JP3693544B2 - Activated carbon and water purifier provided with the same - Google Patents

Activated carbon and water purifier provided with the same Download PDF

Info

Publication number
JP3693544B2
JP3693544B2 JP2000021662A JP2000021662A JP3693544B2 JP 3693544 B2 JP3693544 B2 JP 3693544B2 JP 2000021662 A JP2000021662 A JP 2000021662A JP 2000021662 A JP2000021662 A JP 2000021662A JP 3693544 B2 JP3693544 B2 JP 3693544B2
Authority
JP
Japan
Prior art keywords
activated carbon
particle size
size distribution
water
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000021662A
Other languages
Japanese (ja)
Other versions
JP2001205253A (en
Inventor
琢磨 佐藤
和也 小早川
裕二 平石
直人 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000021662A priority Critical patent/JP3693544B2/en
Publication of JP2001205253A publication Critical patent/JP2001205253A/en
Application granted granted Critical
Publication of JP3693544B2 publication Critical patent/JP3693544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、浄水処理において、水中の有害成分である有機塩素系化合物、特にトリハロメタン類等の吸着特性に優れ、さらに濁度除去性能にも優れた活性炭およびそれを備えた浄水器に関するものである。
【0002】
【従来の技術】
飲料用に供される水道水は、殺菌を目的に添加される残留塩素を一定濃度以上含有することが必要で、健康・公衆衛生の観点から水道法等によって運用方法等が規定されている。しかし、殺菌を目的に添加される塩素は、殺菌作用の他に、無機物の酸化作用や有機物の酸化分解作用も持っており、水道水の原水に含まれる天然有機物の一種であるフミン質等が酸化分解され、発ガン性物質であるトリハロメタン類を生成してしまう。一方、水道水等に利用される原水の水質は、汚染の拡大により近年劣化傾向にあり、これに伴い原水中に含まれるフミン質等も増加してきているので、フミン質等の酸化分解により発生するトリハロメタン類の濃度も増加傾向にある。
【0003】
このため、トリハロメタン類の除去手段として、吸着作用を有する活性炭による浄化処理が種々検討されている。一般に、従来の水処理用活性炭は、除去対象物の単位容量当りの吸着容量を高めるために、ヨウ素吸着性能、メチレンブルー吸着性能等の特性が良い表面積が大きい活性炭が使用されてきたが、トリハロメタン類の吸着除去には表面積以外にも10Å以下の細孔直径の孔部を多く有する活性炭が種々検討されている。
【0004】
さらに活性炭の粒度を小さくすることによって、かさ比重を大きくし、浄水カートリッジ等に充填する効率を高め、接触効率の良い活性炭も検討されている。例えば、特開平9−110409号公報には、有機塩素系化合物を除去するため、フェノール樹脂を基材とした活性炭を用い、そのなかでも特に細孔直径100Å以下の細孔容積に占める細孔直径6〜8Åの占める割合が65vol%以上である活性炭が開示されている。
【0005】
これらはトリハロメタン類の静的吸着力である平衡吸着量は大きく、その吸着容量は活性炭1g当たり3mg以上であった。また、水処理用の活性炭は、親水性も高いことが望ましく、ガス賦活として水蒸気賦活されるものが圧倒的に多いが、ほかに、水酸化アルカリで賦活処理して得られる薬品賦活活性炭も用いられる。活性炭の形状は多様で、粉末状、破砕状、球状、粒状、繊維状のほかに、成形された円筒状や円盤状、顆粒状、球状のものなどが製造され使用されている。
【0006】
【発明が解決しようとする課題】
しかしながら上記従来の活性炭は、原水を通水するとトリハロメタンが吸着される吸着帯が形成されるが、10Å以下の細孔直径の孔が少なく、トリハロメタン除去には吸着性能が十分でないという課題があった。
【0007】
そこで、活性炭の粒径を小さくすると、充填効率が上がり、水と活性炭の接触効率が高まってトリハロメタンの通水吸着性能が高まるはずであるが、活性炭間の隙間が小さいため、濁度成分による急激な目詰まりが生じ、濁度寿命が短くなるという課題があった。
【0008】
また、上記の課題を改善するため、粒度分布を従来の範囲よりも小さい方向のみ広げることによって、濁度寿命を従来とほぼ同等に保ち、トリハロメタン除去性能を高めようとすることが考えられるが、活性炭を造粒する場合にはその粒度分布の大きい方へ偏ってピークが形成される傾向があることから、1種類の活性炭からトリハロメタン除去性能に優れた理想的な粒度分布を作ることは困難という問題があった。
【0009】
本発明は上記従来の課題を解決するもので、原水からのトリハロメタン類の吸着容量が大きく、動的吸着特性が優れ、濁度除去寿命にも優れた活性炭と、これを備えた浄水器を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明の活性炭は、含有率(%)で表した粒度分布において、粒度分布が75から275(μm)で、粒度分布の75から165(μm)の範囲と165から275(μm)の範囲に、それぞれ含有率(%)が15%以上の少なくとも1個以上のピーク値を備えている(それぞれの分布が単独であるものを除く。)ことを特徴とする。
【0011】
これにより、原水からのトリハロメタン類の吸着容量が大きく、悪臭成分や着色成分等の吸着特性にも優れた活性炭を得ることができる。
【0012】
【発明の実施の形態】
本発明の請求項1に記載の発明は、含有率(%)で表した粒度分布において、粒度分布が75から275(μm)で、粒度分布の75から165(μm)の範囲と165から275(μm)の範囲に、それぞれ含有率(%)が15%以上の少なくとも1個以上のピーク値を備えている(それぞれの分布が単独であるものを除く。)活性炭であるから、動的吸着特性が向上し吸着容量がさらに大きくなるので、濁度成分や残留塩素、色度成分、臭気成分等、その他の吸着特性にも優れる。
【0013】
ここで、含有率(%)とは、活性炭のさまざまな粒度の総量の中で、所定の粒度の活性炭の占める割合である。
【0014】
粒度分布の75から275(μm)の範囲にピークがひとつだけであると、粒の成形上、大きな粒度の方にその分布が偏るので、濁度除去寿命は高いがトリハロメタン除去寿命は低くなる傾向にあり、好ましくない。
【0015】
