JP2005319345A - Inert gas refining agent and inert gas refining method - Google Patents

Inert gas refining agent and inert gas refining method Download PDF

Info

Publication number
JP2005319345A
JP2005319345A JP2004137062A JP2004137062A JP2005319345A JP 2005319345 A JP2005319345 A JP 2005319345A JP 2004137062 A JP2004137062 A JP 2004137062A JP 2004137062 A JP2004137062 A JP 2004137062A JP 2005319345 A JP2005319345 A JP 2005319345A
Authority
JP
Japan
Prior art keywords
inert gas
carbonate
agent
purification
purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004137062A
Other languages
Japanese (ja)
Inventor
Takashi Shimada
孝 島田
Noboru Takemasa
登 武政
Yukifumi Ochi
幸史 越智
Takeo Komori
丈雄 古森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP2004137062A priority Critical patent/JP2005319345A/en
Publication of JP2005319345A publication Critical patent/JP2005319345A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an inert gas refining agent having the high removing capacity of carbon dioxide contained as impurities and capable of removing a very small amount of carbon dioxide up to an extremely low concentration without heating an inert gas at the time of refining and supplying the inert gas of high purity continuously and easily without lowering the removing capacity of carbon dioxide even if the refining agent is repeatedly regenerated, and an inert gas refining method. <P>SOLUTION: In refining the inert gas using the refining agent, the inert gas is brought into contact with the refining agent prepared by making a carrier based on nickel to remove carbon dioxide contained in the inert gas carry a carbonate and/or bicarbonate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、不活性ガスの精製剤及び精製方法に関する。さらに詳細には、不活性ガス中に不純物として含まれる二酸化炭素、酸素等を除去する能力が高く、これらの不純物を極めて低濃度まで除去し得る不活性ガスの精製剤及び精製方法に関する。   The present invention relates to an inert gas purification agent and a purification method. More specifically, the present invention relates to an inert gas purification agent and a purification method that have a high ability to remove carbon dioxide, oxygen, and the like contained as impurities in an inert gas and that can remove these impurities to an extremely low concentration.

半導体製造工程においては、ヘリウム、窒素、アルゴン等の不活性ガスが頻繁に使用されている。窒素等の不活性ガスは、工業的には液体空気を分留する方法により製造されているが、これらの不活性ガスには、二酸化炭素、酸素等が数ppm〜数百ppm程度含まれている。半導体分野においては、これらの不活性ガスは、成膜技術の進歩とともに極めて高純度であることが強く要求されているとともに、多量に使用されることから、高純度で連続して半導体製造工程に供給することが可能な不活性ガスの精製剤及び精製方法が要求されている。   In semiconductor manufacturing processes, inert gases such as helium, nitrogen, and argon are frequently used. Inert gases such as nitrogen are industrially produced by a method of fractionating liquid air, but these inert gases contain carbon dioxide, oxygen, etc. in the order of several ppm to several hundred ppm. Yes. In the semiconductor field, these inert gases are strongly required to have extremely high purity as the film forming technology advances, and since they are used in large quantities, they are continuously used in semiconductor manufacturing processes with high purity. There is a need for an inert gas purification agent and method that can be supplied.

このため、従来から種々の不活性ガスの精製剤及び精製方法が研究され、例えば、(1)希ガスを、鉄及びジルコニウムからなるゲッター剤と接触させて、希ガス中の不純物を除去する精製方法(特開平4−160010)、(2)希ガスを、バナジウム及びジルコニウムからなるゲッター剤と接触させて、希ガス中の不純物を除去する精製方法(特開平5−4809)、(3)酸素及び/または一酸化炭素を含む不活性ガスを、銅及びマンガンの混合酸化物(ホプカライト)等の多孔質金属酸化物を含む吸着剤に接触させて前記不純物ガスを除去する精製方法(特開平10−137530)等が開発されている。   For this reason, various purifiers and purifying methods for inert gases have been studied in the past.For example, (1) purification in which a rare gas is brought into contact with a getter agent composed of iron and zirconium to remove impurities in the rare gas. Method (Japanese Patent Laid-Open No. 4-160010), (2) a purification method for removing impurities in the rare gas by bringing a rare gas into contact with a getter agent comprising vanadium and zirconium (Japanese Patent Laid-Open No. 5-4809), (3) oxygen And / or an inert gas containing carbon monoxide is brought into contact with an adsorbent containing a porous metal oxide such as a mixed oxide (hopcalite) of copper and manganese to remove the impurity gas (Japanese Patent Laid-Open No. Hei 10). -137530) has been developed.

また、精製剤は、不活性ガスを精製した後、再生して再利用することが、資源の有効利用となるばかりでなく、精製剤の詰替えや前処理の手間を大幅に節減でき高純度不活性ガスを連続して容易に供給できる点からも好ましい。そのため、例えば、(4)不活性ガスを、還元された金属ニッケルと接触させて、不活性ガス中に不純物として含まれる酸素を除去する精製方法(特公昭50−6440)が開発されており、このような精製方法においては精製剤(金属ニッケル)の再生が可能である。   In addition, refining the inert gas after purifying the inert gas not only effectively recycles the resources, but also reduces the refilling and pre-treatment of the refining agent. It is also preferable from the viewpoint that the inert gas can be easily supplied continuously. Therefore, for example, (4) a purification method (Japanese Patent Publication No. 50-6440) has been developed in which an inert gas is brought into contact with reduced metallic nickel to remove oxygen contained as an impurity in the inert gas. In such a purification method, the purification agent (metallic nickel) can be regenerated.

