JP6426583B2 - Porous carbon and organic halogen compound removing apparatus using the same - Google Patents

Porous carbon and organic halogen compound removing apparatus using the same Download PDF

Info

Publication number
JP6426583B2
JP6426583B2 JP2015213673A JP2015213673A JP6426583B2 JP 6426583 B2 JP6426583 B2 JP 6426583B2 JP 2015213673 A JP2015213673 A JP 2015213673A JP 2015213673 A JP2015213673 A JP 2015213673A JP 6426583 B2 JP6426583 B2 JP 6426583B2
Authority
JP
Japan
Prior art keywords
porous carbon
organic halogen
halogen compound
volume
bamboo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015213673A
Other languages
Japanese (ja)
Other versions
JP2017081799A5 (en
JP2017081799A (en
Inventor
和幸 渋谷
和幸 渋谷
山田 心一郎
心一郎 山田
和浩 木村
和浩 木村
宏史 武隈
宏史 武隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58630414&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6426583(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2015213673A priority Critical patent/JP6426583B2/en
Priority to KR1020187012313A priority patent/KR102622510B1/en
Priority to CN201680063260.0A priority patent/CN108348890B/en
Priority to PCT/JP2016/081778 priority patent/WO2017073631A1/en
Priority to TW105135064A priority patent/TW201728533A/en
Publication of JP2017081799A publication Critical patent/JP2017081799A/en
Publication of JP2017081799A5 publication Critical patent/JP2017081799A5/ja
Publication of JP6426583B2 publication Critical patent/JP6426583B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28073Pore volume, e.g. total pore volume, mesopore volume, micropore volume being in the range 0.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Water Treatment By Sorption (AREA)

Description

本発明は、多孔質炭素、及びそれを用いた有機ハロゲン化合物除去装置に関する。   The present invention relates to porous carbon and an organic halogen compound removing apparatus using the same.

活性炭に代表される多孔質炭素は、吸着性能に優れているため従来から悪臭の除去、液中の不純物除去、溶剤蒸気の回収、除去などの各種用途に広く使用されている。特に、水を浄化するための浄水器には、活性炭が使用されている(例えば、特許文献1及び2参照)。
しかし、一般的に使用されるヤシ殻活性炭では、有機ハロゲン化合物等の低分子量化合物を十分に吸着させることは困難であった。
また、このような従来の浄水器にあっては、通液倍率が大きいと、即ち、浄水器中を流れる水の総量が大きくなると、浄水機能を十分に発揮できない場合があるといった問題があった。
そこで、有機ハロゲン化合物等の低分子量化合物の吸着性能に優れ、かつ通液倍率が大きい場合でも吸着性能の低下が生じにくい浄水器に使用可能な多孔質炭素の提供が望まれていた。
Since porous carbon represented by activated carbon is excellent in adsorption performance, it has been widely used in various applications such as removal of offensive odor, removal of impurities in liquid, recovery and removal of solvent vapor, and the like. In particular, activated carbon is used for a water purifier for purifying water (see, for example, Patent Documents 1 and 2).
However, with coconut shell activated carbon generally used, it has been difficult to sufficiently adsorb low molecular weight compounds such as organic halogen compounds.
Moreover, in such a conventional water purifier, there is a problem that the water purification function may not be sufficiently exhibited when the liquid flow magnification is large, that is, when the total amount of water flowing in the water purifier is large. .
Then, provision of porous carbon which can be used for a water purifier which is excellent in adsorption performance of low molecular weight compounds such as organic halogen compounds and which hardly cause decrease in adsorption performance even when the passing magnification is large has been desired.