しかし、粒度分布が75から275(μm)で、粒度分布が75から165(μm)の範囲と165から275(μm)の範囲で、それぞれ少なくとも1個以上のピーク値を備えている(それぞれの分布が単独であるものを除く。)活性炭であるから、吸着力が高くなりトリハロメタン以外の各種成分に対しても吸着除去能力を高めることができる。
【0016】
ここで、活性炭の原料は、ヤシガラであるヤシガラを主材として用いるものとして、ヤシガラ及び数種類の産地の異なるヤシガラの混合品や、混合物としてセルロース質(たとえば木屑や籾殻)や澱粉質(たとえば米、麦、粟、稗、トウモロコシ、芋類)の他に、有機質、或いは無機質のバインダーを混合したものを用いてもよい。
【0017】
また、合成樹脂であるフェノール樹脂でもよく、そのほかに、炭素源となりうる合成樹脂(アクリロニトリル系樹脂やメラニン樹脂、ポリビニルアルコール樹脂)やセルロース質(たとえば木屑や籾殻)や澱粉質(たとえば米、麦、粟、稗、トウモロコシ、芋類)の他、有機質、或いは無機質のバインダーを混合したものを用いることもできる。これにより、吸着帯を形成し、吸着帯中を披処理水が通過する、水中のトリハロメタン類の浄化処理法において、活性炭の吸着速度を高めることができるので、トリハロメタン類の吸着容量を向上させることができる。
【0018】
本発明の請求項に記載の発明は、請求項1記載の活性炭を充填して原水を濾過する浄水器であるから、濾過性能に優れた浄水器を得ることができる。
【0019】
(実施の形態1)
図1は本発明の実施の形態1における活性炭の粒度分布を示す図、図2は本発明の実施の形態1における活性炭の混合比率を変えた場合の粒度分布を示す図である。
【0020】
図1に示すように、本発明の活性炭は、含有率(%)で表した粒度分布において、含有率(%)が、粒度分布の75から275(μm)の範囲に含有率(%)が15%以上の少なくとも2個以上のピーク値を備え、粒度分布が75から165(μm)の範囲、165から275(μm)の範囲に、それぞれ少なくとも1個以上のピーク値を備えている。この粒度分布について以下説明する。
【0021】
活性炭の除去性能の中でトリハロメタン除去寿命と濁度除去寿命は相反する性能である。活性炭の粒子径が275(μm)より大きければ、活性炭粒子の外表面積が小さくなるとともに活性炭粒子間の間隙が大きくなりすぎ、通水速度が上がることによって通水時の接触効率が低くなり、総トリハロメタン類の除去寿命は短くなる。これに対し活性炭の粒子径が75(μm)より小さくなると微細なため逆に高密度となって圧力損失が大きくなり、濁度寿命が短くなる。このように、濁度除去のためには粒子径が75(μm)より大きくなければならず、トリハロメタン除去のためには275(μm)以下でなければならなかった。トリハロメタンがクローズアップされなかった従来は濁度除去寿命を主に考えればよく、その粒度分布は図1の比較例1で示す100から275(μm)であった。これに対し、総トリハロメタン除去寿命に優れているのは比較例3で示す75から150(μm)である。この2つの事情から、両者の最大幅で粒度分布75から275(μm)を構成すれば、トリハロメタン除去と濁度除去が同時にはかれる活性炭を得られるはずであるが、比較例1で示すとおり粒度分布のピークは275μmに近いところに形成され、全体の中心である160(μm)付近には形成されない。活性炭を造粒する場合には、その粒度分布の大きい方へ偏ってピークが形成される傾向があることから、1種類の活性炭からトリハロメタン除去性能に優れた理想的な粒度分布を作ることは困難である。すなわち、1種類の活性炭によって粒度分布75から275(μm)の粒度分布の活性炭を形成しても、75から150(μm)の粒度で含有率(%)がピーク値をもつようなことはなく、濁度除去はできるがトリハロメタン除去性能は低くなるものである。
【0022】
そこで、図1、2に示すとおり、本発明は、後述する実施例に代表される活性炭の粒度分布を得るために、75から275(μm)の範囲の中で2種類の活性炭を混合することによって理想的な活性炭の粒度分布を実現したものである。この2種類の活性炭は、粒度分布が100から275(μm)の範囲のものと75から150(μm)の範囲のものの2つである。このように、2種類の活性炭を所定の比率で混合することで、含有率15(%)以上に少なくとも2つのピークを形成させることができる。
【0023】
次に、この2種類の活性炭がなぜ含有率15(%)以上でないと2つ以上のピークを形成しないかという理由と、混合する比率を変化させたときどのように粒度分布が変化するかという点について説明する。
【0024】
図2において混合されて作られた活性炭の粒度分布は、75から275(μm)のうち、100から275(μm)のものと75から150(μm)のものとの比率が、それぞれ1:1(実施例3)、3:2(実施例1)、2:1(実施例2)のものである。この図2から分かるように、100から275(μm)の粒度と75から150(μm)の粒度との比率が2:1よりも大きくなると、75から150(μm)の範囲に形成される粒度分布のピークが閾値15%より低くなってしまい、単独の種類で作られた活性炭(比較例2)の60から275(μm)の範囲の分布と特性がほぼ接近し、総トリハロメタン類除去性能が低くなってしまう。すなわち、トリハロメタン除去性能は、1種類の活性炭で構成した比較例2を超える性能を示さない。しかも、このときの100から275(μm)のピーク値は、230(μm)付近で比較例2のように高くはならず、少なくとも濁度除去性能は比較例2より劣るものである。以上説明したような理由から、単独の粒度分布で構成した従来の活性炭(比較例2)よりトリハロメタン除去性能を向上させるには、少なくとも75から150(μm)の範囲のピーク値を閾値15(%)以上にする必要がある。図2から分かるように、上記2種類の活性炭の混合の比率を3.5:1を上回る比率にすると15(%)以下になってしまうので避ける必要があるが、トリハロメタン除去のため顕著にピーク値を出現させるためには2:1(実施例2)以下の比率を選ぶのが適当である。
【0025】
以上説明したように、粒度分布が75から275(μm)で、粒度分布が75から165(μm)の範囲と165から275(μm)の範囲で、それぞれ1個以上のピーク値を備えている(それぞれの分布が単独であるものを除く。)活性炭とするので、総トリハロメタン類除去性能と濁度除去性能が高い活性炭を実現することができる。さらに、吸着力が高くなり、とくに動的吸着特性に優れ、トリハロメタン以外の各種成分に対しても吸着除去能力を高めることができる。
【0026】
(実施の形態2)
図3は本発明の実施の形態における浄水器の構造図である。
【0027】
図3において、1は浄水器本体、2は実施の形態1で説明した活性炭、3は浄水器本体1に設けられた原水の流入口、4は活性炭2で処理された処理水の流出口、5は中空糸膜、6は原水として水道水を供給する蛇口である。水道水の蛇口6から吐出された原水は、浄水器本体1に設けられた流入口3から浄水器内に流入する。浄水器には活性炭2が充填されており、濁度除去とトリハロメタン除去が行われ、中空糸膜5によって一般細菌類を除去されて、流出口4から吐出される。
【0028】
本実施の形態2の浄水器は、このように実施の形態1で説明した活性炭2を充填しているので、流入口3から流入した原水は、活性炭2によって濁度と総トリハロメタン類の両方を高効率に除去することができる。
【0029】
【実施例】
以下、本発明の実施例について、(表1)を用いて説明する。
【0030】
【表1】

