著しく延びることを見出し、本発明の不活性ガスの精製剤及び精製方法に到達した。   As a result of intensive studies to solve these problems, the present inventors have used carbon dioxide, oxygen contained as impurities in the inert gas by using a purification agent obtained by supporting activated carbon with a nickel compound as a purification agent. The ability to remove carbon monoxide, hydrogen, etc., especially the ability to remove carbon dioxide, can remove trace amounts of the impurities to very low concentrations without heating. It was found that there was no deterioration of the preparation and the life of the purifying agent was remarkably extended, and the inert gas purifying agent and purification method of the present invention were reached.

すなわち本発明は、活性炭にニッケル化合物を担持させてなることを特徴とする不活性ガスの精製剤である。
また、本発明は、不活性ガスを、活性炭にニッケル化合物を担持させてなる精製剤と接触させて、該不活性ガスに不純物として含まれる二酸化炭素を除去することを特徴とする不活性ガスの精製方法でもある。
That is, the present invention is an inert gas purifying agent characterized in that a nickel compound is supported on activated carbon.
The present invention also relates to an inert gas characterized in that an inert gas is brought into contact with a purifying agent obtained by supporting a nickel compound on activated carbon to remove carbon dioxide contained as an impurity in the inert gas. It is also a purification method.

本発明の不活性ガスの精製剤及び精製方法は、不純物として二酸化炭素を含む不活性ガスの精製、及び、不純物として、二酸化炭素とともに、酸素、一酸化炭素、及び水素から選ばれる1種以上のガスを含む不活性ガスの精製に適用される。また、本発明の不活性ガスの精製剤及び精製方法は、不活性ガスの精製に使用された精製剤を再生することが可能であり、その寿命を著しく延長できる点で特に効果を発揮する。尚、本発明における不活性ガスは、ヘリウム、窒素、ネオン、アルゴン、クリプトン、キセノン等である。   The purifying agent and the purifying method for an inert gas of the present invention include a purification of an inert gas containing carbon dioxide as an impurity, and at least one selected from oxygen, carbon monoxide, and hydrogen together with carbon dioxide as an impurity. Applicable to purification of inert gas including gas. Moreover, the purifying agent and the purifying method of the inert gas of the present invention are particularly effective in that the purifying agent used for purifying the inert gas can be regenerated and its life can be significantly extended. The inert gas in the present invention is helium, nitrogen, neon, argon, krypton, xenon, or the like.

本発明の精製剤は、活性炭に少なくともニッケル化合物を担持させた精製剤である。活性炭にニッケル化合物を担持させる方法としては、活性炭の表面にニッケル化合物を強固に付着させるために、通常は活性炭にニッケル塩を含む溶液を接触させて付着させた後、加熱処理する方法が実施される。この際に用いられる溶液には特に制限はなく、有機溶媒も使用することができるが、実用上、水が使用される。   The purifying agent of the present invention is a purifying agent in which at least a nickel compound is supported on activated carbon. As a method of supporting the nickel compound on the activated carbon, in order to firmly adhere the nickel compound to the surface of the activated carbon, usually a method of bringing the activated carbon into contact with a solution containing a nickel salt and then performing heat treatment is performed. The There is no restriction | limiting in particular in the solution used in this case, Although an organic solvent can also be used, water is used practically.

従って、ニッケル塩としては、0〜100℃のいずれかの温度で、水溶性(本発明においては5g/100g水以上の溶解性を有するニッケル塩とする)であることが好ましく、このようなニッケル塩としては、例えば、塩化ニッケル、塩化ニッケルアンモニウム、硫酸ニッケル、ギ酸ニッケル、酢酸ニッケル等を挙げることができる。その他、酸性水溶液、アルカリ性水溶液に対して、5g/100g水以上の溶解性を有するニッケル塩も使用することができる。例えば、酸化ニッケル、燐酸ニッケルは、水にほとんど不溶であるが、酸に易溶であるので、本発明に使用可能である。また、例えば、ギ酸ニッケルあるいは酢酸ニッケルは、アンモニア水に溶解させ、ニッケルのアンミン錯塩とすることも可能である。   Accordingly, the nickel salt is preferably water-soluble (in the present invention, a nickel salt having a solubility of 5 g / 100 g water or more) at any temperature of 0 to 100 ° C. Examples of the salt include nickel chloride, nickel ammonium chloride, nickel sulfate, nickel formate, and nickel acetate. In addition, a nickel salt having solubility of 5 g / 100 g water or more with respect to an acidic aqueous solution and an alkaline aqueous solution can also be used. For example, nickel oxide and nickel phosphate are almost insoluble in water, but are easily soluble in acid, and can be used in the present invention. Further, for example, nickel formate or nickel acetate can be dissolved in ammonia water to form an ammine complex salt of nickel.

