JP2683225B2 - Method for producing activated carbon and method for using the activated carbon for water treatment - Google Patents

Method for producing activated carbon and method for using the activated carbon for water treatment

Info

Publication number
JP2683225B2
JP2683225B2 JP7126375A JP12637595A JP2683225B2 JP 2683225 B2 JP2683225 B2 JP 2683225B2 JP 7126375 A JP7126375 A JP 7126375A JP 12637595 A JP12637595 A JP 12637595A JP 2683225 B2 JP2683225 B2 JP 2683225B2
Authority
JP
Japan
Prior art keywords
activated carbon
weight
producing activated
heating
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7126375A
Other languages
Japanese (ja)
Other versions
JPH0840713A (en
Inventor
一 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CITY OF KOBE
Toso Sangyo Co Ltd
Original Assignee
CITY OF KOBE
Toso Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CITY OF KOBE, Toso Sangyo Co Ltd filed Critical CITY OF KOBE
Priority to JP7126375A priority Critical patent/JP2683225B2/en
Publication of JPH0840713A publication Critical patent/JPH0840713A/en
Application granted granted Critical
Publication of JP2683225B2 publication Critical patent/JP2683225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、下水の生物処理の際に
大量に発生する活性汚泥から得られる付加価値の高い活
性炭及びその活性炭の製造方法並びに水処理用にその活
性炭を使用する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-value-added activated carbon obtained from activated sludge generated in large quantities during biological treatment of sewage, a method for producing the activated carbon, and a method for using the activated carbon for water treatment. It is a thing.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】従
来、下水処理に際して大量に発生する脱水汚泥は、主と
して焼却され、有用物の回収や資源の利用はされていな
い。また、焼却灰の埋立処分に当たっては、多大な経費
を要することに加え、処分地の確保もますます困難にな
るなど、多くの課題を抱えている。また、最近の汚泥処
理方法として、汚泥のスラグ化・溶融化が行われている
が、これらから得られる資材が有効に活用されていると
は言いがたい状況である。
2. Description of the Related Art Conventionally, dehydrated sludge, which is produced in large quantities during sewage treatment, is mainly incinerated, and useful substances are not recovered and resources are not utilized. In addition, landfill disposal of incinerated ash has many problems such as enormous cost and it becomes more and more difficult to secure a disposal site. In addition, sludge is slagged and melted as a recent sludge treatment method, but it is difficult to say that the materials obtained from these are effectively utilized.

【0003】さらに、下水の汚泥を炭化・賦活し、吸着
剤を得る方法は各種提案されているが、無機物を多量に
含んでいることもあって、これらの試みが技術的に確立
されているとは言えないのが現状である。上記したごと
く、下水汚泥の減容化・再利用化の技術を早期に確立す
ることが求められている。
Further, various methods for carbonizing and activating sewage sludge to obtain an adsorbent have been proposed, but these attempts are technically established because they contain a large amount of inorganic substances. That is not the case at present. As mentioned above, it is required to establish technologies for volume reduction and reuse of sewage sludge at an early stage.

【0004】ところで、我が国における活性炭の製造に
際しては、原料となる木材、オガクズ、ヤシ殻、石炭、
亜炭などの炭材の大部分を輸入に依存しているという背
景がある。一方、水資源確保の観点から、水の浄化や再
利用を図るために浄化能力の優れた、安価な活性炭が求
められている。
By the way, when producing activated carbon in Japan, wood, sawdust, coconut shell, coal,
There is a background that most of the carbonaceous materials such as lignite are dependent on imports. On the other hand, from the viewpoint of securing water resources, there is a demand for inexpensive activated carbon with excellent purification capacity in order to purify and reuse water.

【0005】この点、下水汚泥はカルシウム、鉄、アル
ミニウム、燐、珪素、マグネシウムを主成分とした多く
の無機物を含み、水蒸気、二酸化炭素を用いるガス賦活
法、塩化亜鉛、燐酸、アルカリ金属塩を用いる薬品賦活
方法では活性炭を得るのが困難であった。例えば、下水
汚泥を脱水した後、直接炭化・賦活して活性炭(脱色
剤)を得る試みが行われているが、無機物が多く、性能
のよい活性炭(脱色剤)は得られていない。また、下水
汚泥を窒素雰囲気中で炭化・水蒸気賦活した例は知られ
ているが、この場合に凝集剤として無機物を添加せず、
高分子凝集剤で凝集、遠心分離した生汚泥を用いても、
比表面積54〜69m2 /g、細孔容積0.06〜0.
10ml/g、沃素吸着量93〜151mg/mgで、
市販活性炭の1/10程度の性能しか得られていない。
In this respect, sewage sludge contains many inorganic substances containing calcium, iron, aluminum, phosphorus, silicon and magnesium as main components, and gas activation method using steam and carbon dioxide, zinc chloride, phosphoric acid and alkali metal salts are used. It was difficult to obtain activated carbon by the chemical activation method used. For example, attempts have been made to obtain activated carbon (decoloring agent) by directly carbonizing and activating the sewage sludge after dewatering it, but activated carbon (decoloring agent) with high performance has not been obtained because of many inorganic substances. Also, it is known that sewage sludge is activated by carbonization and steam in a nitrogen atmosphere, but in this case, no inorganic substance is added as a coagulant,
Even when using raw sludge that has been flocculated with a polymer flocculant and centrifuged,
Specific surface area 54 to 69 m 2 / g, pore volume 0.06 to 0.
10 ml / g, iodine adsorption amount 93-151 mg / mg,
Only about 1/10 the performance of commercial activated carbon has been obtained.