Figure 0003693544
【0031】
(実施例1)
市販のヤシガラ粒状活性炭(クラレケミカル=クラレコールGW)の2種類の粒度分布である100−275(μm)と75−150(μm)を3:2の割合で混合したものでBET法により求めた比表面積は1020m2/gである。
【0032】
(実施例2)
市販のヤシガラ粒状活性炭(クラレケミカル=クラレコールGW)の2種類の粒度分布である100−275(μm)と75−150(μm)を2:1の割合で混合したものでBET法により求めた比表面積は1020m2/gである。
【0033】
(実施例3)
市販のヤシガラ粒状活性炭(クラレケミカル=クラレコールGW)の2種類の粒度分布である100−275(μm)と75−150(μm)を1:1の割合で混合したものでBET法により求めた比表面積は1020m2/gである。
【0034】
(比較例1)
市販のヤシガラ粒状活性炭(クラレケミカル=クラレコールGW)の1種類の粒度分布である100−275(μm)でBET法により求めた比表面積は1020m2/gである。
【0035】
(比較例2)
市販のヤシガラ粒状活性炭(クラレケミカル=クラレコールGW)の1種類の粒度分布である75−275(μm)でBET法により求めた比表面積は1020m2/gである。
【0036】
(比較例3)
市販のヤシガラ粒状活性炭(クラレケミカル=クラレコールGW)の1種類の粒度分布である75−150(μm)でBET法により求めた比表面積は1020m2/gである。
【0037】
上述の特性を有する活性炭のトリハロメタンの吸着特性を以下の方法で測定した。JIS S3201(1999)6.2.3揮発性有機化合物除去性能試験に準拠した。まず、予め活性炭と0.2μmフィルターにより浄化処理した水道浄化水に、トリハロメタン類を100ppb添加したものを調整原水とした。ついで、体積容量50ml、厚さ20mmの円筒形カラムに上述の特性を有する活性炭を充填し、前述の調整原水をSV値900で活性炭層に通過させた。活性炭層を通過した流出水中のトリハロメタン類の濃度を、パージ・アンド・トラップ法で濃縮前処理し、ガスクロマトグラフ−質量分析装置で定量測定した。この時、活性炭層通過前後で、流入水に対する流出水のトリハロメタン類の水中濃度が、20%以上になる点を破過点とし、活性炭の吸着材としての寿命とした。また、上述の特性を有する活性炭の濁度性能は、JIS S3201(1999)6.2.2濁り除去性能試験に準拠した。まず、予め活性炭と0.2μmフィルターにより浄化処理した水道浄化水に、試験用カオリン添加し、濁度2±0.2度を保持したものを調整原水とした。圧力一定の条件下で流量(L/分)が初期の50%となるところを寿命とした。
【0038】
得られた実施例1から3と比較例1から3の粒状活性炭の濁度除去寿命と総トリハロメタン類除去寿命を(表1)に示す。いずれの実施例も比較例1に比べると総トリハロメタン類の除去性能は上回っており、その中でも特に実施例1は比較例1と比較して総トリハロメタン類は1.1倍となっており、濁度除去性能は比較例3に比べると1.6倍となっており、やはり比較例2の単独で作られた活性炭と比較すると濁度除去寿命と総トリハロメタン類除去寿命がバランスのとれた活性炭となっている。
【0039】
【発明の効果】
本発明の請求項1に記載の発明によれば、同じ材質の粒状活性炭で、濁度除去性能と総トリハロメタン類除去性能を高めることができる。動的吸着特性が優れた活性炭とすることができる。
【0041】
本発明の請求項に記載された発明によれば、濾過性の優れた浄水器を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における活性炭の粒度分布を示す図
【図2】本発明の実施の形態1における活性炭の混合比率を変えた場合の粒度分布を示す図
【図3】本発明の実施の形態における浄水器の構造図
【符号の説明】
1 浄水器本体
2 活性炭
3 流入口
4 流出口
5 中空糸膜
6 蛇口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to activated carbon excellent in adsorption characteristics of organochlorine compounds that are harmful components in water, particularly trihalomethanes, and also excellent in turbidity removal performance, and a water purifier equipped with the same in water purification treatment. .
[0002]
[Prior art]
Tap water provided for drinking needs to contain a certain concentration or more of residual chlorine added for the purpose of sterilization, and the operation method and the like are regulated by the Water Supply Law from the viewpoint of health and public health. However, chlorine added for the purpose of sterilization has an oxidizing action of inorganic substances and an oxidative decomposition action of organic substances in addition to the sterilizing action, and humic substances, which are a kind of natural organic substances contained in raw tap water, etc. It is oxidatively decomposed to produce trihalomethanes that are carcinogenic substances. On the other hand, the quality of raw water used for tap water, etc. has been on the decline in recent years due to the expansion of pollution, and as a result, the amount of humic substances contained in the raw water has also increased. The concentration of trihalomethanes is also increasing.
[0003]
For this reason, various purification treatments using activated carbon having an adsorption action have been studied as means for removing trihalomethanes. In general, activated carbon for water treatment has been used to increase the adsorption capacity per unit volume of the object to be removed, and activated carbon having a large surface area with good characteristics such as iodine adsorption performance and methylene blue adsorption performance. In addition to the surface area, activated carbon having many pores having a pore diameter of 10 mm or less has been studied for the removal of adsorbed particles.
[0004]
Furthermore, by reducing the particle size of the activated carbon, the bulk specific gravity is increased, the efficiency of filling the water purification cartridge or the like is increased, and activated carbon with good contact efficiency has been studied. For example, Japanese Patent Laid-Open No. 9-110409 uses activated carbon based on phenolic resin to remove organochlorine compounds, and in particular, the pore diameter occupying a pore volume with a pore diameter of 100 mm or less. Activated carbon in which the proportion of 6-8% is 65 vol% or more is disclosed.
[0005]
These had a large equilibrium adsorption amount, which is a static adsorption force of trihalomethanes, and the adsorption capacity was 3 mg or more per 1 g of activated carbon. Moreover, it is desirable that the activated carbon for water treatment has high hydrophilicity, and most of the activated carbon is steam activated as a gas activation. In addition, chemical activated carbon obtained by activation treatment with alkali hydroxide is also used. It is done. The activated carbon has various shapes, and in addition to powder, crushed, spherical, granular, and fibrous, molded cylindrical, disc, granular, spherical, and the like are manufactured and used.
[0006]
[Problems to be solved by the invention]
However, the above-mentioned conventional activated carbon forms an adsorption zone where trihalomethane is adsorbed when raw water is passed through, but there are few pores with a diameter of 10 mm or less, and there is a problem that adsorption performance is not sufficient for removing trihalomethane. .
[0007]
Therefore, reducing the particle size of the activated carbon should increase the packing efficiency, increase the contact efficiency between water and activated carbon, and increase the water adsorption performance of trihalomethane. There was a problem that clogging occurred and the turbidity life was shortened.