また、本発明の精製剤においては、不活性ガス中の不純物の除去能力を向上できる点で、活性炭にニッケル化合物とともにアルカリ金属化合物あるいはアルカリ金属の水酸化物を担持させることが好ましい。アルカリ金属化合物を担持させる場合は、前述と同様に水溶性(5g/100g水以上の溶解性)のアルカリ金属化合物を用いることが好ましく、このようなアルカリ金属化合物としては、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム等の炭酸塩、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素ルビジウム、炭酸水素セシウム等の炭酸水素塩を挙げることができる。また、アルカリ金属の水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウムを挙げることができる。   In the purifying agent of the present invention, it is preferable to support the activated carbon with an alkali metal compound or an alkali metal hydroxide together with a nickel compound in terms of improving the ability to remove impurities in the inert gas. When supporting an alkali metal compound, it is preferable to use a water-soluble (5 g / 100 g water or more soluble) alkali metal compound as described above. Examples of such an alkali metal compound include lithium carbonate and carbonic acid. Examples thereof include carbonates such as sodium, potassium carbonate, and rubidium carbonate, and bicarbonates such as sodium bicarbonate, potassium bicarbonate, rubidium bicarbonate, and cesium bicarbonate. Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide.

本発明においては、好ましくは前記のように、活性炭に、ニッケル塩を含む溶液、あるいはニッケル塩とともにアルカリ金属化合物あるいはアルカリ金属の水酸化物を含む溶液を接触させて付着させた後、加熱処理されて不活性ガスの浄化剤とされる。加熱処理された後の浄化剤において、活性炭の表面に担持されているニッケル化合物の化学組成は、使用されるニッケル塩により異なるが、例えば、ギ酸ニッケル、酢酸ニッケル等を使用した場合は、ニッケル金属を含むニッケル化合物となっていると思われる。   In the present invention, preferably, as described above, a solution containing a nickel salt or a solution containing an alkali metal compound or an alkali metal hydroxide together with the nickel salt is contacted and adhered to the activated carbon, followed by heat treatment. Inert gas purifier. In the cleaning agent after the heat treatment, the chemical composition of the nickel compound supported on the surface of the activated carbon varies depending on the nickel salt used. For example, when nickel formate or nickel acetate is used, nickel metal It seems to be a nickel compound containing.

また、本発明の精製剤において、活性炭に担持されるニッケル化合物以外の成分として、マグネシウム、アルミニウム、ケイ素、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛等の金属、あるいはニッケルを除くこれらの酸化物等が少量含まれているものであってもよい。しかし、精製剤全体に対するニッケルの含有量は、通常は1〜50wt%、好ましくは2〜40wt%となるようにされ、また、ニッケル塩とともにアルカリ金属化合物あるいはアルカリ金属の水酸化物を用いる場合は、精製剤全体に対するこれらの合計の含有量が、通常は1〜60wt%、好ましくは2〜50wt%となるようにされる。また、精製剤の比表面積は、通常は50〜1500m/g程度である。 Further, in the purifying agent of the present invention, as a component other than the nickel compound supported on the activated carbon, magnesium, aluminum, silicon, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc and other metals, or nickel A small amount of these oxides may be included. However, the nickel content with respect to the entire refining agent is usually 1 to 50 wt%, preferably 2 to 40 wt%, and when an alkali metal compound or an alkali metal hydroxide is used together with a nickel salt. The total content of the purification agent is usually 1 to 60 wt%, preferably 2 to 50 wt%. Moreover, the specific surface area of a refiner is usually about 50-1500 m < 2 > / g.

本発明の不活性ガスの精製方法は、不活性ガスを前述の精製剤と接触させて、不活性ガスに不純物として含まれる二酸化炭素等を除去する方法である。本発明において、活性炭にニッケル化合物を担持させてなる精製剤、あるいは活性炭にニッケル化合物とともにアルカリ金属化合物を担持させてなる精製剤は、通常は使用する前にこれを活性化するために、水素、一酸化炭素、エーテル類、アルコール類、ケトン類、エステル類、炭化水素類等の還元性ガスによる還元処理が行なわれる。還元の際は、例えば100〜400℃程度の温度で、水素、あるいは水素と窒素の混合ガスを、空筒線速度(LV)1〜50cm/sec程度で通すことによって行なうことができる。   The method for purifying an inert gas of the present invention is a method for removing carbon dioxide contained as an impurity in the inert gas by bringing the inert gas into contact with the above-described purifying agent. In the present invention, a purifying agent obtained by supporting a nickel compound on activated carbon, or a purifying agent obtained by supporting an alkali metal compound together with a nickel compound on activated carbon is usually hydrogen, Reduction treatment with a reducing gas such as carbon monoxide, ethers, alcohols, ketones, esters and hydrocarbons is performed. In the reduction, for example, hydrogen or a mixed gas of hydrogen and nitrogen can be passed at a temperature of about 100 to 400 ° C. at an empty cylinder linear velocity (LV) of about 1 to 50 cm / sec.