特開2001−205253号公報JP, 2001-205253, A 特開平06−106161号公報JP 06-106161 A

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。
即ち、本発明は、有機ハロゲン化合物等の低分子量化合物の吸着性能に優れ、かつ通液倍率が大きい場合でも吸着性能の低下が生じにくい多孔質炭素を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems in the prior art and to achieve the following objects.
That is, an object of the present invention is to provide a porous carbon which is excellent in the adsorption performance of a low molecular weight compound such as an organic halogen compound and which hardly causes a decrease in the adsorption performance even when the passing magnification is large.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> メソ孔容積が0.07(cm/g)以上で、細孔径0.4nm〜0.6nmの最大微分容積値が1.6以上であることを特徴とする多孔質炭素である。
<2> 前記多孔質炭素の窒素BET法による比表面積が10(m/g)以上である前記<1>に記載の多孔質炭素である。
<3> 前記多孔質炭素の全細孔容積が0.5(cm/g)以上である前記<1>から<2>のいずれかに記載の多孔質炭素である。
<4> 前記多孔質炭素の一次粒子の粒子径が0.425(mm)以下である前記<1>から<3>のいずれかに記載の多孔質炭素である。
<5> 前記多孔質炭素のマイクロ孔容積が0.5(cm/g)以上である前記<1>から<4>のいずれかに記載の多孔質炭素である。
<6> 前記多孔質炭素の一次粒子の粒子径が0.1(mm)以下である前記<4>から<5>のいずれかに記載の多孔質炭素である。
<7> 前記多孔質炭素の原材料が植物由来の材料からなる前記<1>から<6>のいずれかに記載の多孔質炭素である。
<8> 前記植物由来の材料がイネ科タケ類由来の材料である前記<7>に記載の多孔質炭素である。
<9> 前記イネ科タケ類が孟宗竹である前記<8>に記載の多孔質炭素である。
<10> 前記<1>から<9>のいずれかに記載の多孔質炭素からなるフィルターを有することを特徴とする、有機ハロゲン化合物除去装置である。
<11> 有機ハロゲン化合物が濃度0.06mg/Lで含有された水に対し、通液倍率1,000倍で有機ハロゲン化合物を除去した場合、有機ハロゲン化合物の除去率が90%以上である前記<10>に記載の有機ハロゲン化合物除去装置。
<12> 有機ハロゲン化合物が濃度0.06mg/Lで含有された水に対し、通液倍率3,000倍で有機ハロゲン化合物を除去した場合、有機ハロゲン化合物の除去率が65%以上である前記<10>から<11>のいずれかに記載の有機ハロゲン化合物除去装置である。
<13> 有機ハロゲン化合物が濃度0.06mg/Lで含有された水に対し、通液倍率6,000倍での有機ハロゲン化合物を除去した場合、有機ハロゲン化合物の除去率が50%以上である前記<10>から<12>のいずれかに記載の有機ハロゲン化合物除去装置である。
<14> 前記有機ハロゲン化合物がクロロホルムである前記<11>から<13>のいずれかに記載の有機ハロゲン化合物除去装置である。
The means for solving the problems are as follows. That is,
<1> A porous carbon characterized by having a mesopore volume of 0.07 (cm 3 / g) or more and a maximum differential volume value of a pore diameter of 0.4 nm to 0.6 nm of 1.6 or more .
<2> The porous carbon according to <1>, wherein the specific surface area of the porous carbon according to the nitrogen BET method is 10 (m 2 / g) or more.
<3> The porous carbon according to any one of <1> to <2>, wherein the total pore volume of the porous carbon is 0.5 (cm 3 / g) or more.
<4> The porous carbon according to any one of <1> to <3>, wherein the particle diameter of the primary particle of the porous carbon is 0.425 (mm) or less.
<5> The porous carbon according to any one of <1> to <4>, wherein the micropore volume of the porous carbon is 0.5 (cm 3 / g) or more.
<6> The porous carbon according to any one of <4> to <5>, wherein a particle diameter of primary particles of the porous carbon is 0.1 (mm) or less.
<7> The porous carbon according to any one of <1> to <6>, wherein the raw material of the porous carbon is a plant-derived material.
<8> The porous carbon according to <7>, wherein the plant-derived material is a grass-derived bamboo-derived material.
&Lt; 9 &gt; The porous carbon according to &lt; 8 &gt;, wherein the above-mentioned graminaceous bamboo species is a moso bamboo.
<10> An organic halogen compound removing apparatus comprising: the filter made of porous carbon according to any one of <1> to <9>.
<11> The organic halogen compound is removed at a removal rate of 90% or more when the organic halogen compound is removed at a flow magnification of 1,000 times with respect to water containing the organic halogen compound at a concentration of 0.06 mg / L The organic halogen compound removal apparatus as described in <10>.
<12> The organic halogen compound is removed at a removal rate of 65% or more when the organic halogen compound is removed at a flow magnification of 3,000 times the water containing the organic halogen compound at a concentration of 0.06 mg / L It is an organic halogen compound removal apparatus in any one of <10> to <11>.
When the organic halogen compound is removed at a liquid flow magnification of 6,000 times with respect to water containing <13> organic halogen compound at a concentration of 0.06 mg / L, the removal ratio of the organic halogen compound is 50% or more It is the organic halogen compound removal apparatus in any one of said <10> to <12>.
<14> The organic halogen compound removing apparatus according to any one of <11> to <13>, wherein the organic halogen compound is chloroform.

本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、有機ハロゲン化合物等の低分子量化合物の吸着性能に優れ、かつ通液倍率が大きい場合でも吸着性能の低下が生じにくい多孔質炭素を提供することができる。   According to the present invention, the above-mentioned various problems in the prior art can be solved and the above object can be achieved, and the adsorption performance of a low molecular weight compound such as an organic halogen compound is excellent and the adsorption performance is lowered even when the passing magnification is large. Can be provided.

(多孔質炭素)
本発明の多孔質炭素は、メソ孔容積が0.07(cm/g)以上で、細孔径0.4nm〜0.6nmの最大微分容積値が1.6以上である。
本発明者らは、上記特性を有する多孔質炭素が、有機ハロゲン化合物等の低分子量化合物の吸着性能に優れ、かつ通液倍率が大きい場合でも吸着性能の低下が生じにくいことを見出した。
本発明の多孔質炭素は、細孔(ポア)を多く有している。細孔は、メソ孔、マイクロ孔、マクロ孔に分類される。ここで、メソ孔は孔径が2nm〜50nmの細孔をいい、マイクロ孔は孔径が2nmよりも小さい細孔をいい、マクロ孔は孔径が50nmよりも大きい細孔をいう。
マクロ孔は、不純物を含む水や空気等の通り道となってメソ孔・マイクロ孔へ導き、吸着させる機能があるため、ある程度の容積があったほうがよい。しかし多過ぎると低分子量物質の吸着には不利となる。マイクロ孔は、低分子量物質の吸着には有効であるが、特に通液倍率が大きいときには、吸着性能が低下する傾向がある。一方、メソ孔容積が大きいと低分子量物質を効率良く吸着可能であり、かつ通液倍率がある程度大きくても吸着性能力が低下しにくい。さらに、細孔径0.4nm〜0.6nmの最大微分容積値が1.6以上であると、特に低分子量物質を効率良く吸着可能となる。そこで、上記特性を有する多孔質炭素は、有機ハロゲン化合物等の低分子量化合物の吸着性能に優れ、通液倍率が大きい場合でも吸着性能が低下せず、いずれの効果も満足することができる。
(Porous carbon)
The porous carbon of the present invention has a mesopore volume of 0.07 (cm 3 / g) or more and a maximum differential volume value of a pore diameter of 0.4 nm to 0.6 nm of 1.6 or more.
The inventors of the present invention have found that porous carbon having the above-mentioned characteristics is excellent in the adsorption performance of low molecular weight compounds such as organic halogen compounds, and the adsorption performance is hardly deteriorated even when the liquid flow magnification is large.
The porous carbon of the present invention has many pores. Pores are classified into mesopores, micropores and macropores. Here, the mesopores are pores having a pore diameter of 2 nm to 50 nm, the micropores are pores having a pore diameter smaller than 2 nm, and the macropores are pores having a pore diameter larger than 50 nm.
Since the macropores have a function of guiding them to mesopores / micropores and adsorbing them as a passage of water, air or the like containing impurities, it is preferable that there be a certain volume. However, if the amount is too large, it is disadvantageous for the adsorption of low molecular weight substances. Micropores are effective for the adsorption of low molecular weight substances, but the adsorption performance tends to be reduced particularly when the passing magnification is large. On the other hand, when the mesopore volume is large, low molecular weight substances can be efficiently adsorbed, and the adsorptive capacity is hardly reduced even if the flow magnification is large to some extent. Furthermore, when the maximum differential volume value with a pore diameter of 0.4 nm to 0.6 nm is 1.6 or more, in particular, low molecular weight substances can be efficiently adsorbed. Therefore, the porous carbon having the above-mentioned characteristics is excellent in the adsorption performance of a low molecular weight compound such as an organic halogen compound, and the adsorption performance does not decrease even when the liquid flow magnification is large, and any effect can be satisfied.