[0008]
In addition, in order to improve the above problem, it is conceivable to keep the turbidity life almost the same as before by increasing the particle size distribution only in a direction smaller than the conventional range, and to improve the trihalomethane removal performance, When activated carbon is granulated, there is a tendency that a peak is formed in the larger particle size distribution, so it is difficult to create an ideal particle size distribution with excellent trihalomethane removal performance from one type of activated carbon. There was a problem.
[0009]
The present invention solves the above-mentioned conventional problems, and provides an activated carbon having a large adsorption capacity for trihalomethanes from raw water, excellent dynamic adsorption characteristics and excellent turbidity removal life, and a water purifier equipped with the activated carbon. The purpose is to do.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the activated carbon of the present invention has a particle size distribution of 75 to 275 (μm) and a particle size distribution of 75 to 165 (μm) in the particle size distribution expressed by the content rate (%). To 275 (μm), each content rate (%) has at least one peak value of 15% or more (excluding those each having a single distribution) .
[0011]
As a result, it is possible to obtain activated carbon having a large adsorption capacity for trihalomethanes from raw water and having excellent adsorption characteristics such as malodorous components and colored components.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, in the particle size distribution expressed by the content (%), the particle size distribution is 75 to 275 (μm), the particle size distribution is in the range of 75 to 165 (μm), and 165 to 275. In the range of (μm), at least one peak value with a content (%) of 15% or more (excluding those each having a single distribution) is activated carbon, so dynamic adsorption Since the characteristics are improved and the adsorption capacity is further increased, other adsorption characteristics such as turbidity components, residual chlorine, chromaticity components, odor components and the like are also excellent.
[0013]
Here, the content rate (%) is a ratio of the activated carbon having a predetermined particle size in the total amount of various particle sizes of the activated carbon.
[0014]
When there is only one peak in the particle size distribution range of 75 to 275 (μm), the distribution tends to be larger toward the larger particle size in terms of grain formation, so the turbidity removal life tends to be high but the trihalomethane removal life tends to be low This is not preferable.
[0015]
However , the particle size distribution is 75 to 275 (μm), and the particle size distribution is 75 to 165 (μm) and 165 to 275 (μm), each having at least one peak value (each Excluding those with a single distribution.) Since it is activated carbon, the adsorptive power becomes high, and the adsorption removal ability can be enhanced for various components other than trihalomethane.
[0016]
Here, the raw material of the activated carbon is a coconut shell which is a coconut shell as a main material. In addition to wheat, straw, straw, corn, and rice), a mixture of organic or inorganic binders may be used.
[0017]
Further, it may be a synthetic resin such as a phenol resin. In addition, a synthetic resin (acrylonitrile resin, melanin resin, polyvinyl alcohol resin) that can be a carbon source, cellulosic material (for example, wood waste or rice husk), or starch (for example, rice, wheat, A mixture of organic or inorganic binder can also be used. As a result, the adsorption rate of activated carbon can be increased in the purification method for trihalomethanes in water, where an adsorption zone is formed and the treated water passes through the adsorption zone, thereby improving the adsorption capacity of trihalomethanes. Can do.
[0018]
Since invention of Claim 2 of this invention is a water purifier which fills the activated carbon of Claim 1 and filters raw | natural water, the water purifier excellent in filtration performance can be obtained.
[0019]
(Embodiment 1)
FIG. 1 is a diagram showing the particle size distribution of activated carbon according to Embodiment 1 of the present invention, and FIG. 2 is a diagram showing the particle size distribution when the mixing ratio of activated carbon is changed according to Embodiment 1 of the present invention.
[0020]
As shown in FIG. 1, the activated carbon of the present invention has a content rate (%) in the range of 75 to 275 (μm) in the particle size distribution in the particle size distribution expressed by the content rate (%). It has at least two peak values of 15% or more, and has at least one peak value in the particle size distribution range of 75 to 165 (μm) and 165 to 275 (μm), respectively . This particle size distribution will be described below.
[0021]