不活性ガスの精製は、通常は図1に示すような精製筒2に精製剤1を充填し、還元処理した後、精製筒2に不活性ガスを通すことによって行われる。尚、図中、3はヒーター、4は不活性ガスの供給ラインを示すものである。
精製筒に充填される精製剤の充填長は、実用上通常は50〜1500mmとされる。充填長が50mmよりも短くなると不純物の除去率が低下する虞があり、また、1500mmよりも長くなると圧力損失が大きくなり過ぎる虞が生ずる。精製時の不活性ガスの空筒線速度(LV)は、供給される不活性ガス中の不純物の濃度および操作条件などによって異なり一概に特定できないが、通常は100cm/sec以下、好ましくは30cm/sec以下である。
The purification of the inert gas is usually performed by filling the purification cylinder 2 as shown in FIG. 1 with the purification agent 1, performing a reduction treatment, and then passing the inert gas through the purification cylinder 2. In the figure, 3 is a heater and 4 is an inert gas supply line.
In practice, the filling length of the purification agent filled in the purification cylinder is usually 50 to 1500 mm. If the filling length is shorter than 50 mm, the impurity removal rate may decrease, and if the filling length is longer than 1500 mm, the pressure loss may be excessively increased. The hollow cylinder velocity (LV) of the inert gas at the time of purification varies depending on the concentration of impurities in the inert gas supplied and the operating conditions, but cannot be specified unconditionally, but is usually 100 cm / sec or less, preferably 30 cm / sec or less.

不活性ガスと精製剤の接触温度は、精製筒の入口に供給されるガスの温度で100℃以下であり、通常は常温でよく、特に加熱や冷却を必要としない。また、不活性ガスと精製剤の接触時の圧力にも特に制限はなく、常圧、1KPaのような減圧あるいは2MPa(絶対圧力)のような加圧下のいずれでも処理が可能であるが、通常は常圧ないし1MPa(絶対圧力)の加圧下で行なわれる。   The contact temperature between the inert gas and the purifying agent is 100 ° C. or less in terms of the temperature of the gas supplied to the inlet of the purifying cylinder, and is usually normal temperature, and does not require heating or cooling. Further, the pressure at the time of contact between the inert gas and the purification agent is not particularly limited, and the treatment can be performed under normal pressure, reduced pressure such as 1 KPa, or pressurized pressure such as 2 MPa (absolute pressure). Is performed under normal pressure to 1 MPa (absolute pressure).

本発明の不活性ガスの精製方法において、精製剤の再生は、通常は水素、一酸化炭素、エーテル類、アルコール類、ケトン類、エステル類、炭化水素類等の還元性ガスによる還元処理により行なわれる。精製剤の再生の際は、150〜400℃の温度で、還元性ガス、あるいは還元性ガスと不活性ガスの混合ガスを、精製剤が充填された精製筒に通すことによって行なうことができるが、精製剤の寿命をさらに延長できる点で、精製剤に不活性ガスを供給した後、前記の条件で還元性ガスを供給することにより行なうことが好ましい。   In the inert gas purification method of the present invention, the regeneration of the purification agent is usually performed by a reduction treatment with a reducing gas such as hydrogen, carbon monoxide, ethers, alcohols, ketones, esters, hydrocarbons and the like. It is. The regeneration of the purifying agent can be performed by passing a reducing gas or a mixed gas of reducing gas and inert gas through a purifying cylinder filled with the purifying agent at a temperature of 150 to 400 ° C. From the viewpoint of further extending the life of the purifying agent, it is preferable to carry out by supplying an inert gas to the purifying agent and then supplying a reducing gas under the above conditions.

本発明の不活性ガスの精製方法においては、高純度不活性ガスを連続して容易に供給するために、精製剤が備えられた精製ラインを少なくとも2ライン配置して不活性ガスの精製を行なうことが好ましい。図2は、それに用いるための精製ラインの一例を示す構成図であり、2は精製筒、4は不活性ガスの供給ライン、5は精製された不活性ガスの抜出しライン、6は再生ガス(還元性ガス)供給ライン、7は再生排ガス排出ラインを示すものである。このような精製ラインにより、各ラインを順次切替えながら、不活性ガスを供給して精製すると同時に、再生ガスを精製後のラインに供給して、精製剤を再生できるようになり、高純度不活性ガスを連続して容易に供給することが可能となる。   In the inert gas purification method of the present invention, in order to easily and continuously supply a high-purity inert gas, the inert gas is purified by arranging at least two purification lines equipped with a purification agent. It is preferable. FIG. 2 is a block diagram showing an example of a purification line for use therein, wherein 2 is a purification cylinder, 4 is an inert gas supply line, 5 is a purified inert gas extraction line, and 6 is a regeneration gas ( A reducing gas) supply line 7 is a regenerated exhaust gas discharge line. With such a purification line, it is possible to regenerate the purification agent by supplying an inert gas while simultaneously switching each line, and at the same time supplying a regeneration gas to the line after purification. It becomes possible to supply gas continuously and easily.

本発明の不活性ガスの精製剤及び精製方法により、不活性ガスに不純物として含まれている二酸化炭素等を、精製剤の単位量当たりの不純物除去量換算で、従来の精製方法よりも極めて多く除去することが可能となった。また、不活性ガスに含まれている微量の二酸化炭素等を、加熱することなく、極めて低濃度になるまで除去できるとともに、繰返して精製剤の再生を行なっても不純物の除去能力が低下することなく、精製剤の寿命を従来の精製方法よりも著しく長く延ばすことが可能となった。   By the inert gas purification agent and purification method of the present invention, carbon dioxide and the like contained in the inert gas as impurities are much more than conventional purification methods in terms of impurity removal amount per unit amount of the purification agent. It became possible to remove. In addition, trace amounts of carbon dioxide contained in the inert gas can be removed to a very low concentration without heating, and the ability to remove impurities is reduced even after repeated purification of the purifier. As a result, it was possible to extend the lifetime of the purification agent significantly longer than the conventional purification method.