<本発明の多孔質炭素の特性>
さらに良好な吸着性能を確保するため、前記多孔質炭素は以下の特性を有することが好ましい。
前記多孔質炭素における窒素BET法による比表面積は、10(m/g)以上であることが好ましい。
前記多孔質炭素における全細孔容積は、0.5(cm/g)以上であることが好ましい。
前記多孔質炭素の一次粒子の粒子径は、0.425(mm)以下であることが好ましく、0.1(mm)以下であることがより好ましい。細孔と不純物を含む水や空気等とが接触しやすくするためには、一次粒子の粒子径が0.425(mm)以下であることが望ましい。尚、前記多孔質炭素の一次粒子は、二次凝集されていてもよく、さらに性能を低下させない程度であれば、前記多孔質炭素は顆粒状やチップ状に成型されていてもよい。
さらにマイクロ孔容積が大きいほうが本発明の目的とする低分子物質の吸着には有効であることから、前記多孔質炭素のマイクロ孔容積は、0.5(cm/g)以上であることが好ましい。
<Characteristics of porous carbon of the present invention>
In order to further ensure good adsorption performance, the porous carbon preferably has the following characteristics.
The specific surface area of the porous carbon according to the nitrogen BET method is preferably 10 (m 2 / g) or more.
The total pore volume of the porous carbon is preferably 0.5 (cm 3 / g) or more.
The particle diameter of the primary particles of porous carbon is preferably 0.425 (mm) or less, and more preferably 0.1 (mm) or less. In order to facilitate contact between pores and water containing impurities, air, or the like, it is desirable that the particle size of the primary particles be 0.425 (mm) or less. In addition, the primary particles of the porous carbon may be secondary-agglomerated, and the porous carbon may be formed into a granular or chip shape as long as the performance is not reduced.
Furthermore, since the larger the micropore volume is effective for the adsorption of the low molecular weight substance targeted by the present invention, the micropore volume of the porous carbon should be 0.5 (cm 3 / g) or more. preferable.

<特性の測定方法>
前記多孔質炭素の特性は、例えば、以下の装置を使用して測定することができる。
マイクロメリテックスジャパン合同会社製の3FLEXを使用して、窒素吸着等温線を測定し、比表面積はBET法で、全細孔容積は一点吸着法で、メソ孔容積はBJH法で、マイクロ孔容積はHK法で、マイクロ孔領域の細孔分布はDFT法で、それぞれ算出することができる。またDFT法によりマイクロ孔領域の細孔分布を求め、細孔径0.4nm〜0.6nmの最大微分容積値を算出することができる。
[具体的な測定方法]
炭化処理及び賦活処理をした多孔質炭素を30mg用意し、相対圧(P/P0)0.0000001から0.995の範囲を測定する条件に設定した3FLEXを使用して、比表面積、全細孔容積、メソ孔容積、マイクロ孔容積、マイクロ孔領域の細孔分布を測定することができる。
また、前記多孔質炭素の一次粒子の粒子径は、レーザ回折/散乱式粒子径分布測定装置LA−950(HORIBA社製)を使用することにより求めることができる。LA−950を用いて、湿式法により粒子径0.01μm〜3,000μmの範囲で粒子径分布を測定する。前記多孔質炭素の一次粒子の粒子径とは、横軸を粒子径、縦軸を個数頻度でプロットした粒子径分布において、分布の中央値に対応した粒子径(メジアン径)をいう。
<Method of measuring characteristic>
The properties of the porous carbon can be measured, for example, using the following apparatus.
The nitrogen adsorption isotherm was measured using 3 FLEX made by Micromeritex Japan Ltd., the specific surface area is BET method, the total pore volume is one point adsorption method, and the mesopore volume is BJH method, the micropore volume Is the HK method, and the pore distribution in the micropore region can be calculated by the DFT method. In addition, the pore distribution in the micropore region can be determined by the DFT method, and the maximum differential volume value with a pore diameter of 0.4 nm to 0.6 nm can be calculated.
[Specific measurement method]
Specific surface area, total pores are prepared by preparing 30 mg of porous carbon subjected to carbonization treatment and activation treatment, and using 3 FLEX set as the condition to measure the range of relative pressure (P / P0) 0.0000001 to 0.995 Volume, mesopore volume, micropore volume, pore distribution in the micropore region can be measured.
The particle diameter of the primary particles of porous carbon can be determined by using a laser diffraction / scattering particle size distribution measuring apparatus LA-950 (manufactured by HORIBA). Using LA-950, the particle size distribution is measured in the range of 0.01 μm to 3,000 μm by a wet method. The particle diameter of the primary particles of porous carbon refers to the particle diameter (median diameter) corresponding to the median value of the distribution in the particle diameter distribution in which the horizontal axis represents particle diameter and the vertical axis represents number frequency.