特公昭50−6440号公報Japanese Patent Publication No. 50-6440 特開平3−12315号公報Japanese Patent Laid-Open No. 3-12315 特開平4−160010号公報Japanese Patent Laid-Open No. 4-160010 特開平5−4809号公報Japanese Patent Laid-Open No. 5-4809 特開平10−137530号公報JP-A-10-137530

しかしながら、前述の(1)あるいは(2)のようなゲッター剤を用いた精製方法は、一般的に不活性ガスを精製する際にはゲッター剤を加熱する必要があり、またゲッター剤を再生することが困難なため剤を交換する必要があって、ランニングコストが高くなるという短所があった。また、(3)及び(4)の精製方法に使用される精製剤は、元々不活性ガス中の不純物の除去能力(精製剤の単位量当たりの不純物除去量)が低く、特に二酸化炭素の除去能力が低く、精製筒を大きくする必要があった。さらに(3)の精製方法に使用される精製剤は、繰返して再生を行なうと劣化し、除去能力がより低下するという不都合があった。   However, the purification method using the getter agent as described in (1) or (2) above generally requires heating the getter agent when purifying the inert gas, and regenerates the getter agent. Therefore, it is necessary to replace the agent, and there is a disadvantage that the running cost becomes high. In addition, the purifying agent used in the purification methods (3) and (4) originally has a low ability to remove impurities in the inert gas (impurity removal amount per unit amount of the purifying agent), especially the removal of carbon dioxide. The capacity was low and it was necessary to enlarge the purification cylinder. Further, the purification agent used in the purification method (3) has a disadvantage that it is deteriorated by repeated regeneration and the removal ability is further lowered.

従って、本発明が解決しようとする課題は、不活性ガスに不純物として含まれる二酸化炭素、酸素等の除去能力、特に二酸化炭素の除去能力が高く、精製の際に加熱することなく微量の前記不純物を極めて低濃度になるまで除去できるとともに、繰返して精製剤の再生を行なっても不純物の除去能力が低下することなく、高純度の不活性ガスを連続して容易に供給できる不活性ガスの精製剤及び精製方法を提供することである。   Therefore, the problem to be solved by the present invention is to remove carbon dioxide, oxygen and the like contained as impurities in the inert gas, in particular, the ability to remove carbon dioxide is high, and a small amount of the impurities without heating during purification. Can be removed to a very low concentration, and refinement of an inert gas that can continuously supply a high-purity inert gas easily without reducing the impurity removal ability even if the purification agent is regenerated repeatedly. It is to provide a formulation and purification method.

本発明者らは、これらの課題を解決すべく鋭意検討した結果、精製剤として、ニッケルを主成分とする担体に炭酸塩及び/または炭酸水素塩を担持させてなる精製剤を用いることにより、不活性ガスに不純物として含まれる二酸化炭素、酸素、一酸化炭素、水素等の除去能力、特に二酸化炭素の除去能力が高く、加熱することなく微量の前記不純物を極めて低濃度になるまで除去できるとともに、繰返して精製剤の再生を行なっても精製剤の劣化がなく、精製剤の寿命が著しく延びることを見出し、本発明の不活性ガスの精製剤及び精製方法に到達した。   As a result of diligent studies to solve these problems, the present inventors have used a purification agent obtained by supporting carbonate and / or bicarbonate on a carrier mainly composed of nickel as a purification agent. The removal ability of carbon dioxide, oxygen, carbon monoxide, hydrogen, etc. contained as impurities in inert gas, especially the removal ability of carbon dioxide is high, and a trace amount of impurities can be removed to very low concentration without heating. The inventors have found that the purification agent is not deteriorated even when the purification agent is regenerated repeatedly, and that the life of the purification agent is remarkably extended, and the inert gas purification agent and purification method of the present invention have been reached.

すなわち本発明は、ニッケルを主成分とする担体に、炭酸塩及び/または炭酸水素塩を担持させてなることを特徴とする不活性ガスの精製剤である。
また、本発明は、不活性ガスを、ニッケルを主成分とする担体に炭酸塩及び/または炭酸水素塩を担持させてなる精製剤と接触させて、該不活性ガスに不純物として含まれる二酸化炭素を除去することを特徴とする不活性ガスの精製方法でもある。
That is, the present invention is a purifying agent for inert gas, characterized in that a carbonate and / or bicarbonate is supported on a carrier mainly composed of nickel.
The present invention also provides a carbon dioxide contained as an impurity in the inert gas by bringing the inert gas into contact with a purifier formed by supporting a carbonate and / or bicarbonate on a carrier mainly composed of nickel. It is also a method for purifying an inert gas, characterized in that it is removed.

本発明の不活性ガスの精製剤及び精製方法は、不純物として二酸化炭素を含む不活性ガスの精製、及び、不純物として、二酸化炭素とともに、酸素、一酸化炭素、及び水素から選ばれる1種以上のガスを含む不活性ガスの精製に適用される。また、本発明の不活性ガスの精製剤及び精製方法は、不活性ガスの精製に使用された精製剤を再生することが可能であり、その寿命を著しく延長できる点で特に効果を発揮する。尚、本発明における不活性ガスは、ヘリウム、窒素、ネオン、アルゴン、クリプトン、キセノン等である。   The purifying agent and the purifying method for an inert gas of the present invention include a purification of an inert gas containing carbon dioxide as an impurity, and at least one selected from oxygen, carbon monoxide, and hydrogen together with carbon dioxide as an impurity. Applicable to purification of inert gas including gas. Moreover, the purifying agent and the purifying method of the inert gas of the present invention are particularly effective in that the purifying agent used for purifying the inert gas can be regenerated and its life can be significantly extended. The inert gas in the present invention is helium, nitrogen, neon, argon, krypton, xenon, or the like.