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

(精製剤の調製)
ギ酸ニッケル63gと炭酸カリウム35gを28wt%のアンモニア水300mlに溶解させた水溶液に、市販の活性炭(比表面積:1050m/g)160gを浸し分散させた後、水溶液をエバポレータで蒸発させ、さらに350℃で5時間乾燥することにより、活性炭にニッケル化合物及びカリウム化合物を担持させてなる比表面積が770m/gの精製剤を得た。精製剤の重量を測定した結果、ニッケル化合物とカリウム化合物の合計の含有量は、精製剤全体の20wt%であった。
(Preparation of purification agent)
After immersing and dispersing 160 g of commercially available activated carbon (specific surface area: 1050 m 2 / g) in an aqueous solution in which 63 g of nickel formate and 35 g of potassium carbonate are dissolved in 300 ml of 28 wt% ammonia water, the aqueous solution is evaporated by an evaporator, and 350 By drying at 5 ° C. for 5 hours, a purification agent having a specific surface area of 770 m 2 / g obtained by supporting a nickel compound and a potassium compound on activated carbon was obtained. As a result of measuring the weight of the purifying agent, the total content of the nickel compound and the potassium compound was 20 wt% of the entire purifying agent.

(不活性ガスの精製試験)
前記の精製剤を内径16.4mm、長さ300mmのステンレス製の精製筒に充填長100mmとなるように充填した。次に、精製筒の温度を250℃に昇温し、水素を流量1000ml/minで2時間流通して精製剤を活性化するために還元処理を行ない、その後精製筒を常温に冷却した。
(Inert gas purification test)
The purification agent was filled into a stainless steel purification cylinder having an inner diameter of 16.4 mm and a length of 300 mm so as to have a filling length of 100 mm. Next, the temperature of the purification cylinder was raised to 250 ° C., hydrogen was passed at a flow rate of 1000 ml / min for 2 hours to perform a reduction treatment to activate the purification agent, and then the purification cylinder was cooled to room temperature.

次に、不純物として10ppmの二酸化炭素を含む窒素を、常温(20℃)、0.6MPa(絶対圧力)において、流量13830ml/minで流通して精製を行なった。その間約20分間隔で大気圧イオン化質量分析計(API−MS)を用いて出口ガス中の二酸化炭素の分析を行ない、二酸化炭素が検出されるまでの時間を測定して、精製剤1g当たりに対する二酸化炭素除去量(ml)を求めた。(API−MSの二酸化炭素、酸素、一酸化炭素、水素の検出下限濃度:1ppb)その結果を表1に示す。   Next, it refine | purified by distribute | circulating nitrogen containing 10 ppm of carbon dioxide as an impurity at normal temperature (20 degreeC) and 0.6 Mpa (absolute pressure) with the flow volume of 13830 ml / min. During this period, carbon dioxide in the outlet gas is analyzed using an atmospheric pressure ionization mass spectrometer (API-MS) at intervals of about 20 minutes, and the time until carbon dioxide is detected is measured. The amount of carbon dioxide removed (ml) was determined. (API-MS carbon dioxide, oxygen, carbon monoxide, hydrogen detection lower limit concentration: 1 ppb) The results are shown in Table 1.

二酸化炭素が検出された後、不活性ガスの供給を中止し、精製剤の温度を250℃に昇温して、窒素を常圧、流量1000ml/minで1時間流通し、さらに水素と窒素の混合ガス(水素5vol%、窒素95vol%)を常圧、流量1000ml/minで2時間流通して精製剤の再生を行なった。その後、精製剤を常温に冷却し、窒素の精製を再開した。以上のような操作を繰返して行ない、精製剤1g当たりに対する二酸化炭素除去量(ml)を求めた結果を表1に示す。   After the detection of carbon dioxide, the supply of inert gas is stopped, the temperature of the purifying agent is raised to 250 ° C., nitrogen is circulated for 1 hour at a normal pressure and a flow rate of 1000 ml / min. The purified gas was regenerated by circulating a mixed gas (hydrogen 5 vol%, nitrogen 95 vol%) at normal pressure and a flow rate of 1000 ml / min for 2 hours. Thereafter, the purifier was cooled to room temperature, and nitrogen purification was resumed. Table 1 shows the results obtained by repeating the above operation and determining the carbon dioxide removal amount (ml) per gram of the purifying agent.

実施例2、3
実施例1の精製剤の調製において、精製剤中のニッケル化合物とカリウム化合物の合計の含有量を、各々10wt%、30wt%に変えたほかは実施例1と同様にして精製剤を調製した。(ニッケル化合物とカリウム化合物の含有比は実施例1と同様)
これらの精製剤を用いたほかは実施例1と同様にして不活性ガスの精製試験を行なった。結果を表1に示す。
Examples 2 and 3
In the preparation of the purification agent of Example 1, the purification agent was prepared in the same manner as in Example 1 except that the total content of the nickel compound and the potassium compound in the purification agent was changed to 10 wt% and 30 wt%, respectively. (The content ratio of nickel compound and potassium compound is the same as in Example 1)
An inert gas purification test was conducted in the same manner as in Example 1 except that these purification agents were used. The results are shown in Table 1.