<多孔質炭素の材料>
前記多孔質炭素の原材料は、植物由来の材料であることが好ましい。植物由来であると、メソ孔やマイクロ孔の容積値を上記所望の値に調整することが容易となる。また、環境負荷が少ない点でも、植物由来とする利点がある。
前記植物由来の材料としては、特に制限はなく、目的に応じて適宜選択することができるが、イネ科タケ類由来の材料であることがより好ましい。
前記イネ科タケ類としては、具体的に、マダケ属(モウソウチク)、オカメザサ属、シホウチク属、ナリヒラダケ属(リクチュウダケ、ナリヒラダケ、クマナリヒラ、メダラナリヒラ、ヒメヤシャダケ、ビゼンナリヒラ、ケナシナリヒラ、ヤシャダケ、ニッコウナリヒラ、アオナリヒラ)、トウチク属(トウチク)、ヤダケ属(ヤクシマダケ、ヤダケ、メンヤダケ、ラッキョウヤダケ)、アズマザサ属(レイコシノ、ジョウボウザサ、ゲンケイチク、ナンブシノ、マエザワザサ、スエコザサ)、クマザサ属(キタミコザサ、ミヤマスズ、ゲイビクマザサ、ロッコウミヤマザサ、ヤマトザサ、ヨナイザサ、クザカイザサ、キンタイザサ、シャコタンチク、フシブトザサ、タナハシザサ、ヤリクマソザサ、ゴテンバザサ、ハツロウザサ、オオシダザサ、ヒメカミザサ、ナンブスズ、フシゲヒメカミザサ、カンサイザサ、ミヤマクマザサ、タンザワザサ、アリマコスズイヌスズ、スズダケ、クマスズハンゲスズ、ケスズ、キンタイチシマ、ネマガリダケ)、カンチク属、メダケ属(リュウキュチク、カンザンチク、タイミンチク、メダケハガワリメダケ、スダレヨシゴキダケ、ボウシュウネザサ、アズマネザサ、ジョウホウジダケ、オロシマチク、ケネザサ)、バンブーサー属(ソルニー・バンブー)、シチク属、ホウライチク属(ホウライチク、シュチク、ダウサンチク)などが挙げられる。
中でも、前記イネ科タケ類がマダケ属のモウソウチク(孟宗竹)であるとより好ましい。
モウソウチクを原材料に使用した多孔質炭素は、特にメソ孔の調整が容易である。
<Material of porous carbon>
The raw material of the porous carbon is preferably a plant-derived material. It becomes easy to adjust the volume value of a mesopore or a micropore to the said desired value as it is derived from a plant. In addition, there is an advantage of being derived from plants also in terms of low environmental impact.
There is no restriction | limiting in particular as a plant-derived material, Although it can select suitably according to the objective, It is more preferable that it is a grass-derived bamboo-derived material.
Specific examples of the above-mentioned grasses include, but are not limited to, Madagassus spp., Scutellaria spp., Scutellaria spp., Scutellaria spp., Scutellaria spp. Picea (Naochiku), Phylum spp. (Yakushimadake, Yadake, Menyadake, Rakkouiyadake), Azamazaca (Reikosino, Jawbosasa, Genkeichik, Nanbushino, Maezawasasa, Sekozasa), Origami spp. , Yonizasa, Kuzakasa, Kintaizasa, Shikotanchiku, Shibusutazasa, Tanashihashisa, Yarikuma sozasa, Gotenbazasa, Hasulowasa, Ooida Sa, Himachamisa, Nambuszu, Shishigehimechamashasa, Kanseizasa, Miyamakumazasa, Tanzawamasa, Arimakoss canus tinea, Sidake, Beard sturgeon, Kessian, Quercus aegyptus, Nemalia pickles), Genus Genus, Genus Medaka (Ryukuchik, Kanzanchik, Minoch) Killifish medaka, sudareyoshidokadake, bouganezusa, asumanaezasa, houhoushidake, hiroshimachik, kenezasa), Bambusa sp. (Solny bumbu), Sichiku spp., Horaiichik sp. .
Among the above, it is more preferable that the above-mentioned gramineous species is a mallow salmon (Moso bamboo).
The porous carbon using moso bamboo for a raw material is particularly easy to adjust mesopores.

<多孔質炭素の製造方法>
本発明の多孔質炭素は、炭化処理や賦活処理を経ることにより製造される。
炭化処理は、中温(300℃から1000℃)且つ無酸素状態で蒸焼き(乾留)にすることをいい、賦活処理は、炭素材料の細孔構造を発達させ、細孔を付加することをいう。賦活処理は、水蒸気や二酸化炭素等を用いて炭化物を高温(800℃から1,400℃)で一定時間乾留することにより、単位質量あたりの表面積を大きくする。
上記炭化処理条件や上記賦活処理条件を適宜調整することにより、所望のメソ孔容積及び細孔径0.4nm〜0.6nmの最大微分容積値を示す多孔質炭素を得ることができる。
材料が、例えばイネ科タケ類由来の材料である場合、炭化処理に供する竹の粉末の粒径を調整することも、所望の多孔質炭素を得るうえで有効な手段となる。具体的には、粒径が5μmから30mm、より好ましくは5μmから5mmの竹の微粉末に対し、炭化処理を施すのが好ましい。また、その際の炭化処理及び賦活処理の条件としては、具体的には、400℃から1000℃の炭化温度で1時間から10時間、炭化処理を行うことが好ましい。また、800℃から1000℃の賦活温度で0.5時間から10時間、より好ましくは0.5時間から5時間、さらに好ましくは0.5時間から2時間、水蒸気のよる賦活処理を行うことが好ましい。
<Method of producing porous carbon>
The porous carbon of the present invention is produced through carbonization treatment or activation treatment.
The carbonization treatment refers to steaming (distillation) in a medium temperature (300 ° C. to 1000 ° C.) and oxygen-free state, and the activation treatment refers to developing a pore structure of the carbon material and adding pores. . In the activation treatment, the surface area per unit mass is increased by dry-distilling the carbide at a high temperature (800 ° C. to 1,400 ° C.) for a certain time using steam, carbon dioxide or the like.
By appropriately adjusting the carbonization treatment conditions and the activation treatment conditions, porous carbon exhibiting a desired mesopore volume and a maximum differential volume value of a pore diameter of 0.4 nm to 0.6 nm can be obtained.
When the material is, for example, a material derived from grasses, adjusting the particle size of bamboo powder to be subjected to the carbonization treatment is also an effective means for obtaining desired porous carbon. Specifically, it is preferable to carbonize the fine powder of bamboo having a particle size of 5 μm to 30 mm, more preferably 5 μm to 5 mm. Further, as the conditions of the carbonization treatment and the activation treatment at that time, specifically, it is preferable to carry out the carbonization treatment at a carbonization temperature of 400 ° C. to 1000 ° C. for 1 hour to 10 hours. In addition, activation treatment with steam may be performed at an activation temperature of 800 ° C. to 1000 ° C. for 0.5 hours to 10 hours, more preferably 0.5 hours to 5 hours, still more preferably 0.5 hours to 2 hours. preferable.