Among the removal performances of activated carbon, the trihalomethane removal life and the turbidity removal life are contradictory performances. If the particle diameter of the activated carbon is larger than 275 (μm), the outer surface area of the activated carbon particles becomes small and the gap between the activated carbon particles becomes too large. The removal life of trihalomethanes is shortened. On the other hand, when the particle diameter of the activated carbon is smaller than 75 (μm), the activated carbon is fine, so the density is increased and the pressure loss is increased, and the turbidity life is shortened. Thus, in order to remove turbidity, the particle diameter had to be larger than 75 (μm), and in order to remove trihalomethane, it had to be 275 (μm) or less. Conventionally, the turbidity removal life should be mainly considered when trihalomethane is not closed up, and the particle size distribution is 100 to 275 (μm) shown in Comparative Example 1 in FIG. In contrast, 75 to 150 (μm) shown in Comparative Example 3 are excellent in the total trihalomethane removal lifetime. From these two circumstances, if the particle size distribution 75 to 275 (μm) is configured with the maximum width of both, activated carbon capable of simultaneously removing trihalomethane and removing turbidity should be obtained. The peak of is formed near 275 μm and is not formed near 160 (μm) which is the center of the whole. When activated carbon is granulated, it tends to form a peak with a larger particle size distribution, making it difficult to create an ideal particle size distribution with excellent trihalomethane removal performance from one type of activated carbon. It is. That is, even if activated carbon having a particle size distribution of 75 to 275 (μm) is formed by one type of activated carbon, the content (%) does not have a peak value at a particle size of 75 to 150 (μm). Although turbidity removal can Toriharometa emissions removal performance is made lower.
[0022]
Therefore, as shown in FIGS. 1 and 2, the present invention mixes two types of activated carbon within a range of 75 to 275 (μm) in order to obtain a particle size distribution of the activated carbon represented by examples described later. Is the ideal particle size distribution of activated carbon. These two types of activated carbon are those having a particle size distribution in the range of 100 to 275 (μm) and those in the range of 75 to 150 (μm). Thus, by mixing two types of activated carbon at a predetermined ratio, at least two peaks can be formed at a content rate of 15 (%) or more.
[0023]
Next, why these two types of activated carbon do not form two or more peaks unless the content rate is 15% or more, and how the particle size distribution changes when the mixing ratio is changed. The point will be described.
[0024]
The particle size distribution of the activated carbon produced by mixing in FIG. 2 is such that the ratio of 100 to 275 (μm) and 75 to 150 (μm) of 75 to 275 (μm) is 1: 1. (Example 3) Those of 3: 2 (Example 1) and 2: 1 (Example 2). As can be seen from FIG. 2, when the ratio of the particle size of 100 to 275 (μm) and the particle size of 75 to 150 (μm) is larger than 2: 1, the particle size formed in the range of 75 to 150 (μm). The distribution peak becomes lower than the threshold value of 15%, and the distribution and characteristics in the range of 60 to 275 (μm) of the activated carbon (Comparative Example 2) made of a single type are almost close, and the total trihalomethanes removal performance is It will be lower. That is, the trihalomethane removal performance does not show performance exceeding that of Comparative Example 2 configured with one kind of activated carbon. Moreover, the peak value from 100 to 275 (μm) at this time does not become high as in Comparative Example 2 around 230 (μm), and at least the turbidity removal performance is inferior to that of Comparative Example 2. For the reasons described above, in order to improve the trihalomethane removal performance over the conventional activated carbon (Comparative Example 2) configured with a single particle size distribution, a peak value in the range of at least 75 to 150 (μm) is set to the threshold value 15 (% ) More than that. As can be seen from FIG. 2, if the mixing ratio of the above two types of activated carbon is set to a ratio exceeding 3.5: 1, it will be 15% or less. In order to make the value appear, it is appropriate to select a ratio of 2: 1 (Example 2) or less.
[0025]
As described above, the particle size distribution is 75 to 275 (μm), and the particle size distribution is 75 to 165 (μm) and 165 to 275 (μm), each having one or more peak values. (Excluding those each having a single distribution.) Since activated carbon is used, activated carbon having high total trihalomethane removal performance and high turbidity removal performance can be realized. Furthermore, the adsorptive power is increased, the dynamic adsorption characteristics are particularly excellent, and the adsorption / removal ability for various components other than trihalomethane can be enhanced.
[0026]
(Embodiment 2)
FIG. 3 is a structural diagram of the water purifier in the embodiment of the present invention.
[0027]
In FIG. 3, 1 is a water purifier main body, 2 is activated carbon described in Embodiment 1, 3 is an inlet of raw water provided in the water purifier main body 1, 4 is an outlet of treated water treated with activated carbon 2, 5 is a hollow fiber membrane, and 6 is a faucet for supplying tap water as raw water. The raw water discharged from the tap water tap 6 flows into the water purifier from the inlet 3 provided in the water purifier main body 1. The water purifier is filled with activated carbon 2, turbidity removal and trihalomethane removal are performed, general bacteria are removed by the hollow fiber membrane 5, and discharged from the outlet 4.
[0028]