実施例4、5
実施例1の不活性ガスの精製試験において、不活性ガスとして、各々5ppmの二酸化炭素を含む窒素、100ppmの二酸化炭素を含む窒素を用いたほかは実施例1と同様にして不活性ガスの精製試験を行なった。結果を表1に示す。
Examples 4 and 5
In the inert gas purification test of Example 1, the inert gas was purified in the same manner as in Example 1 except that nitrogen containing 5 ppm of carbon dioxide and nitrogen containing 100 ppm of carbon dioxide were used as the inert gas. A test was conducted. The results are shown in Table 1.

実施例6、7
実施例1の精製剤の調製において、ギ酸ニッケルの替わりに、各々酢酸ニッケル、塩化ニッケルを用いたほかは実施例1と同様にして精製剤を調製した。
これらの精製剤を用いたほかは実施例1と同様にして不活性ガスの精製試験を行なった。結果を表1に示す。
Examples 6 and 7
In the preparation of the purification agent of Example 1, a purification agent was prepared in the same manner as in Example 1 except that nickel acetate and nickel chloride were used instead of nickel formate.
An inert gas purification test was conducted in the same manner as in Example 1 except that these purification agents were used. The results are shown in Table 1.

実施例8〜14
実施例1の精製剤の調製において、炭酸カリウムの替わりに、各々炭酸リチウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウムを用いたほかは実施例1と同様にして精製剤を調製した。
これらの精製剤を用いたほかは実施例1と同様にして不活性ガスの精製試験を行なった。結果を表1に示す。
Examples 8-14
Example 1 except that lithium carbonate, sodium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, lithium hydroxide, sodium hydroxide, and potassium hydroxide were used in place of potassium carbonate in the preparation of the purification agent of Example 1. In the same manner, a purification agent was prepared.
An inert gas purification test was conducted in the same manner as in Example 1 except that these purification agents were used. The results are shown in Table 1.

実施例15
実施例1の精製剤の調製において、炭酸カリウムを用いなかったほかは実施例1と同様にして精製剤を調製した。
この精製剤を用いたほかは実施例1と同様にして不活性ガスの精製試験を行なった。結果を表1に示す。
Example 15
A purification agent was prepared in the same manner as in Example 1 except that potassium carbonate was not used in the preparation of the purification agent of Example 1.
An inert gas purification test was conducted in the same manner as in Example 1 except that this purification agent was used. The results are shown in Table 1.

実施例16
実施例1の不活性ガスの精製試験において、不活性ガスとして、20ppmの酸素を含む窒素を用いたほかは実施例1と同様にして不活性ガスの精製試験を行なった。結果を表2に示す。
Example 16
In the inert gas purification test of Example 1, the inert gas purification test was performed in the same manner as in Example 1 except that nitrogen containing 20 ppm of oxygen was used as the inert gas. The results are shown in Table 2.

実施例17、18
実施例16の精製剤の調製において、精製剤中のニッケル化合物とカリウム化合物の合計の含有量を、各々10wt%、30wt%に変えたほかは実施例16と同様にして精製剤を調製した。(ニッケル化合物とカリウム化合物の含有比は実施例16と同様)
これらの精製剤を用いたほかは実施例16と同様にして不活性ガスの精製試験を行なった。結果を表2に示す。
Examples 17 and 18
A purification agent was prepared in the same manner as in Example 16 except that in the preparation of the purification agent of Example 16, the total content of the nickel compound and the potassium compound in the purification agent was changed to 10 wt% and 30 wt%, respectively. (The content ratio of nickel compound and potassium compound is the same as in Example 16)
An inert gas purification test was conducted in the same manner as in Example 16 except that these purification agents were used. The results are shown in Table 2.

実施例19、20
実施例16の不活性ガスの精製試験において、不活性ガスとして、各々10ppmの酸素を含む窒素、50ppmの酸素を含む窒素を用いたほかは実施例16と同様にして不活性ガスの精製試験を行なった。結果を表2に示す。
Examples 19 and 20
In the inert gas purification test of Example 16, the inert gas purification test was performed in the same manner as in Example 16 except that nitrogen containing 10 ppm of oxygen and nitrogen containing 50 ppm of oxygen were used as the inert gas. I did it. The results are shown in Table 2.

実施例21、22
実施例16の精製剤の調製において、ギ酸ニッケルの替わりに、各々酢酸ニッケル、塩化ニッケルを用いたほかは実施例16と同様にして精製剤を調製した。
これらの精製剤を用いたほかは実施例16と同様にして不活性ガスの精製試験を行なった。結果を表2に示す。
Examples 21 and 22
A purification agent was prepared in the same manner as in Example 16 except that nickel acetate and nickel chloride were used instead of nickel formate in the preparation of the purification agent of Example 16, respectively.
An inert gas purification test was conducted in the same manner as in Example 16 except that these purification agents were used. The results are shown in Table 2.