(有機ハロゲン化合物除去装置)
本発明の有機ハロゲン化合物除去装置は、前記多孔質炭素からなるフィルターを有する。
本発明の有機ハロゲン化合物除去方法は、前記有機ハロゲン化合物除去装置用いて有機ハロゲン化合物を前記多孔質炭素に吸着させて除去する方法である。
より具体的には、水浄化用フィルターとして前記多孔質炭素材料を用い、フィルター中に有機ハロゲン化合物の不純物を含む水を通液することにより、有機ハロゲン化合物を除去する。
この際、フィルター内に充填する前記多孔質炭素材料の充填密度としては、0.2g/cm以上であることが好ましい。
本発明の有機ハロゲン化合物除去装置によれば、有機ハロゲン化合物の効果的な除去が可能となるため、通液倍率が大きい場合でも高い吸着性能を維持することができる。本発明の有機ハロゲン化合物除去装置を用いると、通液倍率が1,000倍、より好ましくは通液倍率が3,000倍、さらに好ましくは通液倍率が6,000倍の条件下でも有機ハロゲン化合物を高い除去率で除去することができる。
具体的には、本発明の有機ハロゲン化合物除去装置を用いて、有機ハロゲン化合物を濃度0.06mg/Lで含有する水に対し、通液倍率1,000倍の条件で有機ハロゲン化合物を除去すると、除去率は90%以上を示す。通液倍率3,000倍の条件では、除去率は65%以上、より好ましくは70%以上を示す。また、通液倍率6,000倍の条件では、除去率は50%以上、より好ましくは65%以上を示す。
本発明では、除去し得る対象の化合物として、前記有機ハロゲン化合物がクロロホルムであることがより好ましい。本発明の有機ハロゲン化合物除去装置は、クロロホルムの除去効果に優れている。
(Organic halogen compound removal device)
The organic halogen compound removal apparatus of the present invention has a filter made of the porous carbon.
The organic halogen compound removal method of the present invention is a method of adsorbing the organic halogen compound on the porous carbon and removing it using the organic halogen compound removal apparatus.
More specifically, an organic halogen compound is removed by using the porous carbon material as a water purification filter and passing water containing an impurity of the organic halogen compound in the filter.
At this time, the packing density of the porous carbon material packed in the filter is preferably 0.2 g / cm 3 or more.
According to the organic halogen compound removal apparatus of the present invention, since the organic halogen compound can be effectively removed, high adsorption performance can be maintained even when the passing magnification is large. When the apparatus for removing an organic halogen compound according to the present invention is used, the flow ratio is 1,000 times, more preferably 3,000 times, still more preferably organic halogen under conditions of a flow ratio of 6,000 times. The compounds can be removed at a high removal rate.
Specifically, when the organic halogen compound removing apparatus of the present invention is used to remove the organic halogen compound under the condition of 1,000 times the flow ratio of water to the water containing the organic halogen compound at a concentration of 0.06 mg / L. The removal rate is 90% or more. Under the condition of 3,000-fold flow rate, the removal rate is 65% or more, more preferably 70% or more. In addition, the removal rate is 50% or more, more preferably 65% or more, under the condition of a flow-through ratio of 6,000 times.
In the present invention, as the compound to be removed, the organic halogen compound is more preferably chloroform. The organic halogen compound removal apparatus of the present invention is excellent in the removal effect of chloroform.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(実施例1)
原材料として籾殻を用いた。炭素化した籾殻(エコー商会製)に対し、酸又はアルカリ処理し、その後、960℃で1時間、水蒸気による賦活処理を行ない活性炭1を得た。
活性炭1の製造条件を下記表1に示す。また、3FLEX(マイクロメリテックスジャパン合同会社製)の装置を使用し、上述した測定方法により、活性炭1の各種特性を計測した。その結果を下記表2−1に示す。
<クロロホルム除去試験>
試料水は、クロロホルムを0.06±0.006mg/Lの濃度に調製した。そして、内径4mmのチューブに活性炭1を1mL(長さ80mm)充填した。試料水を温度20℃で、通液倍率1,000倍の条件で活性炭充填カラムに通水した。活性炭充填カラムから流出した試料水を採取し、クロロホルム濃度をガスクロマトグラフィーを用いて定量測定した。カラム通過前の試料水とカラムの活性炭層を通過した試料水を比較し、除去率を求めた。
ここで、通液倍率(倍)とは、一定時間において、活性炭の体積に対し通過した試料水の体積の割合をいう。通液倍率1,000倍時のクロロホルム除去率とは、空間速度SV=2,000(単位:1/h)で、クロロホルム水溶液を通液倍率(通液体積/活性炭体積)1,000倍で通過させた時、つまり、活性炭1mLに対し、クロロホルム水溶液を1,000mL流した時の除去率をいう。
さらに、通液倍率1,000倍と同様の方法で、通液倍率3,000倍、及び6,000倍における除去率も求めた。結果を下記表2に示す。
Example 1
Rice husk was used as a raw material. The carbonized rice husk (manufactured by Echo Shokai Co., Ltd.) was treated with acid or alkali, then activated by steam at 960 ° C. for 1 hour to obtain activated carbon 1.
The production conditions of activated carbon 1 are shown in Table 1 below. Moreover, the various characteristics of the activated carbon 1 were measured by the measurement method mentioned above using the apparatus of 3FLEX (made by Micromeritec Japan Ltd.). The results are shown in Table 2-1 below.
<Chloroform removal test>
As sample water, chloroform was prepared to a concentration of 0.06 ± 0.006 mg / L. Then, 1 mL (length 80 mm) of activated carbon 1 was filled in a tube with an inner diameter of 4 mm. The sample water was passed through an activated carbon-packed column at a temperature of 20 ° C. and a flow magnification of 1,000 times. The sample water which flowed out from the activated carbon packed column was collected, and chloroform concentration was quantitatively measured using gas chromatography. The removal rate was determined by comparing the sample water before passing through the column and the sample water passing through the activated carbon layer of the column.
Here, the flow-through magnification (fold) refers to the ratio of the volume of sample water that has passed to the volume of activated carbon in a fixed time. Chloroform removal rate at 1,000 times of liquid flow magnification is space velocity SV = 2,000 (unit: 1 / h), and the chloroform aqueous solution is 1,000 times of liquid flow magnification (flow volume / activated carbon volume) When passing through, that is, 1 mL of activated carbon, the removal rate when 1,000 mL of chloroform aqueous solution is flowed is said.
Furthermore, the removal rates at 3,000 and 6,000-fold flow rates were also determined in the same manner as for 1,000-fold flow rates. The results are shown in Table 2 below.

(実施例2)
原材料として中国産の竹を用いた。炭素化した竹のチップ(有限会社綜合製)に対し、900℃で1時間、水蒸気による賦活処理を行ない活性炭2を得た。
活性炭2の製造条件を下記表1に示す。実施例1と同様の方法により、活性炭2の各種特性を計測した。また、クロロホルムの除去率を求めた。結果を下記表2−1に示す。
(Example 2)
We used Chinese bamboo as a raw material. Activated carbon 2 was obtained by activation treatment with steam for 1 hour at 900 ° C. with respect to the carbonized bamboo chip (manufactured by Happiness Co., Ltd.).
The production conditions of the activated carbon 2 are shown in Table 1 below. Various properties of the activated carbon 2 were measured in the same manner as in Example 1. In addition, the removal rate of chloroform was determined. The results are shown in Table 2-1 below.

(実施例3)
原材料として九州産の孟宗竹を用いた。竹の微粉末(粒径(公称):5μm〜500μm、バンブーテクノ社製)に対し、600℃で6時間炭化処理を行ない、その後、900℃で3時間、水蒸気による賦活処理を行ない活性炭3を得た。
活性炭3の製造条件を下記表1に示す。実施例1と同様の方法により、活性炭3の各種特性を計測した。また、クロロホルムの除去率を求めた。結果を下記表2−1に示す。
(Example 3)
As a raw material, we used a bamboo sown bamboo from Kyushu. Carbonized with a fine powder of bamboo (particle size (nominal): 5 μm to 500 μm, manufactured by Bamboo Techno Co., Ltd.) for 6 hours at 600 ° C., and then activated with steam for 3 hours at 900 ° C. Obtained.
The production conditions of the activated carbon 3 are shown in Table 1 below. Various properties of the activated carbon 3 were measured in the same manner as in Example 1. In addition, the removal rate of chloroform was determined. The results are shown in Table 2-1 below.

(実施例4)
原材料として九州産の孟宗竹を用いた。竹の粉末(粒径(公称):0.1mm〜0.4mm、バンブーテクノ社製)に対し、600℃で6時間炭化処理を行ない、その後、900℃で3時間、水蒸気による賦活処理を行ない活性炭4を得た。
活性炭4の製造条件を下記表1に示す。実施例1と同様の方法により、活性炭4の各種特性を計測した。また、クロロホルムの除去率を求めた。結果を下記表2−1に示す。
(Example 4)
As a raw material, we used a bamboo sown bamboo from Kyushu. Bamboo powder (particle size (nominal): 0.1 mm to 0.4 mm, made by Bamboo Techno Co., Ltd.) is carbonized at 600 ° C. for 6 hours, then activated by steam at 900 ° C. for 3 hours Activated carbon 4 was obtained.
The production conditions of the activated carbon 4 are shown in Table 1 below. Various characteristics of the activated carbon 4 were measured by the same method as in Example 1. In addition, the removal rate of chloroform was determined. The results are shown in Table 2-1 below.

(実施例5)
原材料として九州産の孟宗竹を用いた。竹の粉末(粒径(公称):0.1mm〜0.4mm、バンブーテクノ社製)に対し、600℃で6時間炭化処理を行ない、その後、900℃で1時間、水蒸気による賦活処理を行ない活性炭5を得た。
活性炭5の製造条件を下記表1に示す。実施例1と同様の方法により、活性炭5の各種特性を計測した。また、クロロホルムの除去率を求めた。結果を下記表2−2に示す。
(Example 5)
As a raw material, we used a bamboo sown bamboo from Kyushu. Bamboo powder (particle size (nominal): 0.1 mm to 0.4 mm, made by Bamboo Techno Co., Ltd.) is carbonized at 600 ° C. for 6 hours, and then activated by steam at 900 ° C. for 1 hour Activated carbon 5 was obtained.
The production conditions of the activated carbon 5 are shown in Table 1 below. Various properties of the activated carbon 5 were measured by the same method as in Example 1. In addition, the removal rate of chloroform was determined. The results are shown in Table 2-2 below.

(実施例6)
原材料として九州産の孟宗竹を用いた。竹の微粉末(粒径(公称):5μm〜500μm、バンブーテクノ社製)に対し、600℃で6時間炭化処理を行ない、その後、900℃で1時間、水蒸気による賦活処理を行ない活性炭6を得た。
活性炭6の製造条件を下記表1に示す。実施例1と同様の方法により、活性炭6の各種特性を計測した。また、クロロホルムの除去率を求めた。結果を下記表2−2に示す。
(Example 6)
As a raw material, we used a bamboo sown bamboo from Kyushu. Carbonized with a fine powder of bamboo (particle size (nominal): 5 μm to 500 μm, manufactured by Bamboo Techno Co., Ltd.) for 6 hours at 600 ° C., then activated with steam for 1 hour at 900 ° C. Obtained.
The production conditions of the activated carbon 6 are shown in Table 1 below. Various properties of the activated carbon 6 were measured in the same manner as in Example 1. In addition, the removal rate of chloroform was determined. The results are shown in Table 2-2 below.

(比較例1)
原材料としてヤシ殻を用いた。ヤシ殻の比較用活性炭1(CN240G、フタムラ化学社製)を用い、実施例1と同様の方法により、比較用活性炭1の各種特性を計測した。また、クロロホルムの除去率を求めた。結果を下記表2−2に示す。
(Comparative example 1)
The coconut shell was used as a raw material. Various properties of the comparative activated carbon 1 were measured in the same manner as in Example 1 using the coconut shell comparative activated carbon 1 (CN240G, manufactured by Futamura Chemical Co., Ltd.). In addition, the removal rate of chloroform was determined. The results are shown in Table 2-2 below.

(比較例2)
原材料としてヤシ殻を用いた。ヤシ殻の比較用活性炭2(クラレコールGW、クラレケミカル株式会社製)を用い、実施例1と同様の方法により、比較用活性炭2の各種特性を計測した。また、クロロホルムの除去率を求めた。結果を下記表2−2に示す。
(Comparative example 2)
The coconut shell was used as a raw material. Various properties of the comparative activated carbon 2 were measured in the same manner as in Example 1 using the coconut shell comparative activated carbon 2 (Kurale coal GW, manufactured by Kuraray Chemical Co., Ltd.). In addition, the removal rate of chloroform was determined. The results are shown in Table 2-2 below.

Figure 0006426583
Figure 0006426583

Figure 0006426583
Figure 0006426583

Figure 0006426583
Figure 0006426583

本発明の多孔質炭素は、その高い吸着性能ゆえ、キャパシタの電極材料、各種吸着剤、マスク、吸着シート、触媒用の担体等に使用することができる。   The porous carbon of the present invention can be used for electrode materials of capacitors, various adsorbents, masks, adsorption sheets, supports for catalysts, etc., because of its high adsorption performance.

Claims (12)

メソ孔容積が0.07(cm/g)以上で、細孔径0.4nm〜0.6nmの最大微分容積値が1.6以上であり、且つ、一次粒子の粒子径が0.425(mm)以下であることを特徴とする多孔質炭素。 The mesopore volume is 0.07 (cm 3 / g) or more, the maximum differential volume value of the pore diameter of 0.4 nm to 0.6 nm is 1.6 or more, and the particle diameter of the primary particles is 0.425 ( mm) or less, characterized in that it is porous carbon. 前記多孔質炭素の窒素BET法による比表面積が10(m/g)以上である請求項1に記載の多孔質炭素。 The porous carbon according to claim 1, wherein the specific surface area of the porous carbon according to the nitrogen BET method is 10 (m 2 / g) or more. 前記多孔質炭素の全細孔容積が0.5(cm/g)以上である請求項1から2のいずれかに記載の多孔質炭素。 The porous carbon according to any one of claims 1 to 2, wherein a total pore volume of the porous carbon is 0.5 (cm 3 / g) or more. 前記多孔質炭素のマイクロ孔容積が0.5(cm/g)以上である請求項1から3のいずれかに記載の多孔質炭素。 The porous carbon according to any one of claims 1 to 3, wherein a micropore volume of the porous carbon is 0.5 (cm 3 / g) or more. 前記多孔質炭素の一次粒子の粒子径が0.1(mm)以下である請求項1から4のいずれかに記載の多孔質炭素。   The porous carbon according to any one of claims 1 to 4, wherein the particle diameter of the primary particles of the porous carbon is 0.1 (mm) or less. 前記多孔質炭素の原材料が植物由来の材料からなる請求項1から5のいずれかに記載の多孔質炭素。   The porous carbon according to any one of claims 1 to 5, wherein the porous carbon raw material comprises a plant-derived material. 前記植物由来の材料がイネ科タケ類由来の材料である請求項6に記載の多孔質炭素。   The porous carbon according to claim 6, wherein the plant-derived material is a grass-derived material. 請求項1から7のいずれかに記載の多孔質炭素からなるフィルターを有することを特徴とする、有機ハロゲン化合物除去装置。An organic halogen compound removing apparatus comprising the filter of porous carbon according to any one of claims 1 to 7. 有機ハロゲン化合物が濃度0.06mg/Lで含有された水に対し、通液倍率1,000倍で有機ハロゲン化合物を除去した場合、有機ハロゲン化合物の除去率が90%以上である請求項8に記載の有機ハロゲン化合物除去装置。The removal rate of the organic halogen compound is 90% or more when the organic halogen compound is removed at a flow magnification of 1,000 times with respect to the water containing the organic halogen compound at a concentration of 0.06 mg / L. The organic halogen compound removal apparatus as described. 有機ハロゲン化合物が濃度0.06mg/Lで含有された水に対し、通液倍率3,000倍での有機ハロゲン化合物を除去した場合、有機ハロゲン化合物の除去率が65%以上である請求項8から9のいずれかに記載の有機ハロゲン化合物除去装置。The removal rate of the organic halogen compound is 65% or more when the organic halogen compound is removed at a flow magnification of 3,000 times with respect to the water containing the organic halogen compound at a concentration of 0.06 mg / L. The organic halogen compound removal apparatus in any one of to 9. 有機ハロゲン化合物が濃度0.06mg/Lで含有された水に対し、通液倍率6,000倍での有機ハロゲン化合物を除去した場合、有機ハロゲン化合物の除去率が50%以上である請求項8から10のいずれかに記載の有機ハロゲン化合物除去装置。The removal rate of the organic halogen compound is 50% or more when the organic halogen compound is removed at a flow magnification of 6,000 times with respect to the water containing the organic halogen compound at a concentration of 0.06 mg / L. The organic halogen compound removal apparatus as described in any one of to 10. 前記有機ハロゲン化合物がクロロホルムである請求項9から11のいずれかに記載の有機ハロゲン化合物除去装置。The organic halogen compound removal apparatus according to any one of claims 9 to 11, wherein the organic halogen compound is chloroform.
JP2015213673A 2015-10-30 2015-10-30 Porous carbon and organic halogen compound removing apparatus using the same Active JP6426583B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015213673A JP6426583B2 (en) 2015-10-30 2015-10-30 Porous carbon and organic halogen compound removing apparatus using the same
KR1020187012313A KR102622510B1 (en) 2015-10-30 2016-10-26 Porous carbon and organic halogen compound removal device using the same
CN201680063260.0A CN108348890B (en) 2015-10-30 2016-10-26 Porous carbon and organic halide removal device using same
PCT/JP2016/081778 WO2017073631A1 (en) 2015-10-30 2016-10-26 Porous carbon and organic halogen compound removal device using same
TW105135064A TW201728533A (en) 2015-10-30 2016-10-28 Porous carbon and organic halogen compound removing device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015213673A JP6426583B2 (en) 2015-10-30 2015-10-30 Porous carbon and organic halogen compound removing apparatus using the same

Publications (3)

Publication Number Publication Date
JP2017081799A JP2017081799A (en) 2017-05-18
JP2017081799A5 JP2017081799A5 (en) 2018-08-30
JP6426583B2 true JP6426583B2 (en) 2018-11-21

Family

ID=58630414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015213673A Active JP6426583B2 (en) 2015-10-30 2015-10-30 Porous carbon and organic halogen compound removing apparatus using the same

Country Status (5)

Country Link
JP (1) JP6426583B2 (en)
KR (1) KR102622510B1 (en)
CN (1) CN108348890B (en)
TW (1) TW201728533A (en)
WO (1) WO2017073631A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI746325B (en) * 2020-12-23 2021-11-11 國立中正大學 Bamboo charcoal filter air purifier

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2950666B2 (en) 1991-11-15 1999-09-20 クラレケミカル株式会社 Activated carbon water purifier
JP2683225B2 (en) * 1994-05-26 1997-11-26 東曹産業株式会社 Method for producing activated carbon and method for using the activated carbon for water treatment
JPH11140492A (en) * 1997-11-11 1999-05-25 Ishihara Kk Charcoal from bamboo
JPH11217207A (en) * 1998-01-30 1999-08-10 Kurimoto Ltd Production of active carbon from unsaturated polyester resin waste material
JP3693544B2 (en) 2000-01-31 2005-09-07 松下電器産業株式会社 Activated carbon and water purifier provided with the same
JP2007261918A (en) * 2006-03-30 2007-10-11 Shiga Pref Gov Method for manufacture bamboo activated carbon
TWI367125B (en) * 2008-01-24 2012-07-01 Forestry Bureau Council Of Agriculture Executive Yuan Heavy metal adsorbent and fabrication method thereof
JP6218355B2 (en) * 2011-02-10 2017-10-25 ソニー株式会社 Filter media
JP2013112572A (en) * 2011-11-29 2013-06-10 Nagaoka Univ Of Technology Hydrogen occlusion method, and hydrogen occluding material
CN103693642B (en) * 2013-12-23 2016-01-06 湖南华银能源技术有限公司 Prepare method and the production equipment thereof of bamboo matrix activated carbon

Also Published As

Publication number Publication date
WO2017073631A1 (en) 2017-05-04
CN108348890B (en) 2021-06-29
CN108348890A (en) 2018-07-31
JP2017081799A (en) 2017-05-18
TW201728533A (en) 2017-08-16
KR20180069833A (en) 2018-06-25
KR102622510B1 (en) 2024-01-08

Similar Documents

Publication Publication Date Title
Torrellas et al. Chemical-activated carbons from peach stones for the adsorption of emerging contaminants in aqueous solutions
JP5602435B2 (en) Adsorbents based on activated carbon with meso and macroporosity
CN106040174B (en) Adsorbent for adsorbing viruses and/or bacteria, carbon/polymer composite, and adsorption plate
Nabais et al. Mercury removal from aqueous solution and flue gas by adsorption on activated carbon fibres
JP6290900B2 (en) Activated carbon for water purifier
JP6379325B1 (en) Activated carbon and manufacturing method thereof
JP6902536B2 (en) Activated carbon, and adsorption filters and water purifiers using it
JP5482133B2 (en) Activated carbon fiber
JP2009517314A (en) Method for producing nanoporous carbide-derived carbon having a high specific surface area
JP2014176821A (en) Adsorbent
Bazan et al. Removal of NO 2 by carbonaceous adsorbents obtained from residue after supercritical extraction of marigold
Hamad et al. Irreversible membrane fouling abatement through pre-deposited layer of hierarchical porous carbons
JP6426583B2 (en) Porous carbon and organic halogen compound removing apparatus using the same
JP5863532B2 (en) Activated carbon and manufacturing method thereof
JP2021079376A (en) Activated carbon adsorbing per- and polyfluoroalkyl compounds in water sample
JP7478781B2 (en) Activated carbon for adsorption of per- and polyfluoroalkyl compounds in water samples
JP2950666B2 (en) Activated carbon water purifier
Hafshejani et al. Adsorption of acetone from polluted air by activated carbon derived from low cost materials
JP7300124B2 (en) Activated carbon for removing trihalomethane and method for producing the same
Masdiana et al. Characteristics of PrekotAC as Formulated Filter Aids and Its Performance to Adsorb Volatile Organic Compound
Jin et al. Sorption properties of ordered mesoporous silica for toluene and ethyl acetate
Srivastava Removal of Volatile Organic Compounds (VOCs) from Air and Water using Carbon Nanomaterials
Khambali et al. Decreased Levels of Carbon Monoxide through Recovery Tools on Sanitation Indoor Air
JP2010193718A (en) Activated carbon for cigarette filter and cigarette with filter
Kumar et al. Phenol adsorption onto high surface area activated carbon prepared from agriculture waste Fox nutshell by chemical activation with H3PO4: batch and fixed bed studies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180719

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180719

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181025

R150 Certificate of patent or registration of utility model

Ref document number: 6426583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250