Since the water purifier of the second embodiment is thus filled with the activated carbon 2 described in the first embodiment, the raw water that has flowed from the inlet 3 has both turbidity and total trihalomethanes by the activated carbon 2. It can be removed with high efficiency.
[0029]
【Example】
Examples of the present invention will be described below with reference to (Table 1).
[0030]
[Table 1]
Figure 0003693544
[0031]
(Example 1)
Two types of particle size distributions of commercially available coconut shell granular activated carbon (Kuraray Chemical = Kuraray Coal GW) 100-275 (μm) and 75-150 (μm) were mixed at a ratio of 3: 2 and determined by the BET method. The specific surface area is 1020 m 2 / g.
[0032]
(Example 2)
Two types of particle size distributions of commercially available coconut shell granular activated carbon (Kuraray Chemical = Kuraray Coal GW) 100-275 (μm) and 75-150 (μm) were mixed at a ratio of 2: 1 and determined by the BET method. The specific surface area is 1020 m 2 / g.
[0033]
(Example 3)
Two kinds of particle size distributions of commercially available coconut shell granular activated carbon (Kuraray Chemical = Kuraray Coal GW) 100-275 (μm) and 75-150 (μm) were mixed at a ratio of 1: 1, and determined by the BET method. The specific surface area is 1020 m 2 / g.
[0034]
(Comparative Example 1)
The specific surface area determined by the BET method with 100-275 (μm), which is one kind of particle size distribution of commercially available coconut palm granular activated carbon (Kuraray Chemical = Kuraray Coal GW), is 1020 m 2 / g.
[0035]
(Comparative Example 2)
The specific surface area determined by the BET method using 75-275 (μm), which is one kind of particle size distribution of commercially available coconut shell granular activated carbon (Kuraray Chemical = Kuraray Coal GW), is 1020 m 2 / g.
[0036]
(Comparative Example 3)
The specific surface area determined by the BET method with 75-150 (μm), which is one kind of particle size distribution of commercially available coconut shell granular activated carbon (Kuraray Chemical = Kuraray Coal GW), is 1020 m 2 / g.
[0037]
The adsorption characteristic of trihalomethane on activated carbon having the above characteristics was measured by the following method. It conformed to JIS S3201 (1999) 6.2.3 volatile organic compound removal performance test. First, adjusted raw water was prepared by adding 100 ppb of trihalomethanes to tap water purified in advance using activated carbon and a 0.2 μm filter. Next, activated carbon having the above-described characteristics was packed into a cylindrical column having a volume capacity of 50 ml and a thickness of 20 mm, and the above-mentioned adjusted raw water was passed through the activated carbon layer with an SV value of 900. The concentration of trihalomethanes in the effluent water that passed through the activated carbon layer was subjected to concentration pretreatment by the purge and trap method, and quantitatively measured with a gas chromatograph-mass spectrometer. At this time, before and after passing through the activated carbon layer, the point where the concentration of the trihalomethanes in the effluent with respect to the influent was 20% or more was defined as the breakthrough point, and the lifetime of the activated carbon as an adsorbent was defined. Moreover, the turbidity performance of the activated carbon having the above-described characteristics conformed to the turbidity removal performance test of JIS S3201 (1999) 6.2.2. First, test kaolin was added to purified tap water previously purified with activated carbon and a 0.2 μm filter, and a turbidity of 2 ± 0.2 degrees was maintained as adjusted raw water. The lifetime was defined as the point where the flow rate (L / min) reached 50% of the initial value under a constant pressure condition.
[0038]
The turbidity removal life and total trihalomethane removal life of the granular activated carbons of Examples 1 to 3 and Comparative Examples 1 to 3 obtained are shown in (Table 1). In any of the examples, the removal performance of the total trihalomethanes exceeded that of Comparative Example 1, and in particular, in Example 1, the total trihalomethanes was 1.1 times that of Comparative Example 1, and the turbidity The degree of removal performance is 1.6 times that of Comparative Example 3, and the activated carbon with a balanced turbidity removal life and total trihalomethane removal life as compared with the activated carbon of Comparative Example 2 alone. It has become.
[0039]
【The invention's effect】
According to the first aspect of the present invention, it is possible to improve the turbidity removal performance and the total trihalomethane removal performance with the granular activated carbon made of the same material. Activated carbon with excellent dynamic adsorption characteristics can be obtained.
[0041]
According to the invention described in claim 2 of the present invention, a water purifier having excellent filterability can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing the particle size distribution of activated carbon in Embodiment 1 of the present invention. FIG. 2 is a graph showing particle size distribution when the mixing ratio of activated carbon is changed in Embodiment 1 of the present invention. Structure diagram of water purifier in an embodiment of the invention [Explanation of symbols]
1 Water Purifier Body 2 Activated Carbon 3 Inlet 4 Outlet 5 Hollow Fiber Membrane 6 Faucet