実施例23〜29
実施例16の精製剤の調製において、炭酸カリウムの替わりに、各々炭酸リチウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウムを用いたほかは実施例16と同様にして精製剤を調製した。
これらの精製剤を用いたほかは実施例16と同様にして不活性ガスの精製試験を行なった。結果を表2に示す。
Examples 23-29
In the preparation of the purifying agent of Example 16, Example 16 was used except that lithium carbonate, sodium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, lithium hydroxide, sodium hydroxide and potassium hydroxide were used instead of potassium carbonate. In the same manner, a purification agent was prepared.
An inert gas purification test was conducted in the same manner as in Example 16 except that these purification agents were used. The results are shown in Table 2.

実施例30
実施例16の精製剤の調製において、炭酸カリウムを用いなかったほかは実施例1と同様にして精製剤を調製した。
この精製剤を用いたほかは実施例16と同様にして不活性ガスの精製試験を行なった。結果を表2に示す。
Example 30
A purification agent was prepared in the same manner as in Example 1 except that potassium carbonate was not used in the preparation of the purification agent of Example 16.
An inert gas purification test was conducted in the same manner as in Example 16 except that this purification agent was used. The results are shown in Table 2.

実施例31
実施例1の不活性ガスの精製試験において、不活性ガスとして、10ppmの一酸化炭素を含む窒素を用いたほかは実施例1と同様にして不活性ガスの精製試験を行なった。結果を表3に示す。
Example 31
In the inert gas purification test of Example 1, the inert gas purification test was performed in the same manner as in Example 1 except that nitrogen containing 10 ppm of carbon monoxide was used as the inert gas. The results are shown in Table 3.

実施例32
実施例31の精製剤の調製において、ギ酸ニッケルの替わりに酢酸ニッケルを用いたほかは実施例31と同様にして精製剤を調製した。
この精製剤を用いたほかは実施例31と同様にして不活性ガスの精製試験を行なった。結果を表3に示す。
Example 32
A purification agent was prepared in the same manner as in Example 31 except that nickel acetate was used instead of nickel formate in the preparation of the purification agent of Example 31.
An inert gas purification test was conducted in the same manner as in Example 31 except that this purification agent was used. The results are shown in Table 3.

実施例33
実施例31の精製剤の調製において、炭酸カリウムの替わりに水酸化リチウムを用いたほかは実施例31と同様にして精製剤を調製した。
この精製剤を用いたほかは実施例31と同様にして不活性ガスの精製試験を行なった。結果を表3に示す。
Example 33
A purification agent was prepared in the same manner as in Example 31 except that lithium hydroxide was used in place of potassium carbonate in the preparation of the purification agent of Example 31.
An inert gas purification test was conducted in the same manner as in Example 31 except that this purification agent was used. The results are shown in Table 3.

実施例34
実施例1の不活性ガスの精製試験において、不活性ガスとして、30ppmの水素を含む窒素を用いたほかは実施例1と同様にして不活性ガスの精製試験を行なった。結果を表3に示す。
Example 34
In the inert gas purification test of Example 1, the inert gas purification test was performed in the same manner as in Example 1 except that nitrogen containing 30 ppm of hydrogen was used as the inert gas. The results are shown in Table 3.

実施例35
実施例34の精製剤の調製において、ギ酸ニッケルの替わりに酢酸ニッケルを用いたほかは実施例34と同様にして精製剤を調製した。
この精製剤を用いたほかは実施例34と同様にして不活性ガスの精製試験を行なった。結果を表3に示す。
Example 35
A purification agent was prepared in the same manner as in Example 34 except that nickel acetate was used instead of nickel formate in the preparation of the purification agent of Example 34.
An inert gas purification test was performed in the same manner as in Example 34 except that this purification agent was used. The results are shown in Table 3.

実施例36
実施例34の精製剤の調製において、炭酸カリウムの替わりに水酸化リチウムを用いたほかは実施例34と同様にして精製剤を調製した。
この精製剤を用いたほかは実施例34と同様にして不活性ガスの精製試験を行なった。結果を表3に示す。
Example 36
A purification agent was prepared in the same manner as in Example 34 except that lithium hydroxide was used in place of potassium carbonate in the preparation of the purification agent of Example 34.
An inert gas purification test was performed in the same manner as in Example 34 except that this purification agent was used. The results are shown in Table 3.

比較例1
実施例1の精製剤の調製において、活性炭にニッケル化合物及びカリウム化合物を担持させなかったほかは実施例1と同様にして精製剤を調製した。
この精製剤を用いたほかは実施例1と同様にして不活性ガスの精製試験を行なった。結果を表3に示す。
Comparative Example 1
In the preparation of the purifying agent of Example 1, the purifying agent was prepared in the same manner as in Example 1 except that the activated carbon did not support the nickel compound and the potassium compound.
An inert gas purification test was conducted in the same manner as in Example 1 except that this purification agent was used. The results are shown in Table 3.