本発明の精製剤は、担体としてニッケルを主成分とするものが使用され、この担体に炭酸塩及び/または炭酸水素塩が担持(添着)される。ニッケルを主成分とする担体は、ニッケル、ニッケル合金、及びニッケル化合物から選ばれる一種以上を主成分とする担体であるが、ニッケルの酸化物等還元され易いニッケル化合物を含むものが好ましい。また、ニッケル以外の金属成分として、マグネシウム、アルミニウム、ケイ素、チタン、バナジウム、クロム、マンガン、鉄、コバルト、銅、亜鉛等の金属、あるいはこれらの酸化物等が少量含まれているものであってもよい。しかし、担体全体に対するニッケルの含有率は、通常は10wt%以上、好ましくは20wt%以上、より好ましくは40wt%以上となるようにされ、さらに、不活性ガスを精製する際に還元処理されて、50wt%以上となるようなものが好ましい。   In the purifying agent of the present invention, a carrier containing nickel as a main component is used, and carbonate and / or bicarbonate is supported (attached) on the carrier. The carrier mainly composed of nickel is a carrier mainly composed of one or more selected from nickel, a nickel alloy, and a nickel compound, but preferably includes a nickel compound that is easily reduced, such as an oxide of nickel. Further, as a metal component other than nickel, a metal such as magnesium, aluminum, silicon, titanium, vanadium, chromium, manganese, iron, cobalt, copper, zinc, or an oxide thereof is contained in a small amount. Also good. However, the nickel content relative to the entire support is usually 10 wt% or more, preferably 20 wt% or more, more preferably 40 wt% or more, and further, a reduction treatment is performed when purifying the inert gas, The thing which becomes 50 wt% or more is preferable.

本発明における精製剤の担体は、前記のニッケル化合物をそのまま担体として用いることが好ましいが、活性炭、珪藻土、アルミナ、シリカアルミナ、アルミノシリケート、カルシウムシリケート等の表面に、ニッケル化合物を添着させて担体とすることも可能である。例えば、ニッケル塩を含む溶液中に活性炭等を分散させた後、溶液をエバポレータで蒸発させ、さらに100〜200℃程度で乾燥することにより担体を調製することができる。   The purification agent carrier in the present invention preferably uses the above nickel compound as a carrier as it is, but the carrier is obtained by adhering a nickel compound to the surface of activated carbon, diatomaceous earth, alumina, silica alumina, aluminosilicate, calcium silicate, or the like. It is also possible to do. For example, after dispersing activated carbon or the like in a solution containing a nickel salt, the support is prepared by evaporating the solution with an evaporator and further drying at about 100 to 200 ° C.

また、本発明における精製剤の担体は、種々のニッケル系触媒が市販されているので、それらをそのまま使用してもよい。ニッケルを主成分とする担体のBET比表面積は、通常は5〜500m/g、好ましくは10〜300m/gである。また、その形状、大きさ等に限定はないが、球形であれば、通常は直径が1〜10mm程度の大きさ、円柱形であれば、通常は直径が1〜10mm程度、高さ2〜20mm程度の大きさ、その他これに類似する形状、これに相当する大きさのものが使用される。 In addition, since various nickel-based catalysts are commercially available, the purification agent carrier in the present invention may be used as it is. The BET specific surface area of the carrier mainly composed of nickel is usually 5 to 500 m 2 / g, preferably 10 to 300 m 2 / g. In addition, the shape, size, etc. are not limited, but if it is a sphere, it usually has a diameter of about 1 to 10 mm, and if it is a cylinder, it usually has a diameter of about 1 to 10 mm and a height of 2 A size of about 20 mm, other similar shapes, and a size corresponding to this are used.

本発明の精製剤において、前記の担体に添着される炭酸塩、炭酸水素塩としては、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム、炭酸ランタン、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素ルビジウム、炭酸水素セシウム等を挙げることができる。これらは、無水塩であっても含水塩であってもよい。また、これらのうち、1種類を用いても、2種類以上を同時に用いてもよい。   In the purifying agent of the present invention, examples of the carbonate and bicarbonate added to the carrier include lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, cesium carbonate, lanthanum carbonate, sodium bicarbonate, and potassium bicarbonate. , Rubidium hydrogen carbonate, cesium hydrogen carbonate and the like. These may be anhydrous salts or hydrated salts. Of these, one type may be used, or two or more types may be used simultaneously.

これらの炭酸塩、炭酸水素塩の精製剤全体に対する添加量は、通常は0.1〜50wt%、好ましくは0.5〜30wt%である。添加量が0.1wt%未満の場合は、不活性ガスの精製の際に不純物の除去能力が低下する。また、添加量が50wt%を超えるように担体に担持させることは困難である。
ニッケルを主成分とする担体に、前記の炭酸塩、炭酸水素塩を添着させる方法については特に制限はないが、炭酸塩及び/または炭酸水素塩を含む溶液を、担体に散布した後、加熱下で乾燥する方法等を例示することができる。精製剤は、通常は比表面積が5〜500m/g、好ましくは10〜300m/gとなるように調製される
The amount of these carbonates and bicarbonates added to the entire refining agent is usually 0.1 to 50 wt%, preferably 0.5 to 30 wt%. When the amount added is less than 0.1 wt%, the ability to remove impurities decreases during purification of the inert gas. Further, it is difficult to support the carrier so that the added amount exceeds 50 wt%.
Although there is no particular limitation on the method of adding the carbonate or bicarbonate to the carrier mainly composed of nickel, a solution containing carbonate and / or bicarbonate is sprayed on the carrier and then heated. The method of drying with can be illustrated. The purifying agent is usually prepared so that the specific surface area is 5 to 500 m 2 / g, preferably 10 to 300 m 2 / g.