Claims (2)

含有率(%)で表した粒度分布において、粒度分布が75から275(μm)で、粒度分布の75から165(μm)の範囲と165から275(μm)の範囲に、それぞれ含有率(%)が15%以上の少なくとも1個以上のピーク値を備えている(それぞれの分布が単独であるものを除く。)ことを特徴とする活性炭。In the particle size distribution expressed by the content rate (%), the particle size distribution is 75 to 275 (μm), and the particle size distribution ranges from 75 to 165 (μm) and 165 to 275 (μm). ) Has at least one peak value of 15% or more (excluding those each having a single distribution) . 請求項1記載の活性炭を充填して原水を濾過する浄水器。A water purifier for filling the activated carbon according to claim 1 and filtering raw water.
JP2000021662A 2000-01-31 2000-01-31 Activated carbon and water purifier provided with the same Expired - Fee Related JP3693544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000021662A JP3693544B2 (en) 2000-01-31 2000-01-31 Activated carbon and water purifier provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000021662A JP3693544B2 (en) 2000-01-31 2000-01-31 Activated carbon and water purifier provided with the same

Publications (2)

Publication Number Publication Date
JP2001205253A JP2001205253A (en) 2001-07-31
JP3693544B2 true JP3693544B2 (en) 2005-09-07