Figure 2005324155
Figure 2005324155

Figure 2005324155
Figure 2005324155

Figure 2005324155
Figure 2005324155

本発明の不活性ガスの精製方法を実施するための精製ラインの一例を示す構成図The block diagram which shows an example of the purification line for enforcing the purification method of the inert gas of this invention 本発明の不活性ガスの精製方法を実施するための図1以外の精製ラインの例を示す構成図The block diagram which shows the example of purification lines other than FIG. 1 for implementing the purification method of the inert gas of this invention

符号の説明Explanation of symbols

1 精製剤
2 精製筒
3 ヒーター
4 不活性ガス供給ライン
5 精製された不活性ガスの抜出しライン
6 再生ガス供給ライン
7 再生排ガス排出ライン
DESCRIPTION OF SYMBOLS 1 Refiner 2 Purification cylinder 3 Heater 4 Inert gas supply line 5 Extraction line of refined inert gas 6 Regeneration gas supply line 7 Regeneration exhaust gas discharge line

Claims (15)

活性炭にニッケル化合物を担持させてなることを特徴とする不活性ガスの精製剤。   An inert gas purifying agent, wherein a nickel compound is supported on activated carbon. 活性炭にニッケル化合物とともにアルカリ金属化合物を担持させた請求項1に記載の不活性ガスの精製剤。   The purifier for inert gas according to claim 1, wherein the activated carbon carries an alkali metal compound together with a nickel compound. 活性炭にニッケル塩を含む溶液を付着させた後、加熱処理することにより該活性炭にニッケル化合物を担持させた請求項1に記載の不活性ガスの精製剤。   The inert gas purifier according to claim 1, wherein a nickel compound is supported on the activated carbon by attaching a solution containing a nickel salt to the activated carbon and then performing a heat treatment. 活性炭に、ニッケル塩とともにアルカリ金属塩を含む溶液を付着させた後、加熱処理することにより該活性炭にニッケル化合物とアルカリ金属化合物を担持させた請求項2に記載の不活性ガスの精製剤。   The inert gas purification agent according to claim 2, wherein a nickel compound and an alkali metal compound are supported on the activated carbon by adhering a solution containing the alkali metal salt together with the nickel salt to the activated carbon, and then heat-treating the activated carbon. 活性炭に、ニッケル塩とともにアルカリ金属の水酸化物を含む溶液を付着させた後、加熱処理することにより該活性炭にニッケル化合物とアルカリ金属化合物を担持させた請求項2に記載の不活性ガスの精製剤。   The inert gas concentrate according to claim 2, wherein a solution containing an alkali metal hydroxide together with a nickel salt is attached to the activated carbon, and then the activated carbon is loaded with the nickel compound and the alkali metal compound by heat treatment. Formulation. ニッケル塩が、ニッケルのアンミン錯塩である請求項3、請求項4、または請求項5に記載の不活性ガスの精製剤。   6. The inert gas purifier according to claim 3, wherein the nickel salt is an ammine complex salt of nickel. アルカリ金属塩が、アルカリ金属の炭酸塩または炭酸水素塩である請求項4に記載の不活性ガスの精製剤。   The purifying agent for an inert gas according to claim 4, wherein the alkali metal salt is an alkali metal carbonate or bicarbonate. ニッケル化合物の含有量が、精製剤全体の1〜50wt%である請求項1に記載の不活性ガスの精製剤。   The inert gas purification agent according to claim 1, wherein the content of the nickel compound is 1 to 50 wt% of the entire purification agent. ニッケル化合物とアルカリ金属化合物の合計の含有量が、精製剤全体の1〜60wt%である請求項2に記載の不活性ガスの精製剤。   The purifying agent for an inert gas according to claim 2, wherein the total content of the nickel compound and the alkali metal compound is 1 to 60 wt% of the entire purifying agent. 精製剤の比表面積が、50〜1500m/gである請求項1または請求項2に記載の不活性ガスの精製剤。 The inert gas purification agent according to claim 1 or 2 , wherein the purification agent has a specific surface area of 50 to 1500 m 2 / g. 不活性ガスを、活性炭にニッケル化合物を担持させてなる精製剤と接触させて、該不活性ガスに不純物として含まれる二酸化炭素を除去することを特徴とする不活性ガスの精製方法。   A method for purifying an inert gas, comprising bringing an inert gas into contact with a purifying agent obtained by supporting a nickel compound on activated carbon to remove carbon dioxide contained as an impurity in the inert gas. 精製剤が、活性炭にニッケル化合物とともにアルカリ金属化合物を担持させたものである請求項11に記載の不活性ガスの精製方法。   The method for purifying an inert gas according to claim 11, wherein the purifier is an activated carbon in which an alkali metal compound is supported together with a nickel compound. 不活性ガスが、二酸化炭素のほか、酸素、一酸化炭素、及び水素から選ばれる1種以上の不純物を含む請求項11に記載の不活性ガスの精製方法。   The method for purifying an inert gas according to claim 11, wherein the inert gas contains one or more impurities selected from oxygen, carbon monoxide, and hydrogen in addition to carbon dioxide. 不活性ガスと精製剤の接触温度が100℃以下である請求項11に記載の不活性ガスの精製方法。   The method for purifying an inert gas according to claim 11, wherein the contact temperature between the inert gas and the purifying agent is 100 ° C or lower. 使用後の精製剤を、還元性ガスと加熱下で接触させて、該精製剤を再生する請求項11に記載の不活性ガスの精製方法。
The method for purifying an inert gas according to claim 11, wherein the purifying agent after use is brought into contact with a reducing gas under heating to regenerate the purifying agent.
JP2004145947A 2004-05-17 2004-05-17 Refining agent and refining method for inert gas Pending JP2005324155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004145947A JP2005324155A (en) 2004-05-17 2004-05-17 Refining agent and refining method for inert gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004145947A JP2005324155A (en) 2004-05-17 2004-05-17 Refining agent and refining method for inert gas