本発明の不活性ガスの精製方法は、不活性ガスを前述の精製剤と接触させて、不活性ガスに不純物として含まれる二酸化炭素等を除去する方法である。本発明において、ニッケルを主成分とする担体に炭酸塩及び/または炭酸水素塩を担持させてなる精製剤は、通常は使用する前にこれを活性化するために、水素、一酸化炭素、エーテル類、アルコール類、ケトン類、エステル類、炭化水素類等の還元性ガスによる還元処理が行なわれる。還元の際は、例えば100〜400℃程度の温度で、水素、あるいは水素と窒素の混合ガスを、空筒線速度(LV)1〜50cm/sec程度で通すことによって行なうことができる。   The method for purifying an inert gas of the present invention is a method for removing carbon dioxide contained as an impurity in the inert gas by bringing the inert gas into contact with the above-described purifying agent. In the present invention, a purifier comprising carbonate and / or bicarbonate supported on a nickel-based carrier is usually hydrogen, carbon monoxide, ether to activate it before use. Reduction treatment with a reducing gas such as alcohols, alcohols, ketones, esters and hydrocarbons. In the reduction, for example, hydrogen or a mixed gas of hydrogen and nitrogen is passed at a temperature of about 100 to 400 ° C. at an empty cylinder linear velocity (LV) of about 1 to 50 cm / sec.

不活性ガスの精製は、通常は図1に示すような精製筒2に精製剤1を充填し、還元処理した後、精製筒2に不活性ガスを通すことによって行われる。尚、図中、3はヒーター、4は不活性ガスの供給ラインを示すものである。
精製筒に充填される精製剤の充填長は、実用上通常は50〜1500mmとされる。充填長が50mmよりも短くなると不純物の除去率が低下する虞があり、また、1500mmよりも長くなると圧力損失が大きくなり過ぎる虞が生ずる。精製時の不活性ガスの空筒線速度(LV)は、供給される不活性ガス中の不純物の濃度および操作条件などによって異なり一概に特定できないが、通常は100cm/sec以下、好ましくは30cm/sec以下である。
The purification of the inert gas is usually performed by filling the purification cylinder 2 as shown in FIG. 1 with the purification agent 1, performing a reduction treatment, and then passing the inert gas through the purification cylinder 2. In the figure, 3 is a heater and 4 is an inert gas supply line.
In practice, the filling length of the purification agent filled in the purification cylinder is usually 50 to 1500 mm. If the filling length is shorter than 50 mm, the impurity removal rate may decrease, and if the filling length is longer than 1500 mm, the pressure loss may be excessively increased. The hollow cylinder velocity (LV) of the inert gas at the time of purification differs depending on the concentration of impurities in the supplied inert gas and the operating conditions, and cannot be specified unconditionally, but is usually 100 cm / sec or less, preferably 30 cm / sec sec or less.

不活性ガスと精製剤の接触温度は、精製剤筒の入口に供給されるガスの温度で100℃以下であり、通常は常温でよく、特に加熱や冷却を必要としない。また、不活性ガスと精製剤の接触時の圧力にも特に制限はなく、常圧、1KPaのような減圧あるいは2MPa(絶対圧力)のような加圧下のいずれでも処理が可能であるが、通常は常圧ないし1MPa(絶対圧力)の加圧下で行なわれる。   The contact temperature between the inert gas and the purifying agent is 100 ° C. or less in terms of the temperature of the gas supplied to the inlet of the purifying agent cylinder, and is usually normal temperature, and does not require heating or cooling. Further, the pressure at the time of contact between the inert gas and the purification agent is not particularly limited, and the treatment can be performed under normal pressure, reduced pressure such as 1 KPa, or pressurized pressure such as 2 MPa (absolute pressure). Is performed under normal pressure to 1 MPa (absolute pressure).

本発明の不活性ガスの精製方法において、精製剤の再生は、通常は水素、一酸化炭素、エーテル類、アルコール類、ケトン類、エステル類、炭化水素類等の還元性ガスによる還元処理により行なわれる。精製剤の再生の際は、150〜400℃の温度で、還元性ガス、あるいは還元性ガスと不活性ガスの混合ガスを、精製剤が充填された精製筒に通すことによって行なうことができるが、精製剤の寿命をさらに延長できる点で、精製剤に不活性ガスを供給した後、前記の条件で還元性ガスを供給することにより行なうことが好ましい。   In the inert gas purification method of the present invention, the regeneration of the purification agent is usually performed by a reduction treatment with a reducing gas such as hydrogen, carbon monoxide, ethers, alcohols, ketones, esters, hydrocarbons and the like. It is. The regeneration of the purifying agent can be performed by passing a reducing gas or a mixed gas of reducing gas and inert gas through a purifying cylinder filled with the purifying agent at a temperature of 150 to 400 ° C. From the viewpoint of further extending the life of the purifying agent, it is preferable to carry out by supplying an inert gas to the purifying agent and then supplying a reducing gas under the above conditions.

本発明の不活性ガスの精製方法においては、高純度不活性ガスを連続して容易に供給するために、精製剤が備えられた精製ラインを少なくとも2ライン配置して不活性ガスの精製を行なうことが好ましい。図2は、それに用いるための精製ラインの一例を示す構成図であり、2は精製筒、4は不活性ガスの供給ライン、5は精製された不活性ガスの抜出しライン、6は再生ガス(還元性ガス)供給ライン、7は再生排ガス排出ラインを示すものである。このような精製ラインにより、各ラインを順次切替えながら、不活性ガスを供給して精製すると同時に、再生ガスを精製後のラインに供給して、精製剤を再生できるようになり、高純度不活性ガスを連続して容易に供給することが可能となる。   In the inert gas purification method of the present invention, in order to easily and continuously supply a high-purity inert gas, the inert gas is purified by arranging at least two purification lines equipped with a purification agent. It is preferable. FIG. 2 is a block diagram showing an example of a purification line for use therein, wherein 2 is a purification cylinder, 4 is an inert gas supply line, 5 is a purified inert gas extraction line, and 6 is a regeneration gas ( A reducing gas) supply line 7 is a regenerated exhaust gas discharge line. With such a purification line, it is possible to regenerate the purification agent by supplying an inert gas while simultaneously switching each line, and at the same time supplying a regeneration gas to the line after purification. It becomes possible to supply gas continuously and easily.

本発明の不活性ガスの精製剤及び精製方法により、不活性ガスに不純物として含まれている二酸化炭素等を、精製剤の単位量当たりの不純物除去量換算で、従来の精製方法よりも極めて多く除去することが可能となった。また、不活性ガスに含まれている微量の二酸化炭素等を、加熱することなく、極めて低濃度になるまで除去できるとともに、繰返して精製剤の再生を行なっても不純物の除去能力が低下することなく、精製剤の寿命を従来の精製方法よりも著しく長く延ばすことが可能となった。   By the inert gas purification agent and purification method of the present invention, carbon dioxide and the like contained in the inert gas as impurities are much more than conventional purification methods in terms of impurity removal amount per unit amount of the purification agent. It became possible to remove. In addition, trace amounts of carbon dioxide contained in the inert gas can be removed to a very low concentration without heating, and the ability to remove impurities is reduced even after repeated purification of the purifier. As a result, it was possible to extend the lifetime of the purification agent significantly longer than the conventional purification method.

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

(精製剤の調製)
精製剤の担体として、市販のニッケル触媒を用いた。この触媒は、主成分の組成がNiとNiOで、Niを60wt%、MgOを5wt%、SiOを13wt%含み、比表面積200m/g、直径2.8mm、高さ2.8mmの円柱状成型体である。この担体96gを、炭酸カリウム水溶液(炭酸カリウム4wt%)100gに浸し分散させた後、水溶液をエバポレータで蒸発させ、さらに350℃で5時間乾燥することにより、比表面積が195m/gの精製剤を得た。担体の重量変化を測定した結果、炭酸カリウムの精製剤全体に対する添加量は、3.5wt%であった。
(Preparation of purification agent)
A commercially available nickel catalyst was used as a carrier for the purification agent. This catalyst has a main composition of Ni and NiO, 60 wt% Ni, 5 wt% MgO, 13 wt% SiO 2 , a specific surface area of 200 m 2 / g, a diameter of 2.8 mm, and a height of 2.8 mm. It is a columnar molded body. 96 g of this carrier was immersed in and dispersed in 100 g of an aqueous potassium carbonate solution (potassium carbonate 4 wt%), and then the aqueous solution was evaporated with an evaporator and further dried at 350 ° C. for 5 hours to obtain a purification agent having a specific surface area of 195 m 2 / g. Got. As a result of measuring the weight change of the carrier, the amount of potassium carbonate added to the entire purification agent was 3.5 wt%.

(不活性ガスの精製試験)
前記の精製剤を内径16.4mm、長さ300mmのステンレス製の精製筒に充填長100mmとなるように充填した。次に、精製筒の温度を250℃に昇温し、水素を流量1000ml/minで2時間流通して精製剤の還元処理を行ない、その後精製筒を常温に冷却した。
(Inert gas purification test)
The purification agent was filled into a stainless steel purification cylinder having an inner diameter of 16.4 mm and a length of 300 mm so as to have a filling length of 100 mm. Next, the temperature of the purification cylinder was raised to 250 ° C., hydrogen was passed at a flow rate of 1000 ml / min for 2 hours to reduce the purification agent, and then the purification cylinder was cooled to room temperature.

次に、不純物として10ppmの二酸化炭素を含む窒素を、常温(20℃)、0.6MPa(絶対圧力)において、流量13830ml/minで流通して精製を行なった。その間約20分間隔で大気圧イオン化質量分析計(API−MS)を用いて出口ガス中の二酸化炭素の分析を行ない、二酸化炭素が検出されるまでの時間を測定して、精製剤1g当たりに対する二酸化炭素除去量(ml)を求めた。(API−MSの二酸化炭素、酸素、一酸化炭素、水素の検出下限濃度:1ppb)その結果を表1に示す。   Next, it refine | purified by distribute | circulating nitrogen containing 10 ppm of carbon dioxide as an impurity at normal temperature (20 degreeC) and 0.6 Mpa (absolute pressure) with the flow volume of 13830 ml / min. During this period, carbon dioxide in the outlet gas is analyzed using an atmospheric pressure ionization mass spectrometer (API-MS) at intervals of about 20 minutes, and the time until carbon dioxide is detected is measured. The amount of carbon dioxide removed (ml) was determined. (API-MS carbon dioxide, oxygen, carbon monoxide, hydrogen detection lower limit concentration: 1 ppb) The results are shown in Table 1.

二酸化炭素が検出された後、不活性ガスの供給を中止し、精製剤の温度を250℃に昇温して、窒素を常圧、流量1000ml/minで1時間流通し、さらに水素と窒素の混合ガス(水素5vol%、窒素95vol%)を常圧、流量1000ml/minで2時間流通して精製剤の再生を行なった。その後、精製剤を常温に冷却し、窒素の精製を再開した。以上のような操作を繰返して行ない、精製剤1g当たりに対する二酸化炭素除去量(ml)を求めた結果を表1に示す。   After the detection of carbon dioxide, the supply of inert gas is stopped, the temperature of the purifying agent is raised to 250 ° C., nitrogen is circulated for 1 hour at a normal pressure and a flow rate of 1000 ml / min. The purified gas was regenerated by circulating a mixed gas (hydrogen 5 vol%, nitrogen 95 vol%) at normal pressure and a flow rate of 1000 ml / min for 2 hours. Thereafter, the purifier was cooled to room temperature, and nitrogen purification was resumed. Table 1 shows the results obtained by repeating the above operation and determining the carbon dioxide removal amount (ml) per gram of the purifying agent.

実施例2、3
実施例1の精製剤の調製において、精製剤中の炭酸カリウムの精製剤全体に対する添加量を、各々1.4%、8.8%に変えたほかは実施例1と同様にして精製剤を調製した。
これらの精製剤を用いたほかは実施例1と同様にして不活性ガスの精製試験を行なった。結果を表1に示す。
Examples 2 and 3
In the preparation of the purifying agent of Example 1, the amount of potassium carbonate in the purifying agent was changed to 1.4% and 8.8%, respectively. Prepared.
An inert gas purification test was conducted in the same manner as in Example 1 except that these purification agents were used. The results are shown in Table 1.

実施例4、5
実施例1の不活性ガスの精製試験において、不活性ガスとして、各々5ppmの二酸化炭素を含む窒素、100ppmの二酸化炭素を含む窒素を用いたほかは実施例1と同様にして不活性ガスの精製試験を行なった。結果を表1に示す。
Examples 4 and 5
In the inert gas purification test of Example 1, the inert gas was purified in the same manner as in Example 1 except that nitrogen containing 5 ppm of carbon dioxide and nitrogen containing 100 ppm of carbon dioxide were used as the inert gas. A test was conducted. The results are shown in Table 1.

実施例6〜10
実施例1の精製剤の調製において、炭酸カリウムの替わりに、各々炭酸リチウム(精製剤全体に対する添加量:35wt%)、炭酸ナトリウム(精製剤全体に対する添加量:23wt%)、炭酸ランタン(精製剤全体に対する添加量:3.5wt%)、炭酸水素カリウム(精製剤全体に対する添加量:3.5wt%)、炭酸水素ナトリウム(精製剤全体に対する添加量:3.5wt%)を用いたほかは実施例1と同様にして精製剤を調製した。
これらの精製剤を用いたほかは実施例1と同様にして不活性ガスの精製試験を行なった。結果を表1に示す。
Examples 6-10
In the preparation of the purification agent of Example 1, instead of potassium carbonate, lithium carbonate (addition amount with respect to the entire purification agent: 35 wt%), sodium carbonate (addition amount with respect to the entire purification agent: 23 wt%), lanthanum carbonate (purification agent) Other than using potassium bicarbonate (addition amount to the entire refining agent: 3.5 wt%), sodium hydrogen carbonate (addition amount to the entire refining agent: 3.5 wt%) A purification agent was prepared in the same manner as in Example 1.
An inert gas purification test was conducted in the same manner as in Example 1 except that these purification agents were used. The results are shown in Table 1.

実施例11
実施例1の不活性ガスの精製試験において、不活性ガスとして、20ppmの酸素を含む窒素を用いたほかは実施例1と同様にして不活性ガスの精製試験を行なった。その結果を表2に示す。
Example 11
In the inert gas purification test of Example 1, the inert gas purification test was performed in the same manner as in Example 1 except that nitrogen containing 20 ppm of oxygen was used as the inert gas. The results are shown in Table 2.

実施例12、13
実施例11の精製剤の調製において、精製剤中の炭酸カリウムの精製剤全体に対する添加量を、各々1.4%、8.8%に変えたほかは実施例11と同様にして精製剤を調製した。
これらの精製剤を用いたほかは実施例11と同様にして不活性ガスの精製試験を行なった。結果を表2に示す。
Examples 12 and 13
In the preparation of the purifying agent of Example 11, the amount of potassium carbonate in the purifying agent was changed to 1.4% and 8.8%, respectively. Prepared.
An inert gas purification test was conducted in the same manner as in Example 11 except that these purification agents were used. The results are shown in Table 2.

実施例14、15
実施例11の不活性ガスの精製試験において、不活性ガスとして、各々10ppmの酸素を含む窒素、50ppmの酸素を含む窒素を用いたほかは実施例11と同様にして不活性ガスの精製試験を行なった。結果を表2に示す。
Examples 14 and 15
In the inert gas purification test of Example 11, the inert gas purification test was performed in the same manner as in Example 11 except that nitrogen containing 10 ppm of oxygen and nitrogen containing 50 ppm of oxygen were used as the inert gas. I did it. The results are shown in Table 2.

実施例16〜20
実施例11の精製剤の調製において、炭酸カリウムの替わりに、各々炭酸リチウム(精製剤全体に対する添加量:35wt%)、炭酸ナトリウム(精製剤全体に対する添加量:23wt%)、炭酸ランタン(精製剤全体に対する添加量:3.5wt%)、炭酸水素カリウム(精製剤全体に対する添加量:3.5wt%)、炭酸水素ナトリウム(精製剤全体に対する添加量:3.5wt%)を用いたほかは実施例11と同様にして精製剤を調製した。
これらの精製剤を用いたほかは実施例11と同様にして不活性ガスの精製試験を行なった。結果を表2に示す。
Examples 16-20
In the preparation of the purification agent of Example 11, instead of potassium carbonate, lithium carbonate (addition amount with respect to the entire purification agent: 35 wt%), sodium carbonate (addition amount with respect to the entire purification agent: 23 wt%), lanthanum carbonate (purification agent) Other than using potassium bicarbonate (addition amount to the entire refining agent: 3.5 wt%), sodium hydrogen carbonate (addition amount to the entire refining agent: 3.5 wt%) A purification agent was prepared in the same manner as in Example 11.
An inert gas purification test was conducted in the same manner as in Example 11 except that these purification agents were used. The results are shown in Table 2.

実施例21
実施例1の不活性ガスの精製試験において、不活性ガスとして、10ppmの一酸化炭素を含む窒素を用いたほかは実施例1と同様にして不活性ガスの精製試験を行なった。結果を表3に示す。
Example 21
In the inert gas purification test of Example 1, the inert gas purification test was performed in the same manner as in Example 1 except that nitrogen containing 10 ppm of carbon monoxide was used as the inert gas. The results are shown in Table 3.

実施例22
実施例21の精製剤の調製において、精製剤中の炭酸カリウムの精製剤全体に対する添加量を1.4%に変えたほかは実施例21と同様にして精製剤を調製した。
この精製剤を用いたほかは実施例21と同様にして不活性ガスの精製試験を行なった。結果を表3に示す。
Example 22
In the preparation of the purifying agent of Example 21, the purifying agent was prepared in the same manner as in Example 21 except that the amount of potassium carbonate in the purifying agent was changed to 1.4%.
An inert gas purification test was performed in the same manner as in Example 21 except that this purification agent was used. The results are shown in Table 3.

実施例23
実施例21の不活性ガスの精製試験において、不活性ガスとして、20ppmの一酸化炭素を含む窒素を用いたほかは実施例21と同様にして不活性ガスの精製試験を行なった。結果を表3に示す。
Example 23
In the inert gas purification test of Example 21, an inert gas purification test was conducted in the same manner as in Example 21 except that nitrogen containing 20 ppm of carbon monoxide was used as the inert gas. The results are shown in Table 3.

実施例24
実施例1の不活性ガスの精製試験において、不活性ガスとして、30ppmの水素を含む窒素を用いたほかは実施例1と同様にして不活性ガスの精製試験を行なった。結果を表3に示す。
Example 24
In the inert gas purification test of Example 1, an inert gas purification test was performed in the same manner as in Example 1 except that nitrogen containing 30 ppm of hydrogen was used as the inert gas. The results are shown in Table 3.

実施例25
実施例24の精製剤の調製において、精製剤中の炭酸カリウムの精製剤全体に対する添加量を1.4%に変えたほかは実施例24と同様にして精製剤を調製した。
この精製剤を用いたほかは実施例24と同様にして不活性ガスの精製試験を行なった。結果を表3に示す。
Example 25
In the preparation of the purifying agent of Example 24, the purifying agent was prepared in the same manner as in Example 24, except that the amount of potassium carbonate in the purifying agent was changed to 1.4%.
An inert gas purification test was conducted in the same manner as in Example 24 except that this purification agent was used. The results are shown in Table 3.

実施例26
実施例24の不活性ガスの精製試験において、不活性ガスとして、60ppmの水素を含む窒素を用いたほかは実施例24と同様にして不活性ガスの精製試験を行なった。結果を表3に示す。
Example 26
In the inert gas purification test of Example 24, an inert gas purification test was performed in the same manner as in Example 24 except that nitrogen containing 60 ppm of hydrogen was used as the inert gas. The results are shown in Table 3.

実施例27
実施例1の精製剤の調製において、Niを50wt%、Alを50wt%含むスポンジ状成型体を用いたほかは実施例1と同様にして精製剤を調製した。
この精製剤を用いたほかは実施例1と同様にして不活性ガスの精製試験を行なった。結果を表3に示す。
Example 27
In the preparation of the purifying agent of Example 1, a purifying agent was prepared in the same manner as in Example 1 except that a sponge-like molded body containing 50 wt% Ni and 50 wt% Al was used.
An inert gas purification test was conducted in the same manner as in Example 1 except that this purification agent was used. The results are shown in Table 3.

実施例28
実施例1の精製剤の調製において、NiOを30wt%(Ni:24wt%)含むリング状成型体を用いたほかは実施例1と同様にして精製剤を調製した。
この精製剤を用いたほかは実施例1と同様にして不活性ガスの精製試験を行なった。結果を表3に示す。
Example 28
In the preparation of the purifying agent of Example 1, a purifying agent was prepared in the same manner as in Example 1 except that a ring-shaped molded body containing 30 wt% NiO (Ni: 24 wt%) was used.
An inert gas purification test was conducted in the same manner as in Example 1 except that this purification agent was used. The results are shown in Table 3.

比較例1
実施例1の精製剤の調製において、炭酸カリウムを担体に添加しなかったほかは実施例1と同様にして精製剤を調製した。
この精製剤を用いたほかは実施例1と同様にして不活性ガスの精製試験を行なった。結果を表3に示す。
Comparative Example 1
A purification agent was prepared in the same manner as in Example 1 except that potassium carbonate was not added to the carrier in the preparation of the purification agent of Example 1.
An inert gas purification test was conducted in the same manner as in Example 1 except that this purification agent was used. The results are shown in Table 3.

Figure 2005319345
Figure 2005319345

Figure 2005319345
Figure 2005319345

Figure 2005319345
Figure 2005319345

本発明の不活性ガスの精製方法を実施するための精製ラインの一例を示す構成図The block diagram which shows an example of the purification line for enforcing the purification method of the inert gas of this invention 本発明の不活性ガスの精製方法を実施するための図1以外の精製ラインの例を示す構成図The block diagram which shows the example of purification lines other than FIG. 1 for implementing the purification method of the inert gas of this invention

符号の説明Explanation of symbols

1 精製剤
2 精製筒
3 ヒーター
4 不活性ガス供給ライン
5 精製された不活性ガスの抜出しライン
6 再生ガス供給ライン
7 再生排ガス排出ライン
DESCRIPTION OF SYMBOLS 1 Refiner 2 Purification cylinder 3 Heater 4 Inert gas supply line 5 Extraction line of refined inert gas 6 Regeneration gas supply line 7 Regeneration exhaust gas discharge line

Claims (10)

ニッケルを主成分とする担体に、炭酸塩及び/または炭酸水素塩を担持させてなることを特徴とする不活性ガスの精製剤。   A purifying agent for an inert gas, wherein a carbonate and / or bicarbonate is supported on a carrier mainly composed of nickel. 炭酸塩が、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム、または炭酸ランタンである請求項1に記載の不活性ガスの精製剤。   The purifier for inert gas according to claim 1, wherein the carbonate is lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, cesium carbonate, or lanthanum carbonate. 炭酸水素塩が、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素ルビジウム、または炭酸水素セシウムである請求項1に記載の不活性ガスの精製剤。   The purifying agent for an inert gas according to claim 1, wherein the hydrogen carbonate is sodium hydrogen carbonate, potassium hydrogen carbonate, rubidium hydrogen carbonate, or cesium hydrogen carbonate. ニッケルの含有量が、担体全体の10wt%以上である請求項1に記載の不活性ガスの精製剤。   The inert gas purifier according to claim 1, wherein the nickel content is 10 wt% or more of the entire support. 炭酸塩及び/または炭酸水素塩の添加量が、精製剤全体の0.1〜50wt%である請求項1に記載の不活性ガスの精製剤。   The purifying agent for an inert gas according to claim 1, wherein the amount of carbonate and / or bicarbonate added is 0.1 to 50 wt% of the entire purifying agent. 精製剤の比表面積が、5〜500m/gである請求項1に記載の不活性ガスの精製剤。 The inert gas purification agent according to claim 1, wherein the purification agent has a specific surface area of 5 to 500 m 2 / g. 不活性ガスを、ニッケルを主成分とする担体に炭酸塩及び/または炭酸水素塩を担持させてなる精製剤と接触させて、該不活性ガスに不純物として含まれる二酸化炭素を除去することを特徴とする不活性ガスの精製方法。   Contacting an inert gas with a purifying agent comprising carbonate and / or bicarbonate supported on a carrier mainly composed of nickel, to remove carbon dioxide contained as an impurity in the inert gas A method for purifying an inert gas. 不活性ガスが、二酸化炭素のほか、酸素、一酸化炭素、及び水素から選ばれる1種以上の不純物を含む請求項7に記載の不活性ガスの精製方法。   The method for purifying an inert gas according to claim 7, wherein the inert gas contains one or more impurities selected from oxygen, carbon monoxide, and hydrogen in addition to carbon dioxide. 不活性ガスと精製剤の接触温度が100℃以下である請求項7に記載の不活性ガスの精製方法。   The method for purifying an inert gas according to claim 7, wherein the contact temperature between the inert gas and the purifying agent is 100 ° C. or less. 使用後の精製剤を、還元性ガスと加熱下で接触させて、該精製剤を再生する請求項7に記載の不活性ガスの精製方法。
The method for purifying an inert gas according to claim 7, wherein the purifying agent after use is brought into contact with a reducing gas under heating to regenerate the purifying agent.
JP2004137062A 2004-05-06 2004-05-06 Inert gas refining agent and inert gas refining method Pending JP2005319345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004137062A JP2005319345A (en) 2004-05-06 2004-05-06 Inert gas refining agent and inert gas refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004137062A JP2005319345A (en) 2004-05-06 2004-05-06 Inert gas refining agent and inert gas refining method

Publications (1)

Publication Number Publication Date
JP2005319345A true JP2005319345A (en) 2005-11-17

Family

ID=35467024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004137062A Pending JP2005319345A (en) 2004-05-06 2004-05-06 Inert gas refining agent and inert gas refining method

Country Status (1)

Country Link
JP (1) JP2005319345A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111905803A (en) * 2020-08-24 2020-11-10 大连华邦化学有限公司 Inert gas purification catalyst, raw material composition and preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111905803A (en) * 2020-08-24 2020-11-10 大连华邦化学有限公司 Inert gas purification catalyst, raw material composition and preparation method
CN111905803B (en) * 2020-08-24 2023-01-17 大连华邦化学有限公司 Inert gas purification catalyst, raw material composition and preparation method

Similar Documents

Publication Publication Date Title
TWI460003B (en) Gas purifying method and gas purifying device
TW553760B (en) Process and apparatus for treating waste anesthetic gas
TWI482655B (en) Gas purification method and gas purification apparatus
CA2902883C (en) Purification of argon through liquid phase cryogenic adsorption
JP5002230B2 (en) Inert gas purification method
TW200536786A (en) Ingredient and process for producing copper (I) chloride, adsorbent and adsorbing method for reductive gas each with the use of copper (I) chloride, and recovering method of carbon monoxide gas
JP2004149393A (en) Method for refining inert gas
JP5654872B2 (en) Method for purifying silicon tetrafluoride
JP2005319345A (en) Inert gas refining agent and inert gas refining method
JP2004142987A (en) Method for purifying ammonia
JP4722420B2 (en) Gas processing method
JP5461144B2 (en) Noble gas purification method
JP2005324155A (en) Refining agent and refining method for inert gas
JP2007045655A (en) Method and apparatus for refining gas
JP2004010391A (en) Method and apparatus for recovering and purifying nitrous oxide
CN103282099B (en) Fine preparation method for gas
JPH06107412A (en) Refining method for ammonia
JP2007277028A (en) Method of producing high purity gaseous nitrogen
TWI793793B (en) A method for removing oxygen molecules and a method for purifying carbon monoxide
JP3522785B2 (en) Purification method of carbon dioxide
JP2010235398A (en) Method of producing ultra high-purity nitrogen gas and producing apparatus
JP3701708B2 (en) Method for purifying nitrogen trifluoride gas
JPH10182575A (en) Purification of tertiary butylhydrazine
JPH04310509A (en) Removal of impurity in nitrogen gas
JPH05123575A (en) Steam refining method