【0006】本発明はこのような従来の技術の有する問
題点に鑑みてなされたものであって、その目的は、安価
で且つ高性能の活性炭及びその製造方法並びに水処理用
に該活性炭を使用する方法を提供することにある。
The present invention has been made in view of the above problems of the prior art, and an object thereof is to use inexpensive and high-performance activated carbon, a method for producing the activated carbon, and the activated carbon for water treatment. To provide a way to do.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明の要旨は、下水汚泥を炭化したのち、酸で無機
物を抽出し、引き続いて賦活処理をすることにより、比
表面積が1300m2 /g以上で、細孔容積が3.00
ml/g以上である活性炭を製造する方法を第一の発明
とし、上記第一の発明において、下水汚泥を炭化する際
に、発泡剤兼賦活剤としてアルカリ金属珪酸塩を加える
ことを特徴とする活性炭の製造方法を第二の発明とし、
下水を循環式硝化脱窒後、砂濾過したものを、比表面積
が1300m2 /g以上で、細孔容積が3.00ml/
g以上である活性炭を充填した容器中を通過させること
を特徴とする水処理用に活性炭を使用する方法を第三の
発明とする。
In order to achieve the above object, the gist of the present invention is to carbonize sewage sludge, extract inorganic substances with an acid, and subsequently perform activation treatment to obtain a specific surface area of 1300 m 2. / G or more, the pore volume is 3.00
A method for producing activated carbon having an amount of ml / g or more is a first invention, and in the above-mentioned first invention, an alkali metal silicate is added as a foaming agent and activator when carbonizing sewage sludge. A second invention is a method for producing activated carbon,
After sewage was subjected to circulation nitrification denitrification and then sand filtered, the specific surface area was 1300 m 2 / g or more and the pore volume was 3.00 ml /
A third invention is a method of using activated carbon for water treatment, which is characterized in that it is passed through a container filled with activated carbon of g or more.

【0008】上記第一の発明において、賦活剤として水
酸化ナトリウムを用いることを特徴とする活性炭の製造
方法を第四の発明とし、上記第一の発明において、賦活
温度として、350〜450℃で一定時間加熱した後、
450〜900℃で一定時間加熱することを特徴とする
活性炭の製造方法を第五の発明とし、上記第一の発明に
おいて、賦活剤として水酸化ナトリウムを用い且つ賦活
温度として、350〜450℃で一定時間加熱した後、
450〜900℃で一定時間加熱することを特徴とする
活性炭の製造方法を第六の発明とし、上記第二の発明に
おいて、アルカリ金属珪酸塩の添加量を増加することを
特徴とする活性炭の製造方法を第七の発明とする。
In the above-mentioned first invention, a method for producing activated carbon characterized in that sodium hydroxide is used as an activating agent is referred to as a fourth invention. In the above-mentioned first invention, the activation temperature is 350 to 450 ° C. After heating for a certain time,
A method for producing activated carbon, which comprises heating at 450 to 900 ° C. for a certain period of time, is a fifth invention, and in the above first invention, sodium hydroxide is used as an activator and an activation temperature is 350 to 450 ° C. After heating for a certain time,
A method for producing activated carbon, which comprises heating at 450 to 900 ° C. for a certain period of time, is defined as a sixth invention, and in the second invention, the amount of alkali metal silicate added is increased to produce activated carbon. The method is the seventh invention.

【0009】下水汚泥を直接、または水分調整後成型す
るが、下水汚泥中の乾燥固形物1000重量部に、アル
カリ金属珪酸塩1〜250重量部を成型剤・発泡剤・賦
活剤として添加し、混練した後成型すると、汚泥中の無
機物と反応してゲル化し、取扱容易な成型物を得ること
ができる。
Sewage sludge is molded directly or after adjusting the water content. To 1000 parts by weight of dried solid matter in sewage sludge, 1 to 250 parts by weight of an alkali metal silicate is added as a molding agent, a foaming agent and an activator, When the mixture is kneaded and then molded, it reacts with the inorganic substances in the sludge to gel, and a molded product that is easy to handle can be obtained.

【0010】この成型物を乾燥後300〜800℃で加
熱処理すると、20〜75重量%の無機物を含む炭化物
を得ることができる。
When this molded product is dried and then heat-treated at 300 to 800 ° C., a carbide containing 20 to 75% by weight of an inorganic substance can be obtained.

【0011】この炭化物を破砕して破砕炭を得ることが
でき、粉砕して粉末炭を得ることができるが、篩等によ
り一定形状の炭化物を効率よく得るには、下水汚泥固形
物1000重量部に、アルカリ金属珪酸塩1〜250重
量部、好ましくは5〜100重量部を加え、成型後熱処
理することにより、適度な強度が得られ、微粉化せず、
以後の工程で一定形状を保つことができる。
Crushed charcoal can be obtained by crushing this charcoal, and pulverized charcoal can be obtained, but in order to efficiently obtain a charcoal having a certain shape by using a sieve or the like, 1000 parts by weight of sewage sludge solid matter is required. In addition, by adding 1 to 250 parts by weight, preferably 5 to 100 parts by weight of an alkali metal silicate, and heat-treating after molding, an appropriate strength can be obtained and it is not pulverized,
A constant shape can be maintained in the subsequent steps.

【0012】上記炭化物に塩酸、過塩素酸、塩素酸、亜
塩素酸、次亜塩素酸、硫酸、硝酸、酢酸、蟻酸およびこ
れらの混酸を無機物中の金属類の当量以上、好ましくは
当量の1.5倍以上加えて加熱し、撹拌すると、金属類
の殆どが酸溶液中に溶出する。酸溶液中に溶出した無機
物は、PH・溶解度積を利用した燐酸鉄、燐酸カルシウ
ムの沈降分離や選択吸着による燐の回収などを経て、有
用な工業原料として再利用される。上記酸溶液を濾過後
複数回水洗を行うが、最初の2〜5回は0.001〜1
N/lの酸で水洗するのが好ましく、このようにすれば
炭化物細孔内に賦活の妨害となる金属水酸化物沈殿を生
じない。
Hydrochloric acid, perchloric acid, chloric acid, chlorous acid, hypochlorous acid, sulfuric acid, nitric acid, acetic acid, formic acid and their mixed acids are added to the above-mentioned carbides in an amount equal to or more than the equivalent of the metals in the inorganic material, preferably 1 equivalent. Most of the metals are eluted in the acid solution when the mixture is added at least 5 times and heated and stirred. The inorganic substance eluted in the acid solution is reused as a useful industrial raw material after the precipitation and separation of iron phosphate and calcium phosphate using the PH / solubility product and the recovery of phosphorus by selective adsorption. The above acid solution is filtered and washed with water several times, but the first 2 to 5 times is 0.001 to 1 times.
It is preferable to wash with water with N / l acid, and in this way, metal hydroxide precipitates that hinder activation are not formed in the carbide pores.

【0013】酸洗後、水洗した炭化物を乾燥すると、1
00〜300m2 /gの比表面積を有するとともに、
0.5〜1.5ml/gの細孔容積を有する多孔質の炭
化物が得られる。上記数値は良質な活性炭となる木炭の
場合に近い値である。この炭化物は走査型電子顕微鏡で
の1000〜5000倍の観察では、木炭の仮導管や細
胞膜から形成される大きなハニカム構造体は認められ
ず、水銀圧入法による細孔径の分布は、細孔半径17〜
2×106 Åまで広い範囲にわたり、酸により溶出した
無機物の跡に、炭化物粒子径に比べて小さな径のマクロ
細孔、メソ細孔およびミクロ細孔が平均的に分布した、
良質の活性炭原料となる多孔性を示す。また、多孔質炭
化物中には、酸に不溶な珪素を主成分とする無機物が、
5〜40重量%残存する。
After pickling, the washed carbonaceous product is dried to obtain 1
While having a specific surface area of 00 to 300 m 2 / g,
A porous carbide with a pore volume of 0.5-1.5 ml / g is obtained. The above values are close to those of charcoal, which is good quality activated carbon. When observed with a scanning electron microscope at a magnification of 1,000 to 5,000 times, this carbide does not show a large honeycomb structure formed of a temporary charcoal conduit or cell membrane. ~
Over a wide range of up to 2 × 10 6 Å, macropores, mesopores and micropores having a diameter smaller than that of the carbide particles were evenly distributed in the traces of the inorganic substances eluted by the acid.
It exhibits porosity as a good quality activated carbon raw material. In addition, in the porous carbide, an inorganic substance whose main component is acid-insoluble silicon,
5-40% by weight remains.

【0014】上記した多孔質炭化物を賦活して高性能の
活性炭を得るには、アルカリ薬剤を用いる薬品賦活法が
好ましく、珪素を主成分とする無機物を溶出しマクロ孔
となり、さらに薬品賦活特有のミクロ孔・メソ孔が生成
する。
In order to activate the above-mentioned porous carbide to obtain high-performance activated carbon, a chemical activation method using an alkaline chemical is preferable, in which an inorganic substance containing silicon as a main component is eluted to form macropores, which is further peculiar to chemical activation. Micropores and mesopores are generated.

【0015】上記したアルカリ薬剤による賦活は公知の
方法を採用すればよく、例えば、アルカリ薬剤と混合し
て不活性ガス雰囲気中で350〜900℃で熱処理し、
珪素を主成分とする無機物を溶出させた後に賦活する方
法が好ましく、アルカリ薬剤の融点以上であって炭化物
の賦活反応速度が遅い温度である350〜450℃の温
度に0.5〜5時間保った後、温度を上げ、450〜9
00℃で0.25〜5時間、より好ましくは650〜8
50℃で0.5〜3時間賦活すると収率および吸着性能
が向上し、経済的である。
A known method may be used for the activation with the above-mentioned alkaline chemicals. For example, it is mixed with an alkaline chemical and heat-treated at 350 to 900 ° C. in an inert gas atmosphere,
A method of activating after elution of an inorganic substance containing silicon as a main component is preferable, and the temperature is kept at a temperature of 350 to 450 ° C., which is a temperature above the melting point of the alkaline chemical and the activation reaction rate of the carbide is slow, for 0.5 to 5 hours. After that, raise the temperature to 450-9
0.25-5 hours at 00 ° C, more preferably 650-8
When activated at 50 ° C. for 0.5 to 3 hours, the yield and adsorption performance are improved, which is economical.

【0016】アルカリ賦活後、溶解・濾過・水洗する。
水洗を繰り返した後、0.001〜3N/lの塩酸、硝
酸、硫酸およびそれらの混酸を加え、酸性にして脱灰
し、中和、洗浄するが、珪酸が溶液中に残留すると珪酸
ゲルとなり、活性炭の性能を低下させるが、珪酸ゲルは
活性炭に比べて沈降速度が遅く、撹拌・デカンテーショ
ンを繰り返すと、上澄み液とともに分離できる。溶解は
添加したアルカリ薬剤の2〜50倍容量、好ましくは2
〜10倍容量の水を添加すれば、アルカリ濃度が高く、
珪酸ゲルを析出せず、濾過速度が早く、能率的である。
以上の操作の後、乾燥すると、高性能の活性炭が得られ
る。
After activating the alkali, it is dissolved, filtered and washed with water.
After repeated washing with water, 0.001 to 3 N / l hydrochloric acid, nitric acid, sulfuric acid and mixed acid thereof are added to acidify, decalcify, neutralize and wash. When silicic acid remains in the solution, it turns into silicic acid gel. Although the performance of activated carbon is reduced, the silicic acid gel has a slower sedimentation rate than activated carbon, and can be separated together with the supernatant liquid by repeated stirring and decantation. The dissolution is 2 to 50 times the volume of the added alkaline drug, preferably 2 times.
If you add 10 times the volume of water, the alkali concentration will be high,
It does not precipitate silicic acid gel, has a high filtration rate and is efficient.
High-performance activated carbon can be obtained by drying after the above operation.

【0017】以上のような方法で得た活性炭から粒状活
性炭を得るには、公知の方法を用いればよく、成型物の
強度が得られるフェノール樹脂、ユリヤ樹脂、ピッチ、
タール、アルギン酸ソーダ、ナフタレンスルホン酸塩の
ホルマリン縮合物またはリグニン主原料の樹脂等の1〜
30重量%をバインダーとして添加、混練、造粒し、不
活性ガス雰囲気中で150〜850℃で30分〜5時間
加熱すると粒状活性炭を得ることができる。
In order to obtain granular activated carbon from the activated carbon obtained by the above-mentioned method, a known method may be used. Phenolic resin, urea resin, pitch, which can obtain strength of the molded product,
1 to 1 of tar, sodium alginate, formalin condensate of naphthalene sulfonate, or resin of lignin main material
Granular activated carbon can be obtained by adding 30% by weight as a binder, kneading, granulating and heating in an inert gas atmosphere at 150 to 850 ° C. for 30 minutes to 5 hours.

【0018】[0018]

【作用】炭化した下水汚泥を酸処理し、炭化物中の無機
物を溶出させ、多孔質炭化物を得、さらに、炭化物を賦
活することによって、比表面積・細孔容積が大きくて、
吸着性能の優れた活性炭を得ることができる。
[Function] By treating the carbonized sewage sludge with an acid to elute the inorganic substances in the carbide to obtain a porous carbide, and further activating the carbide, the specific surface area / pore volume is large,
It is possible to obtain activated carbon having excellent adsorption performance.

【0019】賦活剤として水酸化ナトリウムを用いる
と、メソ孔(細孔半径10〜250Å)の特に発達した
活性炭を得ることができる。また、この賦活に際して、
賦活温度として、350〜450℃で一定時間加熱して
無機物を溶出させた後、450〜900℃で一定時間加
熱するという2段加熱を採用することにより、収率およ
び吸着性能が向上するとともにメソ孔を増加させること
ができる。この2段加熱における後段加熱の温度が90
0℃を超えると、酸で無機物を抽出した炭化物に対する
収率が極端に低下し、450℃未満のものは吸着性能が
低い。
If sodium hydroxide is used as the activator, activated carbon having particularly developed mesopores (pore radius of 10 to 250 Å) can be obtained. Also, when activating this,
As the activation temperature, by adopting the two-stage heating of heating at 350 to 450 ° C. for a certain period of time to elute the inorganic substance, and then heating at 450 to 900 ° C. for a certain period of time, the yield and the adsorption performance are improved and the mesoscopic property is improved. The holes can be increased. The temperature of the second stage heating in this second stage heating is 90
If it exceeds 0 ° C, the yield with respect to the carbide obtained by extracting the inorganic substance with an acid will be extremely reduced, and if it is less than 450 ° C, the adsorption performance will be low.

【0020】汚泥の炭化に際しては、直接または水分調
整後成型するが、アルカリ金属珪酸塩を添加すると、水
分調整せずに、取扱い容易な成型物を得ることができ
る。さらに、このアルカリ金属珪酸塩の添加量を増加す
ることによって、ミクロ孔およびメソ孔の比率の高い活
性炭を得ることができる。
When the sludge is carbonized, it is molded directly or after adjusting the water content, but if an alkali metal silicate is added, a molded product that is easy to handle can be obtained without adjusting the water content. Furthermore, by increasing the addition amount of this alkali metal silicate, activated carbon with a high ratio of micropores and mesopores can be obtained.

【0021】[0021]

【実施例】以下、実施例に基づいて本発明を具体的に説
明する。 〔実施例1〕下水汚泥として分流式都市下水処理場の余
剰汚泥を塩化第二鉄を凝集剤としてベルトプレスで脱水
した、含水率77.49重量%、強熱減量14.41重
量%の脱水汚泥を原料とし、直径40mm・長さ80mmの
円筒状に成型し、この円筒状のものを含水率20重量%
になるように乾燥器で乾燥後、炭化炉で650℃以下に
保って炭化物を得た。この炭化物を、粉砕器を用いて直
径2mm以下に粉砕し、濃度7重量%の塩酸を重量比で1
0倍量加え、20分間撹拌しつつ沸騰させた。その後、
吸引濾過し、酸溶液を分離し、0.01N/l塩酸で3
回洗浄した後、濾過液のPHが5以上になるまで水で繰
り返し洗浄し、110℃で2時間乾燥器で乾燥して炭化
物を得た。さらに、得られた炭化物をニッケル坩堝に入
れ、水酸化カリウムを重量比で3倍量加え、窒素ガス雰
囲気中で450℃に保って1.5時間、さらに650℃
に昇温して2時間加熱し、賦活した。冷却後、水酸化カ
リウムの10倍容量の水で溶解、吸引濾過し、アルカリ
液を分離して得た賦活後の炭化物を水洗用の容器に移
し、水洗液のPHが10になるまで撹拌と沈降分離(デ
カンテーション)を繰り返し水洗した。その後、0.1
N/l塩酸溶液中で10分間撹拌し、脱灰した。脱灰
後、吸引濾過し、濾液のPHが5になるまで、水で繰り
返し洗浄した後110℃で2時間乾燥して活性炭を得
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments. [Example 1] Excess sludge of a split-type urban sewage treatment plant as sewage sludge was dehydrated with a belt press using ferric chloride as a coagulant. Dehydration of water content 77.49% by weight and ignition loss 14.41% by weight. Using sludge as a raw material, molded into a cylindrical shape with a diameter of 40 mm and a length of 80 mm, and the cylindrical shape has a water content of 20% by weight.
And dried in a dryer to maintain the temperature at 650 ° C. or lower to obtain a carbide. This carbide was crushed to a diameter of 2 mm or less using a crusher, and hydrochloric acid with a concentration of 7% by weight was used in a weight ratio of 1
A 0-fold amount was added, and the mixture was boiled while stirring for 20 minutes. afterwards,
Suction filtration is carried out, the acid solution is separated, and the mixture is taken up with 0.01 N / l hydrochloric acid
After washing twice, the filtrate was repeatedly washed with water until PH of 5 or more, and dried at 110 ° C. for 2 hours with a drier to obtain a charcoal-based material. Further, the obtained carbide was put into a nickel crucible, potassium hydroxide was added in an amount of 3 times by weight, and the temperature was kept at 450 ° C. in a nitrogen gas atmosphere for 1.5 hours, then at 650 ° C.
The temperature was raised to 2 and heated for 2 hours for activation. After cooling, it was dissolved in 10 times volume of potassium hydroxide, suction filtered, and the activated charcoal obtained by separating the alkaline solution was transferred to a vessel for washing with water and stirred until the pH of the washing solution reached 10. The sedimentation (decantation) was repeatedly washed with water. After that, 0.1
The mixture was stirred in a N / l hydrochloric acid solution for 10 minutes and decalcified. After deashing, suction filtration was performed, and the filtrate was repeatedly washed with water until the pH became 5, and then dried at 110 ° C. for 2 hours to obtain activated carbon.

【0022】〔実施例2〕実施例1と同一の脱水汚泥を
原料とし、成型剤・発泡剤・賦活剤として、汚泥100
0重量部に、JIS3号珪酸ナトリウム水溶液(組成:
Na2 O=9.26重量%、SiO2 =28.26重量
%)12.6重量部を50重量部の水と混合したものを
添加して混練し、実施例1と同様に成型後実施例1と同
様の処理をして活性炭を得た。
Example 2 The same dehydrated sludge as in Example 1 was used as a raw material, and sludge 100 was used as a molding agent / foaming agent / activator.
In 0 part by weight, JIS No. 3 sodium silicate aqueous solution (composition:
Na 2 O = 9.26% by weight, SiO 2 = 28.26% by weight) 12.6 parts by weight mixed with 50 parts by weight of water was added and kneaded. The same treatment as in Example 1 was carried out to obtain activated carbon.

【0023】〔実施例3〕実施例2において、JIS3
号珪酸ナトリウム水溶液の添加量を25.2重量部とし
た以外は実施例2と同様の処理をして活性炭を得た。
[Embodiment 3] In Embodiment 2, according to JIS3
Activated carbon was obtained by the same treatment as in Example 2 except that the amount of the No. sodium silicate aqueous solution added was changed to 25.2 parts by weight.

【0024】実施例1〜3において脱水汚泥成型物から
得られた炭化物の組成(重量部)を次の表1に示す。
The compositions (parts by weight) of the carbides obtained from the dehydrated sludge moldings in Examples 1 to 3 are shown in Table 1 below.

【0025】[0025]

【表1】 [Table 1]

【0026】また、実施例1〜3で得られた活性炭の物
理特性を次の表2に示し、比較のために、市販活性炭の
物理特性を表3に示す。
The physical properties of the activated carbons obtained in Examples 1 to 3 are shown in Table 2 below, and the physical properties of commercially available activated carbons are shown in Table 3 for comparison.

【0027】表2〜表5、表7および表8において、ガ
ス吸着法(BET法)、窒素ガス吸着法、水銀圧入法と
は以下の内容の試験方法である。 ガス吸着法(BET法)=固体表面に気体分子を吸着さ
せ、或る吸着平衡圧における吸着量を測定し、BET式
により計算する方法。
In Tables 2 to 5, Table 7 and Table 8, the gas adsorption method (BET method), the nitrogen gas adsorption method and the mercury injection method are the test methods having the following contents. Gas adsorption method (BET method) = a method of adsorbing gas molecules on a solid surface, measuring the amount of adsorption at a certain adsorption equilibrium pressure, and calculating by the BET formula.

【0028】窒素ガス吸着法=窒素ガスの相対圧力を段
階的に変えて、吸着等温線より、細孔分布・細孔容積を
求める方法。 水銀圧入法=水銀に圧力を加えることにより、順次細孔
に圧入されることを利用した測定法。必要圧力から細孔
径が得られ、圧入量から細孔容積が求められる。
Nitrogen gas adsorption method: A method of determining the pore distribution and pore volume from the adsorption isotherm by changing the relative pressure of nitrogen gas stepwise. Mercury injection method = A measurement method that utilizes the fact that mercury is pressed into the pores sequentially by applying pressure. The pore diameter is obtained from the required pressure, and the pore volume is obtained from the press-fitted amount.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】表2、表3に明らかなように、本実施例1
〜3に係るものは、市販活性炭に比して比表面積・細孔
容積が大きく、メチレンブルー吸着性能が優れている。
As is clear from Tables 2 and 3, this Example 1
Those of Nos. 3 to 3 have a larger specific surface area and pore volume than commercial activated carbon and are excellent in methylene blue adsorption performance.

【0032】上記実施例1〜3は、下水汚泥を炭化する
に際して下水汚泥1000重量部に対するJIS3号珪
酸ナトリウム水溶液(アルカリ金属珪酸塩)の添加量を
変えたものであり、窒素ガス吸着法による細孔容積の比
較を図1に示し、累積細孔容積の比較を図2に示し、微
分細孔容積の比較を図3に示す。
In Examples 1 to 3 described above, the amount of JIS No. 3 sodium silicate aqueous solution (alkali metal silicate) added was changed with respect to 1000 parts by weight of sewage sludge when carbonizing the sewage sludge. A comparison of pore volumes is shown in FIG. 1, a comparison of cumulative pore volumes is shown in FIG. 2, and a comparison of differential pore volumes is shown in FIG.

【0033】実施例1はJIS3号珪酸ナトリウム水溶
液無添加であり、実施例2、3はそれぞれJIS3号珪
酸ナトリウム水溶液の添加量が12.6重量部、25.
2重量部であって、図1〜3に明らかなように、下水汚
泥を炭化する際に、実施例2または3のようにアルカリ
金属珪酸塩を添加することによってミクロ孔およびメソ
孔が増加し、さらにその添加量を増加することにより
(実施例3)、ミクロ孔およびメソ孔の比率が一層高い
活性炭を得ることができる。
In Example 1, JIS No. 3 sodium silicate aqueous solution was not added, and in Examples 2 and 3, JIS No. 3 sodium silicate aqueous solution was added in an amount of 12.6 parts by weight and 25.
2 parts by weight, and as is clear from FIGS. 1 to 3, when carbonizing the sewage sludge, the addition of the alkali metal silicate as in Example 2 or 3 increases the micropores and mesopores. By further increasing the addition amount (Example 3), activated carbon having a higher ratio of micropores and mesopores can be obtained.

【0034】なお、図1において、ミクロ孔、メソ孔、
マクロ孔のそれぞれの細孔半径は、5〜10Å、10〜
250Å、250〜1500Åである。
In FIG. 1, micropores, mesopores,
The radius of each macropore is 5-10Å, 10-
250Å, 250-1500Å.

【0035】〔実施例4〕実施例1〜3と同じ方法で凝
集、脱水した含水率75.40重量%、強熱減量16.
40重量%の脱水汚泥を原料とし、実施例1と同様の処
理を行い、活性炭を得た。そして、この活性炭に200
重量%の水を加え、加湿した後、ナフタレンスルホン酸
塩のホルマリン縮合物をバインダーとして20重量%添
加し、ニーダーで混練後、デスクペレッターで直径3mm
・長さ3mmに造粒し、110℃で4時間乾燥器で乾燥
し、さらに窒素ガス雰囲気中で7℃/min.の速度で70
0℃まで昇温後、2時間その温度に保って熱処理し、粒
状活性炭を得た。
Example 4 Agglomerated and dehydrated in the same manner as in Examples 1 to 3, the water content was 75.40% by weight, and the loss on ignition was 16.
Using 40% by weight of dehydrated sludge as a raw material, the same treatment as in Example 1 was performed to obtain activated carbon. And 200 to this activated carbon
After adding water by weight% and moistening, add 20% by weight of formalin condensate of naphthalene sulfonate as a binder, knead with a kneader, and use a desk pelleter to obtain a diameter of 3 mm.
・ Granulate to a length of 3 mm, dry at 110 ° C for 4 hours in a drier, and then in a nitrogen gas atmosphere at a rate of 7 ° C / min.
After the temperature was raised to 0 ° C., the temperature was maintained for 2 hours for heat treatment to obtain granular activated carbon.

【0036】〔実施例5〕実施例4と同じ脱水汚泥10
00重量部に、JIS3号珪酸ナトリウム水溶液5重量
部を50重量部の水と混合したものを添加して混練し、
以後実施例2と同様の処理をして得た活性炭に、さらに
実施例4と同様の処理を施して粒状活性炭を得た。
[Embodiment 5] The same dehydrated sludge 10 as in Embodiment 4
To 00 parts by weight, a mixture of 5 parts by weight of JIS No. 3 sodium silicate aqueous solution and 50 parts by weight of water was added and kneaded.
Thereafter, the activated carbon obtained by the same treatment as in Example 2 was further treated in the same manner as in Example 4 to obtain granular activated carbon.

【0037】実施例4、5で得た粒状活性炭の物理特性
を次の表4に示し、比較のために、市販の水処理用活性
炭の物理特性を表5に示す。
The physical properties of the granular activated carbon obtained in Examples 4 and 5 are shown in Table 4 below, and for comparison, the physical properties of commercially available activated carbon for water treatment are shown in Table 5.

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【表5】 [Table 5]

【0040】表4、表5に明らかなように、本実施例
4、5に係るものは、ミクロ孔、メソ孔およびマクロ孔
の広い領域にわたり細孔を有し、市販水処理用活性炭に
比して比表面積・細孔容積が大きく、メチレンブルー吸
着性能・沃素吸着性能ともに市販品より優れている。
As is clear from Tables 4 and 5, those according to Examples 4 and 5 have pores over a wide range of micropores, mesopores, and macropores, and are higher than those of commercial activated carbon for water treatment. It has a large specific surface area and pore volume, and is superior to commercially available products in both methylene blue adsorption performance and iodine adsorption performance.

【0041】〔実施例6〕実施例4、5で得られた粒状
活性炭の水処理への適応性を評価するために実験を行っ
た。その方法は、中規模分流式都市下水道の最初沈殿池
越流水を循環式硝化脱窒後、砂濾過したものを原水とし
て、この原水を、図4に示すような配管1、2または3
を経て、活性炭C1 、C2 またはC3 を充填した直径1
30mm・高さ750mmのカラムX、YまたはZ中を重力
下降流にて通水するという方法である。4は逆洗時の通
水方向である。上記実験諸元を次の表6に示す。
Example 6 An experiment was conducted to evaluate the adaptability of the granular activated carbon obtained in Examples 4 and 5 to water treatment. The method is as follows: Circulating nitrification denitrification of the first settling basin of the middle-scale diversion type urban sewer system, and sand filtering, and this raw water is used as piping 1, 2 or 3 as shown in FIG.
Diameter 1 filled with activated carbon C 1 , C 2 or C 3 via
It is a method of passing water through gravity downflow through a column X, Y or Z of 30 mm and height of 750 mm. 4 is the water flow direction during backwashing. The experimental specifications are shown in Table 6 below.

【0042】[0042]

【表6】 [Table 6]

【0043】また、実施例6で得た累積通水量に対する
CODの除去率およびTOCの除去率の推移を図5に示
す。図5に明らかなように、本実施例4、5に係るもの
は標準品に比してCOD除去率およびTOC除去率とも
に優れている。
FIG. 5 shows the changes in the COD removal rate and TOC removal rate with respect to the cumulative water flow rate obtained in Example 6. As is clear from FIG. 5, the samples according to Examples 4 and 5 are superior to the standard product in both the COD removal rate and the TOC removal rate.

【0044】〔実施例7〕実施例1と同じ方法で凝集、
脱水した含水率74.50重量%、強熱減量17.8重
量%の脱水汚泥1000重量部に、JIS3号珪酸ナト
リウム水溶液5.1重量部を50重量部の水と混合した
ものを添加して混練し、実施例1と同様に成型後、実施
例1と同様の処理をして活性炭を得た。
[Embodiment 7] Aggregation in the same manner as in Embodiment 1,
To 1000 parts by weight of dehydrated sludge having a dehydrated water content of 74.50% by weight and a loss on ignition of 17.8% by weight, a mixture of 5.1 parts by weight of JIS No. 3 sodium silicate aqueous solution with 50 parts by weight of water was added. After kneading and molding in the same manner as in Example 1, the same treatment as in Example 1 was carried out to obtain activated carbon.

【0045】〔実施例8〕実施例7において、賦活剤を
水酸化カリウムに代えて水酸化ナトリウムを用いた以外
は実施例7と同様の処理をして活性炭を得た。
Example 8 Activated carbon was obtained in the same manner as in Example 7, except that sodium hydroxide was used instead of potassium hydroxide as the activator.

【0046】〔実施例9〕実施例7において、得られた
炭化物を賦活するに際し、炭化物をニッケル坩堝に入
れ、水酸化カリウムを重量比で3倍量加え、窒素ガス雰
囲気中で450℃に保って1.5時間加熱し、さらに8
30℃に昇温して2時間加熱するという方法で賦活した
以外は実施例7と同様の処理をして活性炭を得た。
Example 9 In activating the obtained carbide in Example 7, the carbide was put into a nickel crucible, potassium hydroxide was added in an amount of 3 times by weight, and the temperature was maintained at 450 ° C. in a nitrogen gas atmosphere. Heat for 1.5 hours, then 8 more
Activated carbon was obtained by the same treatment as in Example 7, except that activation was performed by heating to 30 ° C. and heating for 2 hours.

【0047】〔実施例10〕実施例7において、得られ
た炭化物を賦活するに際し、賦活剤を水酸化カリウムに
代えて水酸化ナトリウムを用い、炭化物をニッケル坩堝
に入れ、水酸化ナトリウムを重量比で3倍量加え、窒素
ガス雰囲気中で450℃に保って1.5時間加熱し、さ
らに830℃に昇温して2時間加熱するという方法で賦
活した以外は実施例7と同様の処理をして活性炭を得
た。
[Example 10] In Example 7, when activating the obtained carbide, sodium hydroxide was used as the activator instead of potassium hydroxide, the carbide was put in a nickel crucible, and sodium hydroxide was used in a weight ratio. The same treatment as in Example 7 was carried out except that activation was carried out by a method of adding 3 times the amount, heating at 450 ° C. for 1.5 hours in a nitrogen gas atmosphere, heating to 830 ° C. and heating for 2 hours. To obtain activated carbon.

【0048】実施例7〜10で得られた活性炭のメチレ
ンブルー吸着性能、沃素吸着性能および比表面積を以下
の表7に示し、窒素ガス吸着法による細孔容積の比較を
図6に示し、累積細孔容積の比較を図7に示し、微分細
孔容積の比較を図8に示し、細孔容積の分布を以下の表
8に示す。
The methylene blue adsorption performance, iodine adsorption performance and specific surface area of the activated carbons obtained in Examples 7 to 10 are shown in Table 7 below, and a comparison of the pore volumes by the nitrogen gas adsorption method is shown in FIG. A comparison of pore volumes is shown in FIG. 7, a comparison of differential pore volumes is shown in FIG. 8, and a distribution of pore volumes is shown in Table 8 below.

【0049】[0049]

【表7】 [Table 7]

【0050】[0050]

【表8】 [Table 8]

【0051】図6〜8および表8に明らかなように、賦
活時の温度を上げるか(実施例9)、または賦活剤とし
て水酸化ナトリウムを用いることにより(実施例8)、
メソ孔の比率を高めることができる。そして、賦活時の
温度を上げるとともに賦活剤として水酸化ナトリウムを
用いることにより(実施例10)、メソ孔の比率を一層
高めることができる。また、表7に明らかなように、実
施例8〜10に係るものは、実施例7に比してメチレン
ブルー吸着性能が優れている。なお、ミクロ孔、メソ孔
およびマクロ孔の細孔半径の意味は、図1と同じであ
る。
As is apparent from FIGS. 6 to 8 and Table 8, by raising the temperature during activation (Example 9) or by using sodium hydroxide as an activator (Example 8),
The proportion of mesopores can be increased. The ratio of mesopores can be further increased by increasing the activation temperature and using sodium hydroxide as the activator (Example 10). Further, as is clear from Table 7, the materials according to Examples 8 to 10 are superior in methylene blue adsorption performance as compared with Example 7. The meanings of the pore radii of the micropores, mesopores and macropores are the same as in FIG.

【0052】[0052]

【発明の効果】本発明は上記のとおり構成されているの
で、次の効果を奏する。 請求項1または2記載の発明によれば、有用な資源
として活用されることがなかった下水汚泥を利用して、
性能の優れた安価な活性炭の製造方法を提供することが
できる。 請求項1または2記載の発明によれば、市販品に比
して大きな比表面積と細孔容積を有し、ミクロ孔(細孔
半径10Å以下)、メソ孔(細孔半径10〜250Å)
およびマクロ孔(細孔半径250〜50000Å)の広
い領域にわたり細孔を有し、この特徴を活かして水処理
に使用しても優れた性能を発揮する活性炭を製造するこ
とができる。 さらに、請求項1または2記載の発明によれば、マ
クロ孔や50000Åを超える細孔半径の大きな細孔容
積を活かした生物活性炭としても利用できる活性炭を製
造することができる。 請求項3記載の発明によれば、効率的に水処理を行
うことができる。 請求項4〜6記載の発明によれば、メソ孔の比率の
高い活性炭を製造することができる。このメソ孔が多い
活性炭は色素吸着性能が優れており、吸着分子径の大き
い液相吸着に好適に使用することができる。 請求項7記載の発明によれば、ミクロ孔およびメソ
孔の比率の高い活性炭を製造することができる。
Since the present invention is configured as described above, the following effects can be obtained. According to the invention of claim 1 or 2, by utilizing the sewage sludge that has not been utilized as a useful resource,
It is possible to provide an inexpensive activated carbon manufacturing method with excellent performance. According to the invention of claim 1 or 2, it has a large specific surface area and pore volume as compared with a commercially available product, and has micropores (pore radius 10 Å or less), mesopores (pore radius 10 to 250 Å)
Also, it has pores over a wide range of macropores (pore radius 250 to 50000Å), and by utilizing this feature, it is possible to produce activated carbon that exhibits excellent performance even when used for water treatment. Furthermore, according to the invention described in claim 1 or 2, it is possible to produce activated carbon that can be used as biological activated carbon that takes advantage of macropores and the pore volume having a large pore radius exceeding 50,000 Å. According to the invention described in claim 3, water treatment can be efficiently performed. According to the inventions of claims 4 to 6, activated carbon having a high mesopore ratio can be produced. The activated carbon having many mesopores has excellent dye adsorption performance and can be suitably used for liquid phase adsorption having a large adsorption molecule diameter. According to the invention of claim 7, activated carbon having a high ratio of micropores and mesopores can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法で製造した活性炭の細孔容積の分
布を示す図である。
FIG. 1 is a view showing a distribution of pore volumes of activated carbon produced by the method of the present invention.

【図2】図1を累積細孔容積で示した図である。FIG. 2 is a diagram showing FIG. 1 in terms of cumulative pore volume.

【図3】図1を微分細孔容積で示した図である。FIG. 3 is a diagram showing FIG. 1 in terms of differential pore volume.

【図4】水処理実験方法を説明する図である。FIG. 4 is a diagram illustrating a water treatment experiment method.

【図5】水処理実験による累積通水量に対するCODと
TOCの推移を示す図である。
FIG. 5 is a diagram showing changes in COD and TOC with respect to the cumulative water flow rate in a water treatment experiment.

【図6】本発明の方法で製造した活性炭の細孔容積の別
の分布を示す図である。
FIG. 6 is a diagram showing another distribution of the pore volume of activated carbon produced by the method of the present invention.

【図7】図6を累積細孔容積で示した図である。FIG. 7 is a diagram showing FIG. 6 in terms of cumulative pore volume.

【図8】図6を微分細孔容積で示した図である。FIG. 8 is a diagram showing FIG. 6 in terms of differential pore volume.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下水汚泥を炭化したのち、酸で無機物を
抽出し、引き続いて賦活処理をすることにより、比表面
積が1300m 2 /g以上で、細孔容積が3.00ml
/g以上である活性炭を製造する方法
1. A method of carbonizing sewage sludge and then removing an inorganic substance with an acid
The specific surface can be obtained by extraction and subsequent activation.
Product volume is more than 1300 m 2 / g and pore volume is 3.00 ml
A method for producing activated carbon having an amount of not less than / g .
【請求項2】 請求項1において、下水汚泥を炭化する
際に、発泡剤兼賦活剤としてアルカリ金属珪酸塩を加え
ることを特徴とする活性炭の製造方法。
2. The method for producing activated carbon according to claim 1, wherein an alkali metal silicate is added as a foaming agent and activator when carbonizing the sewage sludge.
【請求項3】 下水を循環式硝化脱窒後、砂濾過したも
のを、比表面積が1300m 2 /g以上で、細孔容積が
3.00ml/g以上である活性炭を充填した容器中を
通過させることを特徴とする水処理用に活性炭を使用す
る方法。
3. Sewage obtained by circulating nitrification denitrification and then sand filtration has a specific surface area of 1300 m 2 / g or more and a pore volume of
A method of using activated carbon for water treatment, which comprises passing through a container filled with 3.00 ml / g or more of activated carbon .
【請求項4】 請求項1において、賦活剤として水酸化
ナトリウムを用いることを特徴とする活性炭の製造方
法。
4. The method for producing activated carbon according to claim 1, wherein sodium hydroxide is used as the activator.
【請求項5】 請求項1において、賦活温度として、3
50〜450℃で一定時間加熱した後、450〜900
℃で一定時間加熱することを特徴とする活性炭の製造方
法。
5. The activation temperature according to claim 1 , which is 3
After heating at 50-450 ° C for a certain time, 450-900
A method for producing activated carbon, which comprises heating at ℃ for a certain period of time.
【請求項6】 請求項1において、賦活剤として水酸化
ナトリウムを用い且つ賦活温度として、350〜450
℃で一定時間加熱した後、450〜900℃で一定時間
加熱することを特徴とする活性炭の製造方法。
6. The method according to claim 1, wherein sodium hydroxide is used as the activator and the activation temperature is 350 to 450.
A method for producing activated carbon, which comprises heating at 450 ° C. for a certain period of time and then heating at 450 to 900 ° C. for a certain period of time.
【請求項7】 請求項2において、アルカリ金属珪酸塩
の添加量を増加することを特徴とする活性炭の製造方
法。
7. The method for producing activated carbon according to claim 2, wherein the amount of alkali metal silicate added is increased.
JP7126375A 1994-05-26 1995-05-25 Method for producing activated carbon and method for using the activated carbon for water treatment Expired - Fee Related JP2683225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7126375A JP2683225B2 (en) 1994-05-26 1995-05-25 Method for producing activated carbon and method for using the activated carbon for water treatment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11267494 1994-05-26
JP6-112674 1994-05-26
JP7126375A JP2683225B2 (en) 1994-05-26 1995-05-25 Method for producing activated carbon and method for using the activated carbon for water treatment

Publications (2)

Publication Number Publication Date
JPH0840713A JPH0840713A (en) 1996-02-13
JP2683225B2 true JP2683225B2 (en) 1997-11-26

Family

ID=26451782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7126375A Expired - Fee Related JP2683225B2 (en) 1994-05-26 1995-05-25 Method for producing activated carbon and method for using the activated carbon for water treatment

Country Status (1)

Country Link
JP (1) JP2683225B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103894143A (en) * 2014-03-18 2014-07-02 苏州宇希新材料科技有限公司 Method for activating attapulgite

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030038084A1 (en) * 2001-08-23 2003-02-27 The Procter & Gamble Company Water filters and processes for using the same
US20030096703A1 (en) * 2001-08-23 2003-05-22 The Procter & Gamble Company Processes for manufacturing water filters
DE202007014890U1 (en) 2007-03-14 2008-04-17 BLüCHER GMBH High performance adsorbents based on activated carbon with high meso- and macroporosity
US8576541B2 (en) * 2010-10-04 2013-11-05 Corning Incorporated Electrolyte system
JP5070636B2 (en) * 2010-11-10 2012-11-14 有限会社エスケーエスコンサルタント Adsorbent made from dehydrated sludge, production method thereof, and adsorbent-containing product
JP2017024963A (en) * 2015-07-28 2017-02-02 地方独立行政法人青森県産業技術センター Active carbon for liquid phase and manufacturing method therefor
JP6426583B2 (en) * 2015-10-30 2018-11-21 デクセリアルズ株式会社 Porous carbon and organic halogen compound removing apparatus using the same
CN106698873A (en) * 2016-12-21 2017-05-24 福建师范大学 Method for preparing biological carbon from bottom mud of landfill leachate regulating reservoir
JP7129429B2 (en) * 2017-12-27 2022-09-01 株式会社クラレ Activated carbon and its production method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235735A (en) * 1991-01-17 1992-08-24 Osaka Gas Co Ltd High density molded adsorbing body and preparation thereof
JP3367534B2 (en) * 1993-12-09 2003-01-14 三菱瓦斯化学株式会社 High adsorptive carbon material and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103894143A (en) * 2014-03-18 2014-07-02 苏州宇希新材料科技有限公司 Method for activating attapulgite
CN103894143B (en) * 2014-03-18 2016-04-20 苏州宇希新材料科技有限公司 A kind of activation method of attapulgite

Also Published As

Publication number Publication date
JPH0840713A (en) 1996-02-13

Similar Documents

Publication Publication Date Title
Li et al. Preparation and utilization of sludge-based activated carbon for the adsorption of dyes from aqueous solutions
US20110195166A1 (en) Modified Biogenic Silica and Method for Purifying a Liquid
CN105859105A (en) Sludge treatment and recycling method
JP2003502263A (en) Method for producing shaped activated carbon
JP2683225B2 (en) Method for producing activated carbon and method for using the activated carbon for water treatment
CN105642221A (en) Phosphorus removal water purifying agent and preparation method thereof
CN102963953A (en) Method for treating coal washing wastewater
RU2395336C1 (en) Method of preparing carbonaceous adsorbent from sunflower husks
KR100491329B1 (en) Method for treatment of sewage sludge by means of sludge-coal-oil agglomeration
CN111847820A (en) Sludge dewatering method based on hydrothermal method
Cheng et al. Preparation of biological activated carbon (BAC) using aluminum salts conditioned sludge cake for the bio-refractory organic contaminants removal from anaerobically digested liquor
JP2001322808A (en) Manufacturing method of activated carbon from sludge
JP3577223B2 (en) Activated carbon production method using sludge
JPH09315809A (en) Production of activated carbon and treatment of organic waste water by utilizing the activated carbon
JP2788858B2 (en) Method for producing coal-containing briquettes or pellets by comprehensive waste treatment
Patel et al. Study of KOH impregnated jack fruit leaf based carbon as adsorbent for treatment of wastewater contaminated with nickel
JP2792820B2 (en) High-performance activated carbon and its production method
Thomas et al. A comparative study on the efficiency of KOH and H3PO4 impregnated jackfruit leaf based carbon as adsorbent for removal of Cr (VI) from its aqueous solution
KR101048388B1 (en) Granular Activated Carbon Manufacturing Method
JPH0316908A (en) Active carbon for highly treating clean water
US4735729A (en) Ash concentration and disposal method
RU2187459C2 (en) Method of adsorption treatment of waste waters to remove petroleum products and metal ions
Turan et al. Removal of heavy metals and dyes from wastewaters by raw and activated carbon hazelnut shells
Abdulmajeed et al. Production of High Surface Area Activated Carbon from Grass (Imperata)
JPS6048140A (en) Production of hydrophobic adsorbent

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970708

LAPS Cancellation because of no payment of annual fees