Publications (1)

Publication Number Publication Date
JP2005324155A true JP2005324155A (en) 2005-11-24

Family

ID=35470922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004145947A Pending JP2005324155A (en) 2004-05-17 2004-05-17 Refining agent and refining method for inert gas

Country Status (1)

Country Link
JP (1) JP2005324155A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153519A (en) * 1982-03-09 1983-09-12 Takeda Chem Ind Ltd Treatment of gas
JPH04160010A (en) * 1990-10-23 1992-06-03 Japan Pionics Co Ltd Method for refining rare gas
JPH07743A (en) * 1993-06-10 1995-01-06 Takuma Sogo Kenkyusho:Kk Adsorbent and removing method for nitrogen oxide using adsorbent
JPH07155587A (en) * 1993-12-09 1995-06-20 Mitsubishi Gas Chem Co Inc Highly adsorptive carbon material and its production
JPH07508681A (en) * 1992-06-26 1995-09-28 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー double impregnated activated carbon
JPH10137530A (en) * 1996-07-22 1998-05-26 L'air Liquide Removal of o2/co from inert gas by adsorption to porous metal oxide
JPH10277365A (en) * 1997-04-04 1998-10-20 Daikin Ind Ltd Catalyst structure for air cleaning
JP2004074025A (en) * 2002-08-19 2004-03-11 Nippon Steel Corp Gas adsorbent, and gas separation apparatus and gas storage apparatus using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153519A (en) * 1982-03-09 1983-09-12 Takeda Chem Ind Ltd Treatment of gas
JPH04160010A (en) * 1990-10-23 1992-06-03 Japan Pionics Co Ltd Method for refining rare gas
JPH07508681A (en) * 1992-06-26 1995-09-28 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー double impregnated activated carbon
JPH07743A (en) * 1993-06-10 1995-01-06 Takuma Sogo Kenkyusho:Kk Adsorbent and removing method for nitrogen oxide using adsorbent
JPH07155587A (en) * 1993-12-09 1995-06-20 Mitsubishi Gas Chem Co Inc Highly adsorptive carbon material and its production
JPH10137530A (en) * 1996-07-22 1998-05-26 L'air Liquide Removal of o2/co from inert gas by adsorption to porous metal oxide
JPH10277365A (en) * 1997-04-04 1998-10-20 Daikin Ind Ltd Catalyst structure for air cleaning
JP2004074025A (en) * 2002-08-19 2004-03-11 Nippon Steel Corp Gas adsorbent, and gas separation apparatus and gas storage apparatus using the same

Similar Documents

Publication Publication Date Title
JP3891834B2 (en) Gas supply method and apparatus
JP5202836B2 (en) Xenon recovery system and recovery device
TWI460003B (en) Gas purifying method and gas purifying device
JP2017164683A (en) Recovery method and recovery apparatus of carbon dioxide
TWI264322B (en) Processing method of gas and processing apparatus of gas
KR20150125978A (en) Purification of argon through liquid phase cryogenic adsorption
TWI409216B (en) Processing method and refining method of inert gas and gas processing cylinder
TW201841683A (en) Carbon dioxide removal device and method for recovering carbon dioxide adsorption capacity of adsorbent
JP5256031B2 (en) Continuous production method of hydroxylammonium
JP2004149393A (en) Method for refining inert gas
JP6510257B2 (en) Purification method of nitrous oxide
US20100178225A1 (en) Method for treatment of a gas stream containing silicon tetrafluoride and hydrogen chloride
JP2005324155A (en) Refining agent and refining method for inert gas
JP2004142987A (en) Method for purifying ammonia
JP3869831B2 (en) Gas separation method and apparatus
JP4430913B2 (en) Gas supply method and apparatus
JP2005319345A (en) Inert gas refining agent and inert gas refining method
JP4031293B2 (en) Nitrous oxide recovery and purification method and recovery and purification equipment
JP2008214187A (en) Carbonyl fluoride having reduced content of hydrogen fluoride and method for producing the same
JP2007045655A (en) Method and apparatus for refining gas
JP2007301467A (en) Method and apparatus for treating fluorine compound contained in gas
JP4174298B2 (en) Gas purification method and apparatus
TW200520826A (en) Removal of sulfur-containing impurities from volatile metal hydrides
JP5133929B2 (en) Method and apparatus for producing ultra-high purity nitrogen gas
JPH0489387A (en) Inert gas recovering device for single crystal pulling up device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091005