Family

ID=18548043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000021662A Expired - Fee Related JP3693544B2 (en) 2000-01-31 2000-01-31 Activated carbon and water purifier provided with the same

Country Status (1)

Country Link
JP (1) JP3693544B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248890A (en) * 2005-02-14 2006-09-21 Nippon Steel Chem Co Ltd Activated carbon structure and its manufacturing method
KR101770549B1 (en) * 2009-08-06 2017-08-23 주식회사 쿠라레 Molded activated charcoal and water purifier involving same
JP6218355B2 (en) 2011-02-10 2017-10-25 ソニー株式会社 Filter media
JP6402864B2 (en) * 2011-02-10 2018-10-10 ソニー株式会社 Method for producing porous carbon material for air purification, method for producing porous carbon material constituting filter for air purification, method for producing porous carbon material for water purification, porous material constituting cartridge for water purification Carbon material manufacturing method and porous carbon material manufacturing method
JP6032121B2 (en) * 2013-05-15 2016-11-24 Jfeエンジニアリング株式会社 Water treatment method
JP6358717B2 (en) * 2014-06-06 2018-07-18 三菱ケミカル株式会社 Water purification cartridge and water purifier
JP6426583B2 (en) 2015-10-30 2018-11-21 デクセリアルズ株式会社 Porous carbon and organic halogen compound removing apparatus using the same
JP6586482B2 (en) * 2018-04-18 2019-10-02 ユニチカ株式会社 Water purification filter

Also Published As

Publication number Publication date
JP2001205253A (en) 2001-07-31

Similar Documents

Publication Publication Date Title
KR101770549B1 (en) Molded activated charcoal and water purifier involving same
US7563311B2 (en) Activated carbon for odor control
US6475386B1 (en) Filter for purifying domestic drinking water
JP3693544B2 (en) Activated carbon and water purifier provided with the same
JP6726520B2 (en) Activated carbon molding and water purification cartridge
KR20040032879A (en) Composite particulate article and method for preparation thereof
JP4064309B2 (en) Water purifier
US7229552B1 (en) Water purification apparatus and system
JP3506043B2 (en) Activated carbon and water purifier using it
JP3915597B2 (en) Water purification cartridge
JP3528685B2 (en) Activated carbon and water purifier equipped with it
JPH07256239A (en) Cartridge for water purifier
TW202039073A (en) Water purifying filter and water purifier using same
JP2001162269A (en) Activated carbon filler and water cleaning cartridge using the filler
JP2002053314A (en) Activated carbon and water purifier provided with the same
JP4876307B2 (en) Method for producing activated carbon
JP2000189947A (en) Antibacterial filter for water purification and its production
JP3436190B2 (en) Method for producing activated carbon for running water treatment and activated carbon for running water treatment obtained by the method
JPH07222971A (en) Cartridge for water purifier
JP2002263637A (en) Water purifying unit
JP4876301B2 (en) Activated carbon and water purifier
JP4310851B2 (en) Method for producing activated carbon
JPH0929236A (en) Water purifier
JP2010269225A (en) Anion adsorbent molding and water purifier using the same
Shindo et al. Water treatment by pitch-based activated carbon fiber

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050621

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees