JP3528685B2 - Activated carbon and water purifier equipped with it - Google Patents

Activated carbon and water purifier equipped with it

Info

Publication number
JP3528685B2
JP3528685B2 JP16490599A JP16490599A JP3528685B2 JP 3528685 B2 JP3528685 B2 JP 3528685B2 JP 16490599 A JP16490599 A JP 16490599A JP 16490599 A JP16490599 A JP 16490599A JP 3528685 B2 JP3528685 B2 JP 3528685B2
Authority
JP
Japan
Prior art keywords
activated carbon
dlogr
range
water
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16490599A
Other languages
Japanese (ja)
Other versions
JP2000351613A (en
Inventor
琢磨 佐藤
直人 松尾
光幸 中園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP16490599A priority Critical patent/JP3528685B2/en
Publication of JP2000351613A publication Critical patent/JP2000351613A/en
Application granted granted Critical
Publication of JP3528685B2 publication Critical patent/JP3528685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、浄水処理におい
て、水中の有害成分である有機塩素系化合物、特にトリ
ハロメタン類等の吸着特性に優れた活性炭およびそれを
備えた浄水器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to activated carbon having excellent adsorption properties for organic chlorine compounds, which are harmful components in water, particularly trihalomethanes, in water purification treatment, and a water purifier equipped with the activated carbon.

【0002】[0002]

【従来の技術】飲料用に供される水道水は、殺菌を目的
に添加される残留塩素を一定濃度以上含有することが必
要で、健康・公衆衛生の観点から水道法等に運用方法等
が規定されている。しかし、殺菌を目的に添加される塩
素は、殺菌作用の他に、無機物の酸化作用や有機物の酸
化分解作用も持っており、水道水の原水に含まれる天然
有機物の一種であるフミン質等が酸化分解され、発ガン
性物質であるトリハロメタン類を生成してしまう。一
方、水道水等に利用される原水の水質は、汚染の拡大に
より近年劣化傾向にあり、これに伴い原水中に含まれる
フミン質等も増加してきており、フミン質等の酸化分解
により発生するトリハロメタン類の濃度も増加傾向にあ
る。
2. Description of the Related Art Tap water used for drinking needs to contain residual chlorine added for the purpose of sterilization in a certain concentration or more. It is prescribed. However, chlorine added for the purpose of sterilization has an oxidative action of inorganic substances and an oxidative decomposition action of organic substances in addition to the bactericidal action, and humic substances, which are a kind of natural organic substances contained in raw water of tap water, etc. It is oxidized and decomposed to produce trihalomethanes which are carcinogens. On the other hand, the water quality of raw water used for tap water, etc. has been deteriorating in recent years due to the spread of pollution, and the humic substances contained in the raw water have been increasing along with this, and are generated by the oxidative decomposition of humic substances. The concentration of trihalomethanes is also increasing.

【0003】このため、トリハロメタン類の除去手段と
して、吸着作用を有する活性炭による浄化処理が種々検
討されている。一般に、従来の水処理用活性炭は、除去
対象物の単位容量当りの吸着容量を高めるために、ヨウ
素吸着性能、メチレンブルー吸着性能等の特性が良い表
面積が大きい活性炭が使用されてきたが、トリハロメタ
ン類の吸着除去には表面積以外にも10Å以下の細孔直
径の孔部を多く有する活性炭が種々検討されている。
Therefore, as a means for removing trihalomethanes, various purification treatments with activated carbon having an adsorbing action have been studied. Generally, in the conventional activated carbon for water treatment, activated carbon having a large surface area with good properties such as iodine adsorption performance and methylene blue adsorption performance has been used in order to increase the adsorption capacity per unit volume of the object to be removed. In addition to the surface area, various activated carbons having a large number of pores with a pore diameter of 10 Å or less have been studied for the adsorption and removal of.

【0004】例えば、特開平9−110409号公報に
は、有機塩素系化合物を除去するため、フェノール樹脂
を基材とした活性炭を用い、そのなかでも特に細孔直径
100Å以下の細孔容積に占める細孔直径6〜8Åの占
める割合が65vol%以上である活性炭が開示されて
いる。
For example, Japanese Patent Laid-Open No. 9-110409 uses activated carbon based on a phenol resin as a base material in order to remove organochlorine compounds, and in particular, it occupies a pore volume having a pore diameter of 100 Å or less. Disclosed is activated carbon in which the proportion of pore diameters 6 to 8Å is 65 vol% or more.

【0005】これらはトリハロメタン類の静的吸着力で
ある平衡吸着量は大きく、その吸着容量は活性炭1g当
たり3mg以上であった。また、水処理用の活性炭は、
親水性も高いことが望ましく、ガス賦活として水蒸気賦
活されるものが圧倒的に多いが、ほかに、水酸化アルカ
リで賦活処理して得られる薬品賦活活性炭も用いられ
る。活性炭の形状は多様で、粉末状、破砕状、球状、粒
状、繊維状のほかに、成形された円筒状や円盤状、顆粒
状、球状のものなどが製造され使用されている。
These have large equilibrium adsorption amount, which is the static adsorption force of trihalomethanes, and the adsorption capacity was 3 mg or more per 1 g of activated carbon. In addition, activated carbon for water treatment is
It is also desirable that the hydrophilicity is high, and most of them are activated by steam as gas activation, but in addition, chemically activated carbon obtained by activation treatment with alkali hydroxide is also used. Activated carbon has various shapes, and in addition to powder, crushed, spherical, granular, and fibrous shapes, shaped cylinders, discs, granules, spheres, etc. are manufactured and used.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記従来
の水蒸気によりガス賦活された活性炭は被処理水を通水
するとトリハロメタンが吸着される吸着帯が形成され、
吸着帯で吸着される動的吸着であるため、活性炭単位重
量当たりの吸着容量は静的吸着である平衡吸着量に対し
て低く、活性炭の吸着性能が十分に発揮されていないと
いう課題があった。
However, in the above-mentioned conventional activated carbon gas-activated by water vapor, when water to be treated is passed, an adsorption zone for adsorbing trihalomethane is formed,
Since it is a dynamic adsorption that is adsorbed in the adsorption zone, the adsorption capacity per unit weight of activated carbon is lower than the equilibrium adsorption amount which is static adsorption, and there was a problem that the adsorption performance of activated carbon was not fully exhibited. .

【0007】また、ヤシガラを原料とする活性炭は表面
積が大きく、水中に含まれる多くの物質に対して広範な
吸着特性を有するが、トリハロメタン類の吸着浄化処理
においては、従来のガス賦活等によってトリハロメタン
類の吸着に寄与する細孔直径Dが6〜8Åの範囲の細孔
を多く形成するように調整すると、10Å以上の細孔直
径の孔部が極端に減少し、悪臭成分や着色成分等の吸着
特性を劣化させるという課題もあった。
[0007] Further, activated carbon made from coconut husk has a large surface area and has a wide range of adsorption properties for many substances contained in water. However, in the adsorption purification treatment of trihalomethanes, trihalomethane is activated by conventional gas activation or the like. If the pore diameter D that contributes to the adsorption of the group is adjusted so as to form a large number of pores in the range of 6 to 8Å, the pores having a pore diameter of 10 Å or more will be extremely reduced, and the malodorous components and coloring components, etc. There is also a problem of deteriorating the adsorption property.

【0008】フェノール樹脂を原料とする活性炭は、選
択的にトリハロメタン類の吸着に寄与する細孔直径Dが
6〜8Åの細孔を形成すると平衡吸着時の吸着容量は大
きいが、細孔内では分子の拡散速度が非常に遅くなるの
で、通過水からトリハロメタン類を除去する場合は平衡
到達速度が遅く、十分に吸着されないという課題を有し
ていた。
Activated carbon made from a phenolic resin has a large adsorption capacity at the time of equilibrium adsorption when it forms pores having a pore diameter D of 6 to 8Å that selectively contributes to the adsorption of trihalomethanes. Since the diffusion speed of the molecule becomes very slow, there is a problem that the equilibrium arrival speed is slow when the trihalomethanes are removed from the passing water and the adsorption is not sufficient.

【0009】本発明は上記従来の課題を解決するもの
で、通過水からのトリハロメタン類の吸着容量が大き
く、悪臭成分や着色成分等の吸着特性にも優れた活性炭
の提供、及びトリハロメタン類や他の成分の吸着特性が
優れた活性炭を備え、簡単な構造で水道水の浄化を行う
ことのできる浄水器を提供することを目的とする。
The present invention solves the above-mentioned conventional problems by providing an activated carbon having a large adsorption capacity for trihalomethanes from passing water and excellent adsorption characteristics for malodorous components and coloring components, and trihalomethanes and others. It is an object of the present invention to provide a water purifier that is equipped with activated carbon excellent in the adsorption property of the component (3) and can purify tap water with a simple structure.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、本発明の活性炭は、パラメータdV/dlogR
(V:細孔容積、R:細孔半径)で表した細孔径分布に
おいて、dV/dlogR値が(a)細孔直径Dが10
〜40Åの範囲でdV/dlogR値が0.03〜
0.2の範囲に少なくとも1個以上のピーク値と、
(b)細孔直径Dが6Å〜9Åの範囲でdV/dlog
R値が1.0〜7.0の範囲に少なくとも1個以上のピ
ーク値と、を備え、細孔直径Dが10Å〜50Åの多数
の大口径細孔の内表面に細孔直径Dが6Å〜9Åの小口
径細孔が形成されており、トリハロメタンの通水時の吸
着容量が118〜220ppb・tonとしたものであ
り、これにより、通過水からのトリハロメタン類の吸着
容量が大きく、悪臭成分や着色成分等の吸着特性にも優
れた活性炭を得ることができるという有利な効果が得ら
れる。
In order to solve the above problems, the activated carbon of the present invention has a parameter dV / dlogR.
In the pore diameter distribution represented by (V: pore volume, R: pore radius), dV / dlogR value is (a) pore diameter D is 10
The dV / dlogR value is 0.03 ~ in the range of Å- 40Å
At least one peak value in the range of 0.2,
(B) dV / dlog when the pore diameter D is in the range of 6Å to 9Å
R values and a least one or more peak values in the range of 1.0 to 7.0, a large number of pore diameter D on the inner surface of the large diameter pores of diameter D is 10 Å ~50A is 6Å A small-diameter pore of ~ 9Å is formed to absorb trihalomethane when passing water.
The adsorption capacity is 118 to 220 ppb · ton , which makes it possible to obtain activated carbon having a large adsorption capacity for trihalomethanes from passing water and excellent adsorption characteristics for malodorous components, coloring components, etc. Can be obtained.

【0011】また、本発明の浄水器は、本発明の活性炭
を浄水材として備えていることとしたものであり、これ
により、水道水からのトリハロメタン類や他の有害成分
の吸着能力が高い浄水器をコンパクト化できるという有
利な効果が得られる。
Further, the water purifier of the present invention is provided with the activated carbon of the present invention as a water purifying material, which makes it possible to adsorb trihalomethanes and other harmful components from tap water. The advantageous effect that the device can be made compact is obtained.

【0012】[0012]

【発明の実施の形態】本発明の請求項1に記載の発明
は、パラメータdV/dlogR(V:細孔容積(cc
/g)、R:細孔半径(Å))で表した細孔径分布にお
いて、dV/dlogR値が(a)細孔直径Dが10Å
〜40Åの範囲でdV/dlogR値が0.03〜0.
2の範囲に少なくとも1個以上のピーク値と、(b)細
孔直径Dが6Å〜9Åの範囲でdV/dlogR値が
1.0〜7.0の範囲に少なくとも1個以上のピーク値
と、を備え、細孔直径Dが10Å〜50Åの多数の大口
径細孔の内表面に細孔直径Dが6Å〜9Åの小口径細孔
が形成されており、トリハロメタンの通水時の吸着容量
が118〜220ppb・tonとしたものであり、こ
れにより、クロロホルム(分子直径5Å)で代表される
トリハロメタンの静的吸着特性の高い細孔直径Dが6Å
〜9Åの範囲の細孔が多いので分子間力が強く働き、ト
リハロメタンの吸着容量を大きくすることができる。ま
た、細孔直径Dが10Å〜50Åの範囲の細孔も多く、
この細孔が、細孔直径Dが6Å〜9Åの細孔へのトリハ
ロメタンの導入孔となり、動的吸着特性が向上し吸着容
量がさらに大きくなるので、濁度成分や残留塩素、色度
成分、臭気成分等、その他の吸着特性にも優れる。
お、この通水時の吸着容量は後述の段落番号0035に
記載した方法で測定したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention provides a parameter dV / dlogR (V: pore volume (cc
/ G), R: in a pore size distribution in terms of pore radius (Å)), dV / dlogR value is (a) a pore diameter D 10 Å
The dV / dlogR value is 0.03 to 0.
2 and at least one peak value in the range of 2, and (b) at least one peak value in the range of pore diameter D of 6Å to 9Å and dV / dlogR value of 1.0 to 7.0. the provided a number of pore diameter D on the inner surface of the large diameter pores are formed small diameter pores 6A~9A, adsorption capacity of water passing through the trihalomethanes pore diameter D is 10 Å ~50A
Is 118 to 220 ppb · ton, and as a result, the pore diameter D having a high static adsorption property of trihalomethane represented by chloroform (molecular diameter 5 Å) is 6 Å
Since there are many pores in the range of up to 9Å, the intermolecular force works strongly and the adsorption capacity of trihalomethane can be increased. Also, the pore diameter D is many pores in the range of 10 Å ~50A,
These pores serve as introduction holes for trihalomethane into pores having a pore diameter D of 6Å to 9Å, the dynamic adsorption characteristics are improved, and the adsorption capacity is further increased. Therefore, turbidity components, residual chlorine, chromaticity components, Excellent in other adsorption characteristics such as odorous components. Na
The adsorption capacity at the time of water flow is shown in paragraph 0035 below.
It is measured by the described method.

【0013】ここで、細孔直径Dが10Å〜40Åの範
囲でdV/dlogR値が0.2より大きくなると、細
孔直径Dが6Å〜9Åの範囲でのdV/dlogR値が
低くなり、トリハロメタンの吸着容量が低くなる傾向が
見られ、逆に細孔直径Dが6Å〜9Åの範囲でdV/d
logR値が7.0より大きくなると細孔直径Dが10
〜40Åの範囲でのdV/dlogR値が小さくな
り、また1.0より小さくなると静的吸着力がおち、ト
リハロメタンの吸着容量が低くなる傾向が見られるので
いずれも好ましくない。
[0013] Here, when the dV / dlogR value in the range pore diameter D is 10 Å ~40A is greater than 0.2, a pore diameter D is low dV / dlogR value in the range of 6A~9A, trihalomethane The adsorption capacity of TiO2 tends to decrease, and conversely dV / d when the pore diameter D is in the range of 6Å to 9Å
When the logR value is larger than 7.0, the pore diameter D becomes 10
The dV / dlogR value in the range of Å to 40Å is small, and when it is smaller than 1.0, the static adsorption force tends to be low and the adsorption capacity of trihalomethane tends to be low, which is not preferable.

【0014】本発明の請求項2に記載の発明は、請求項
1に記載の活性炭において、細孔直径Dが20Å〜50
Åの範囲で、dV/dlogR値が0.03未満となら
ないことしたものであり、これにより、吸着力が高くな
りトリハロメタン以外の各種成分に対しても吸着除去能
力を高めることができる。
The invention according to claim 2 of the present invention is the activated carbon according to claim 1, wherein the pore diameter D is 20Å to 50.
In the range of Å, the dV / dlogR value does not become less than 0.03, whereby the adsorptive power becomes high, and the adsorptive removal capacity for various components other than trihalomethane can be enhanced.

【0015】本発明の請求項3に記載の発明は、請求項
1又は2において、活性炭の原料が果実殻であることと
したものであり、これにより、産業廃棄物である果実殻
を用いることによって安価に活性炭を手に入れることが
できるとともに、石炭等の鉱物系の原料よりも金属系不
純物が少ないため安全で、容易に構造調整ができる。
The invention according to claim 3 of the present invention is that in claim 1 or 2, the raw material of the activated carbon is fruit shells, whereby the fruit shells which are industrial wastes are used. With this, activated carbon can be obtained at low cost, and since the amount of metallic impurities is less than that of mineral-based raw materials such as coal, the structure can be adjusted safely and easily.

【0016】本発明の請求項4に記載の発明は、請求項
1又は2に記載の活性炭において、活性炭の原料がヤシ
ガラであることとしたものであり、これにより、産業廃
棄物であるヤシガラを用いることによって、安価に原料
を手にいれることができるとともに、石炭等の鉱物系の
原料よりも金属不純物が少ないため安全で構造調整が容
易である。さらに東南アジア等より安定供給されるので
活性炭を低原価で安定して製造できる。
The invention according to claim 4 of the present invention is that in the activated carbon according to claim 1 or 2, the raw material of the activated carbon is coconut husk, whereby coconut husk which is an industrial waste is converted. By using the raw material, the raw material can be obtained at low cost, and since the amount of metal impurities is smaller than that of the mineral raw material such as coal, the structure can be safely and easily adjusted. Furthermore, since it is stably supplied from Southeast Asia, activated carbon can be stably manufactured at low cost.

【0017】ここで、ヤシガラを主材として用いるもの
として、ヤシガラ及び数種類の産地の異なるヤシガラの
混合品や、混合物としてセルロース質(たとえば木屑や
籾殻)や澱粉質(たとえば米、麦、粟、稗、トウモロコ
シ、芋類)の他に、有機質、或いは無機質のバインダー
を混合したものを用いてもよい。
Here, coconut husks as the main material are used, and coconut husks and a mixture of coconut husks from several different production areas, as well as a mixture of cellulosic materials (eg wood chips and rice husks) and starches (eg rice, wheat, millet, rice bran) , Corn, potatoes), a mixture of organic or inorganic binders may be used.

【0018】本発明の請求項5に記載の発明は、請求項
1又は2において、活性炭の原料が熱硬化性合成樹脂で
あることとしたものであり、これにより、炭化、賦活処
理時に硬化し活性炭化し、材料の多様化を図ることがで
きる。
The invention according to claim 5 of the present invention is that in claim 1 or 2, the raw material of the activated carbon is a thermosetting synthetic resin, whereby the activated carbon is cured during carbonization and activation treatment. Activated carbonization allows diversification of materials.

【0019】本発明の請求項6に記載の発明は、請求項
5において、活性炭の原料がフェノール性合成樹脂であ
ることとしたものであり、これにより、原料に金属不純
物が少なく安全で、構造調整による細孔分布の設計を特
に容易に行うことができる。
According to a sixth aspect of the present invention, in the fifth aspect, the raw material of the activated carbon is a phenolic synthetic resin, whereby the raw material contains few metal impurities, is safe, and has a structure. Designing the pore distribution by adjustment can be performed particularly easily.

【0020】ここで、主原料であるフェノール樹脂のほ
かに、炭素源となりうる合成樹脂(アクリロニトリル系
樹脂やメラニン樹脂、ポリビニルアルコール樹脂)やセ
ルロース質(たとえば木屑や籾殻)や澱粉質(たとえば
米、麦、粟、稗、トウモロコシ、芋類)の他、有機質、
或いは無機質のバインダーを混合したものを用いること
もできる。これにより、吸着帯を形成し、吸着帯中を披
処理水が通過する、水中のトリハロメタン類の浄化処理
法において、活性炭の吸着速度を高めることができるの
で、トリハロメタン類の吸着容量を向上させることがで
きる。
Here, in addition to the phenol resin which is the main raw material, a synthetic resin (acrylonitrile resin, melanin resin, polyvinyl alcohol resin) that can serve as a carbon source, cellulosic material (for example, wood chips and rice husks), and starchy material (for example, rice, Wheat, millet, bran, corn, potatoes), other organic substances,
Alternatively, a mixture of inorganic binders can be used. As a result, the adsorption rate of activated carbon can be increased in the method for purifying trihalomethanes in water, which forms an adsorption zone, and the treated water passes through the adsorption zone, and therefore the adsorption capacity for trihalomethanes can be improved. You can

【0021】本発明の請求項7に記載の浄水器は、請求
項1乃至6の内いずれか1項に記載の活性炭を浄水材と
して備えていることとしたものであり、これにより、吸
着帯を形成し、吸着帯中を被処理水が通過する、水中の
トリハロメタン類の浄化において、活性炭単位重量当た
りの吸着容量が平衡吸着量に対して低く、活性炭の吸着
性能が十分に発揮されていないという課題に対し、前記
細孔径分布のピークの範囲に活性炭の設計を行うこと
で、吸着容量を従来の技術に対して大きく向上させるこ
とができる。
[0021] A water purifier according to claim 7 of the present invention comprises the activated carbon according to any one of claims 1 to 6 as a water purifying material. In the purification of trihalomethanes in water in which water to be treated passes through the adsorption zone, the adsorption capacity per unit weight of activated carbon is lower than the equilibrium adsorption amount, and the adsorption performance of activated carbon is not sufficiently exerted. In order to solve the problem, by designing the activated carbon within the range of the peak of the pore size distribution, the adsorption capacity can be greatly improved as compared with the conventional technique.

【0022】(実施の形態1) 本発明の活性炭は、細孔直径Dが10Å〜40Åでパラ
メータdV/dlogRが0.03〜0.2の範囲に少
なくとも1個以上のピーク値、細孔直径Dが6Å〜9Å
でdV/dlogRが1.0〜7.0の範囲に少なくと
も1個以上のピ−ク値をもち、細孔直径Dが10Å〜5
0Åの範囲の大口径孔部の内表面に、さらに細孔直径D
が6Å〜9Åの範囲の小口径孔部が形成されたものであ
るが、これは次のようにして炭化処理と賦活処理により
製造される。まず炭化処理は活性炭の原料、例えばフェ
ノール樹脂やヤシガラ等を不活性雰囲気下、例えば窒
素、アルゴンガス等で400℃〜700℃に加熱するこ
とで行う。このときの加熱は加熱開始から0.5〜1.
5時間、好ましくは1時間程度かけて400℃〜700
℃、例えば600℃にまで上昇させ、この後この上昇温
度(炭化温度)例えば600℃を2.5〜3.5時間好
ましくは3時間程度そのまま維持し、その後自然放冷す
るものである。そして、本発明の活性炭はこのようにし
て得られた炭化物をさらに賦活処理する。この賦活処理
は、水蒸気、酸素、二酸化炭素、もしくはこれらのガス
を2種類以上含んだガス、あるいはさらにこれらのガス
を含んだ窒素、アルゴンガス等を通過させながら800
℃〜1000℃に加熱することで行う。このときの加熱
は、加熱開始から0.5〜1.5時間、好ましくは1時
間程度かけて800℃〜1000℃、例えば900℃に
まで上昇させ、この後この賦活温度例えば900℃を
0.5〜1.5時間好ましくは1時間程度維持し、その
後自然放冷するものである。
The activated carbon of the present invention (Embodiment 1), the pore diameter D is the parameter dV / dlogR at 10 Å ~40A least one or more peak values in the range of 0.03 to 0.2, a pore diameter D is 6Å ~ 9Å
And has a peak value of at least one in the range of dV / dlogR of 1.0 to 7.0 and a pore diameter D of 10Å to 5
On the inner surface of the large diameter hole in the range of 0Å, the diameter D
Is formed with a small-diameter hole in the range of 6Å to 9Å, which is manufactured by carbonization and activation as follows. First, carbonization treatment is performed by heating a raw material of activated carbon, such as phenol resin or coconut husk, to 400 to 700 ° C. in an inert atmosphere, for example, with nitrogen or argon gas. The heating at this time is 0.5 to 1.
400 ° C to 700 over 5 hours, preferably about 1 hour
C., for example, to 600.degree. C., after which this temperature (carbonization temperature), for example, 600.degree. Then, the activated carbon of the present invention further activates the carbide thus obtained. This activation treatment is performed while passing water vapor, oxygen, carbon dioxide, a gas containing two or more kinds of these gases, or nitrogen or argon gas further containing these gases through 800
It is carried out by heating to ℃ to 1000 ℃. The heating at this time is performed for 0.5 to 1.5 hours, preferably about 1 hour, from the start of heating to 800 ° C. to 1000 ° C., for example, 900 ° C., and then the activation temperature, for example, 900 ° C. It is maintained for 5 to 1.5 hours, preferably about 1 hour, and then naturally cooled.

【0023】次に、以上のプロセスで形成される細孔に
ついてもう少し詳細に説明する。炭化時、活性炭の細孔
の形成はまず、原料より水、軽質の炭化水素が揮発する
と同時に液状のタールが溜出し、これによって細孔直径
Dが100Å以上の多数の細孔が形成される。そして賦
活時にこのDが100Å以上の細孔の内表面に温度上昇
に伴っていち早くDが6〜9Åの細孔が形成されるもの
である。このDが6〜9Åの細孔の形成と共に、Dが6
〜9Åの細孔と100Å以上の細孔とを接続するエッジ
部分は、賦活温度が高温であるため、熱による活性炭自
身の膨張や、活性炭に含まれるフェノール基等の表面官
能基が熱によって脱離することによって崩れていく。す
なわち、エッジ部分は賦活による熱の影響が強く、周囲
より温度が早く上昇し、他の部分より早く水蒸気等の賦
活ガスと炭素が反応してH2O、CO、CO2等のガスに
ガス化してDが6〜9Åの細孔の入り口周囲のエッジ部
分を大きくえぐった状態となる。この温度が800℃以
下の場合は供給熱量が十分でなく、ガス化しないためエ
ッジ部分のえぐりも小さいものとなる。従ってせいぜい
10Å以下の直径のえぐり孔となるにすぎないため、8
00℃以下ではDが10Å〜40Åの細孔は賦活によっ
てはあまり形成されない。従って、このえぐりによって
トリハロメタンを動的状態で吸着させるための導入孔が
形成されないため、動的状態での吸着力に乏しい活性炭
となってしまうものである。
Next, the pores formed by the above process will be described in more detail. At the time of carbonization, the pores of activated carbon are formed by first vaporizing water and light hydrocarbons from the raw material and at the same time distilling liquid tar, thereby forming a large number of pores having a pore diameter D of 100 Å or more. Then, upon activation, pores having a D of 6 to 9 Å are quickly formed on the inner surface of the pores having a D of 100 Å or more as the temperature rises. With the formation of pores with D of 6 to 9Å, D is 6
Since the activation temperature is high at the edge part that connects pores of ~ 9 Å to pores of 100 Å or more, the activated carbon itself expands due to heat and surface functional groups such as phenol groups contained in the activated carbon are removed by heat. It collapses when released. That is, the edge portion has a strong influence of heat due to activation, the temperature rises faster than the surroundings, and the activation gas such as water vapor reacts with carbon earlier than other portions, and gas such as H 2 O, CO, and CO 2 is gasified. As a result, the edge portion around the entrance of the pore having D of 6 to 9 Å is greatly engraved. When the temperature is 800 ° C. or lower, the amount of heat supplied is not sufficient and gasification does not occur, so that the cut-out of the edge portion becomes small. Therefore, at most, it will be a hollow hole with a diameter of 10 Å or less.
00 ° C. below D pores of 10 Å ~40A is not so much formed by activation. Therefore, this hollow does not form an introduction hole for adsorbing trihalomethane in a dynamic state, resulting in activated carbon having a poor adsorption force in a dynamic state.

【0024】次に、温度が1000℃以上のときには、
Dが6〜9Åの細孔の入り口周囲のエッジ部分のえぐり
は非常に大きく広くなり、これによってDが10〜40
ÅのdV/dlogRが大きくなるとともに、相対的に
Dが6〜9ÅのdV/dlogR値の方が減少すること
になる。従って、トリハロメタンを吸着する作用をもつ
Dが6〜9Åの細孔が減ってしまうため、本来的な吸着
力を示す静的吸着の点で吸着力の低下した活性炭となっ
てしまうものである。
Next, when the temperature is 1000 ° C. or higher,
The cut-out at the edge around the entrance of the pores with D of 6 to 9Å is very large and wide, which results in D of 10 to 40
As dV / dlogR of Å increases, the dV / dlogR value of D of 6 to 9Å relatively decreases. Therefore, since the number of pores having a function of adsorbing trihalomethane of 6 to 9Å is reduced, the activated carbon has a reduced adsorption power in terms of static adsorption exhibiting the original adsorption power.

【0025】800〜1000℃までの温度範囲では、
温度の高いほどエッジ部分のえぐりが大きくなり、賦活
する温度ごとにDが6〜9Å以上の同じような細孔径を
持つえぐり孔が多く形成され、少なくともDが10〜4
0Åの範囲に1個以上のdV/dlogRのピーク値が
出現することになるものである。そして、賦活温度が高
いほど平均的にみてえぐりが大きくなるから、そして更
には、原料の組成の灰分分布に不均一性もあるため、温
度が1000℃に近づくほどDが40〜50Åの細孔が
形成される確率が高まり、800℃で形成されるDが4
0〜50Åの細孔のdV/dlogR値より結果的に大
きいdV/dlogR値となる。このDが40〜50Å
の細孔は導入孔としての口径面積がかなり大きく、拡散
するトリハロメタンを捕集する確率が高くなり、Dが
〜40Åのものより導入孔の作用がさらに上がって、
動的吸着力を非常に向上させることができるものであ
る。
In the temperature range from 800 to 1000 ° C.,
The higher the temperature, the larger the cut-out at the edge portion, and many cut-out holes having the same pore size with D of 6 to 9Å or more are formed at each activation temperature, and at least D is from 10 to 4
One or more peak values of dV / dlogR will appear in the range of 0Å. And, as the activation temperature is higher, the average size of the hollow becomes larger, and because the ash distribution of the composition of the raw material is also non-uniform, the pores with D of 40 to 50 Å as the temperature approaches 1000 ° C. The probability of formation of D is 4 and D formed at 800 ° C is 4
As a result, the dV / dlogR value is larger than the dV / dlogR value of the pores of 0 to 50Å. This D is 40-50Å
The size of the pores is very large as an introduction hole, and the probability of capturing diffusing trihalomethane increases, and D is 1
0 ~40Å introduction hole action is further up than that of,
The dynamic adsorption force can be greatly improved.

【0026】ただし、dV/dlogR値の分布は活性
炭の原料となる材料、炭化処理、賦活処理を行う際のガ
スの種類、炭化温度、賦活温度で微妙に変化するから、
上記した炭化処理、賦活処理のガス、炭化温度、賦活温
度等の中で適宜変更されるべきである。
However, since the distribution of the dV / dlogR value slightly changes depending on the material used as the raw material of the activated carbon, the type of gas used for the carbonization treatment and the activation treatment, the carbonization temperature, and the activation temperature,
The above-mentioned carbonization treatment, activation treatment gas, carbonization temperature, activation temperature, etc. should be appropriately changed.

【0027】(実施の形態2)次に、本発明の活性炭を
備えた浄水器について説明するが、この発明はこれに限
定させるものではない。
(Embodiment 2) Next, a water purifier provided with the activated carbon of the present invention will be described, but the present invention is not limited to this.

【0028】図5は本発明の活性炭を備えた浄水器の要
部模式図である。図5において、1は活性炭を通過した
浄水を吐出する吐出管、2は浄水器本体、3は中空糸
膜、4は後記する実施例1乃至3の内いずれか1の活性
炭、5は中空糸膜3と活性炭4と収容した浄水カートリ
ッジ、6は浄水器本体2に水道水を導入する導水チュー
ブ、7は水スイッチ、8は蛇口である。
FIG. 5 is a schematic view of the essential parts of a water purifier equipped with the activated carbon of the present invention. In FIG. 5, 1 is a discharge pipe for discharging purified water that has passed through activated carbon, 2 is a water purifier body, 3 is a hollow fiber membrane, 4 is activated carbon of any one of Examples 1 to 3 described later, and 5 is hollow fiber. A water purification cartridge containing the membrane 3 and activated carbon 4, 6 is a water guiding tube for introducing tap water into the water purifier body 2, 7 is a water switch, and 8 is a faucet.

【0029】本発明の活性炭を備えた浄水器の通水経路
について説明する。まず、蛇口8より、供給された水道
水は水スイッチ7を介して導水チューブ6を通り、浄水
器本体2に導入される。このとき水スイッチ7は内蔵さ
れたスイッチにより、水道水を浄水器本体2に通過させ
るか、浄水器本体2を介さずに外に排出するかを選択す
ることができる。さらに浄水器本体2に水道水が導入さ
れると、浄水カートリッジ5の下部に配置している活性
炭4に通水され粒子径の小さな濁質や水中のトリハロメ
タン等の有害物質が吸着される。その後中空糸膜3によ
り、粒子径の大きな濁質等が除去され、吐出管1を介し
て吐水され、主に飲用水として利用されることとなる。
The water passage of the water purifier provided with the activated carbon of the present invention will be described. First, tap water supplied from the faucet 8 is introduced into the water purifier body 2 through the water guide tube 6 via the water switch 7. At this time, the water switch 7 can select whether to pass the tap water through the water purifier main body 2 or to discharge the tap water outside without passing through the water purifier main body 2 by a built-in switch. Further, when tap water is introduced into the water purifier main body 2, water is passed through the activated carbon 4 arranged in the lower portion of the water purification cartridge 5 to adsorb turbid substances having a small particle size and harmful substances such as trihalomethane in water. After that, the hollow fiber membrane 3 removes suspended particles having a large particle diameter, and the water is discharged through the discharge pipe 1 to be mainly used as drinking water.

【0030】以上のように本実施の形態2の浄水器は、
優れた吸着特性を有する活性炭を備えて形成されている
ので、少量の活性炭で大きな浄水能力を得ることがで
き、浄水器全体のコンパクト化ができる。
As described above, the water purifier of the second embodiment is
Since it is formed by using activated carbon having excellent adsorption characteristics, a large amount of water purification capacity can be obtained with a small amount of activated carbon, and the entire water purifier can be made compact.

【0031】[0031]

【実施例】以下、本発明の実施例について、図1乃至図
4を用いて説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0032】(実施例1)フェノール樹脂を原料とし、
炭化処理として不活性雰囲気下例えば窒素下で、加熱開
始から1時間で500℃まで昇温し、3時間保持した後
自然放冷した。以上のように得られた炭化物を、賦活処
理として、加熱開始から1時間で900℃まで昇温し、
水蒸気を含んだ窒素を通過させ1時間保持した後自然放
冷した。
(Example 1) Using a phenol resin as a raw material,
As the carbonization treatment, in an inert atmosphere, for example, under nitrogen, the temperature was raised to 500 ° C. in 1 hour from the start of heating, kept for 3 hours, and then naturally cooled. The carbide obtained as described above is heated to 900 ° C. for 1 hour from the start of heating as an activation treatment,
After passing through nitrogen containing steam, the mixture was kept for 1 hour and then naturally cooled.

【0033】以上のようにして得られた活性炭を篩分
し、粒度が60/200メッシュのものを用い各種測定
を行った。BET法により求めた比表面積は1020m
2/gであった。細孔径分布を表すパラメータdV/
dlogRは、高精度全自動ガス吸着装置BERUSO
RP28(日本ベル株式会社製)で窒素を吸着させて測
定し、細孔直径D(=2R)が20Å〜100Åの範囲
におけるdV/dlogR値は窒素ガスの吸着等温線か
らD−H法(Dollimore−Heal法)によっ
て解析し、Dが〜20Åの範囲におけるdV/dlog
R値は窒素ガスの吸着等温線のt−plotからMP法
(Micropore法)で解析した。それらの結果を
図1(a)、図1(b)に示した。即ち、図1(a)は
本発明の実施例1の活性炭のdV/dlogR値を示す
図であり、図1(b)は、その要部拡大図である。
The activated carbon obtained as described above was sieved and various measurements were carried out using a particle size of 60/200 mesh. Specific surface area determined by BET method is 1020 m
It was m 2 / g. Parameter dV / which expresses pore size distribution
dlogR is a high-precision fully automatic gas adsorption device BERUSO
It is measured by adsorbing nitrogen with RP28 (manufactured by Nippon Bell Co., Ltd.), and the dV / dlogR value in the range of the pore diameter D (= 2R) of 20Å to 100Å is calculated from the adsorption isotherm of the nitrogen gas by the DH method (Dollimore). -Heal method), dV / dlog in the range of D to -20Å
The R value was analyzed by the MP method (Micropore method) from t-plot of the adsorption isotherm of nitrogen gas. The results are shown in FIGS. 1 (a) and 1 (b). That is, FIG. 1 (a) is a diagram showing the dV / dlogR value of the activated carbon of Example 1 of the present invention, and FIG. 1 (b) is an enlarged view of the relevant part.

【0034】図1(a)で明らかなように細孔直径Dが
6〜9Åの範囲においてdV/dlogRはピーク値が
5.8であるピークを1個有している。図1(b)では
Dが10〜20Åの範囲でdV/dlogRのピーク値
が0.15、0.17の2つのピーク、Dが20〜30
Åの範囲でピーク値が0.09の1つのピーク、Dが3
0〜40Åの範囲でdV/dlogRのピーク値が0.
07の1つのピークを有し、Dが10〜40Åの範囲
で、dV/dlogRのピーク値が0.03以上のピー
クを合計で個有している。そして、Dが6〜40Åの
範囲では、dV/dlogRのピーク値が0.03以上
のピークを合計で5個有している。さらにDが10〜5
0Åの範囲においてもdV/dlogRは0.03未満
の部分を有していないことがわかる。
As is apparent from FIG. 1 (a), dV / dlogR has one peak having a peak value of 5.8 in the range of the pore diameter D of 6 to 9Å. In FIG. 1B, two peaks of dV / dlogR with peak values of 0.15 and 0.17 in the range of D of 10 to 20 Å, D of 20 to 30
One peak with a peak value of 0.09 in the range of Å, D is 3
In the range of 0 to 40Å, the peak value of dV / dlogR is 0.
It has one peak of 07, D has a range of 10 to 40 Å, and has a total of four peaks with a peak value of dV / dlogR of 0.03 or more. When D is in the range of 6 to 40Å, there are a total of 5 peaks having a peak value of dV / dlogR of 0.03 or more. Further D is 10-5
It can be seen that dV / dlogR does not have a portion less than 0.03 even in the range of 0Å.

【0035】上述の特性を有する活性炭のトリハロメタ
ンの吸着特性を以下の方法で測定した。まず、予め活性
炭と0.2μmフィルターにより浄化処理した水道浄化
水に、トリハロメタン類を100ppb添加したものを
調整原水とした。ついで、体積容量50ml、厚さ20
mmの円筒形カラムに上述の特性を有する活性炭を充填
し、前述の調整原水をSV値640で活性炭層に通過さ
せた。活性炭層を通過した流出水中のトリハロメタン類
の濃度を、パージ・アンド・トラップ法で濃縮前処理
し、ガスクロマトグラフ−質量分析装置で定量測定し
た。この時、活性炭層通過前後で、流入水に対する流出
水のトリハロメタン類の水中濃度が、20%以上になる
点を破過点とし、活性炭の吸着材としての寿命とした。
この時点までに活性炭が吸着したトリハロメタン類の量
を吸着容量を求めたところ220ppb・tonであ
り、トリハロメタン類の吸着容量が著しく大きいことが
判った。これらの結果を(表1)に示した。
The adsorption characteristics of trihalomethane on the activated carbon having the above characteristics were measured by the following method. First, 100 ppb of trihalomethanes was added to tap purified water that had been purified by activated carbon and a 0.2 μm filter in advance, to obtain adjusted raw water. Then, volume capacity 50ml, thickness 20
A cylindrical column of mm was packed with activated carbon having the above-mentioned characteristics, and the above-mentioned adjusted raw water was passed through the activated carbon layer at an SV value of 640. The concentration of trihalomethanes in the effluent that passed through the activated carbon layer was subjected to a concentration pretreatment by the purge and trap method and quantitatively measured by a gas chromatograph-mass spectrometer. At this time, a point at which the concentration of trihalomethanes in the outflow water in water was 20% or more before and after passing through the activated carbon layer was defined as a breakthrough point, and the life of the activated carbon as an adsorbent was defined.
The amount of trihalomethanes adsorbed by activated carbon up to this point was determined to be 220 ppb ton, and it was found that the adsorption capacity of trihalomethanes was remarkably large. The results are shown in (Table 1).

【0036】[0036]

【表1】 [Table 1]

【0037】(表1)に示したように、実施例1の活性
炭は、後述の比較例1の活性炭と比較して通水時のトリ
ハロメタンの吸着容量が6.3倍と非常に高いものであ
った。
As shown in (Table 1), the activated carbon of Example 1 has a very high adsorption capacity of trihalomethane of 6.3 times when passing water as compared with the activated carbon of Comparative Example 1 described later. there were.

【0038】(実施例2)フェノール樹脂を原料とし、
炭化処理として、不活性雰囲気下(窒素下)で、加熱開
始から1時間で500℃まで昇温し、3時間保持した後
自然放冷した。以上のように得られた炭化物を、賦活処
理として加熱開始から1時間で850℃まで昇温し、水
蒸気を含んだ窒素を通過させ1時間保持した後自然放冷
した。BET法により求めた比表面積は950mm2
gであった。
(Example 2) Using a phenol resin as a raw material,
As the carbonization treatment, in an inert atmosphere (under nitrogen), the temperature was raised to 500 ° C. in 1 hour from the start of heating, held for 3 hours, and then naturally cooled. The charcoal-based material obtained as described above was heated to 850 ° C. in 1 hour from the start of heating as an activation treatment, nitrogen containing water vapor was passed through, held for 1 hour, and then naturally cooled. The specific surface area determined by the BET method is 950 mm 2 /
It was g.

【0039】以上のようにして得られた実施例2の活性
炭を、粒度が60/150メッシュのものを使用し、d
V/dlogR値を実施例1と同様にして測定し、図2
(a)に示しその要部拡大図を、図2(b)に示した。
The activated carbon of Example 2 obtained as above was used with a particle size of 60/150 mesh and d
The V / dlogR value was measured in the same manner as in Example 1 and shown in FIG.
FIG. 2B is an enlarged view of the main part shown in FIG.

【0040】図2(a)で明らかなように細孔直径Dが
6〜9Åの範囲においてdV/dlogRはピーク値が
6.3であるピークを1個有している。図2(b)では
Dが10〜20Åの範囲でdV/dlogRのピーク値
が0.17、0.14、0.15、0.11の4個のピ
ーク、Dが20〜30Åの範囲でピーク値が0.03以
上のピークはなく、Dが30〜40Åの範囲でピーク値
が0.1の1つのピークを有し、Dが10〜40Åの範
囲でdV/dlogRのピーク値が0.03以上のピー
クを合計で5個有している。Dが6〜40Åの範囲では
dV/dlogRのピーク値が0.03以上のピークを
合計で6個有している。しかし、Dが20〜50Åの範
囲でdV/dlogRで0.03未満の部分を有してお
り、全体的に実施例1に比較して低くなっている。
As is apparent from FIG. 2A, dV / dlogR has one peak with a peak value of 6.3 in the range of the pore diameter D of 6 to 9Å. In FIG. 2 (b), D is in the range of 10 to 20Å and the peak values of dV / dlogR are four peaks of 0.17, 0.14, 0.15 and 0.11, and D is in the range of 20 to 30Å. There is no peak with a peak value of 0.03 or more, D has one peak with a peak value of 0.1 in the range of 30 to 40Å, and dV / dlogR has a peak value of 0 in the range of D to 10 to 40Å. It has 5 peaks of 0.03 or more in total. When D is in the range of 6 to 40Å, there are a total of 6 peaks having a peak value of dV / dlogR of 0.03 or more. However, D has a part of less than 0.03 in dV / dlogR in the range of 20 to 50Å, which is lower than that of Example 1 as a whole.

【0041】以上の特性を有する活性炭を実施例1と同
様の方法でトリハロメタンの吸着特性を測定した結果を
(表1)に示した。トリハロメタン類の量を吸着容量は
(表1)からわかるように118ppb・tonであ
り、Dが20〜50Åの範囲でdV/dlogRで0.
03未満の部分を有しているため、実施例1に比べ低い
ことが判った。しかし、後述の比較例1の活性炭と比較
して通水時のトリハロメタンの吸着容量が3.4倍と高
いものであった。
The results of measuring the adsorption characteristics of trihalomethane for the activated carbon having the above characteristics by the same method as in Example 1 are shown in (Table 1). As can be seen from (Table 1), the amount of trihalomethanes adsorbed was 118 ppb · ton, and when D was 20 to 50Å, dV / dlogR was 0.
Since it has a portion less than 03, it was found to be lower than in Example 1. However, the adsorption capacity of trihalomethane during water passage was 3.4 times higher than that of the activated carbon of Comparative Example 1 described later.

【0042】(実施例3) 活性炭原料としてヤシガラを使用し、炭化処理として、
不活性雰囲気下(窒素下)で、加熱開始から1時間で5
00℃まで昇温し、3時間保持した後自然放冷した。次
いで、賦活処理として加熱開始から1時間で900℃ま
で昇温し、水蒸気を含んだ窒素を通過させ1時間保持し
た後自然放冷した。BET法により求めた比表面積は1
100mm2/gであった。
(Example 3) Using coconut husk as a raw material for activated carbon, and as a carbonization treatment,
5 hours from the start of heating in an inert atmosphere (under nitrogen)
The temperature was raised to 00 ° C., the temperature was maintained for 3 hours, and then naturally cooled. Next, as activation treatment, the temperature was raised to 900 ° C. in 1 hour from the start of heating, nitrogen containing water vapor was passed through and kept for 1 hour, and then naturally cooled. The specific surface area obtained by the BET method is 1
It was 100 mm 2 / g.

【0043】以上のようにして得られた実施例3の活性
炭のうち、粒度が60/150メッシュのものを使用
し、dV/dlogR値を実施例1、2と同様にして測
定し、図3(a)に示し、更にその要部拡大図を図3
(b)に示した。
Of the activated carbon of Example 3 obtained as described above, one having a particle size of 60/150 mesh was used, and the dV / dlogR value was measured in the same manner as in Examples 1 and 2, and FIG. It is shown in FIG.
It is shown in (b).

【0044】図3(a)で明らかなように細孔直径Dが
6〜9Åの範囲においてdV/dlogRはピーク値が
4.3であるピークを1個有している。図3(b)では
Dが10〜20Åの範囲でdV/dlogRのピーク値
が0.15、0.25の2個のピーク、Dが20〜30
Åの範囲でピーク値が0.03以上のピークはなく、D
が30〜40Åの範囲でもピーク値が0.03以上のピ
ークはない。すなわち、Dが10〜40Åの範囲で
V/dlogRのピーク値が0.03以上なるピーク
は合計で2個しかなく、6〜40Åの範囲ではdV/d
logRのピーク値が0.03以上のピークを合計で3
個しか有していない。また、Dが20〜50Åの範囲に
おいて数値は全体的に低く、dV/dlogRが0.0
2以下となっており、実施例2よりも全体的に細孔容積
が低くなっている。
As is apparent from FIG. 3A, dV / dlogR has one peak having a peak value of 4.3 in the range of the pore diameter D of 6 to 9Å. In FIG. 3 (b), two peaks of dV / dlogR peak values of 0.15 and 0.25 in the range of D of 10 to 20Å, D of 20 to 30
There is no peak with a peak value of 0.03 or more in the range of Å, and D
There is no peak with a peak value of 0.03 or more even in the range of 30 to 40Å. That is, when D is in the range of 10 to 40 Å , d
Peak to peak value of V / dlogR is 0.03 or more
There are only 2 in total, and dV / d in the range of 6-40Å
3 peaks with a logR peak value of 0.03 or more
I only have one. Further, in the range of D of 20 to 50Å, the numerical value is low as a whole, and dV / dlogR is 0.0.
It is 2 or less, and the pore volume is lower than that of Example 2 as a whole.

【0045】以上の特性を有する活性炭を実施例1、2
と同様の方法でトリハロメタンの吸着特性を測定した結
果を(表1)にまとめた。トリハロメタン類の量を吸着
容量を求めたところ120ppb・tonであり、後述
の比較例の活性炭と比較すると3.4倍と高いもので
あったが、実施例1に比べ低く、Dが10〜20Åの範
囲のdV/dlogRのピーク値0.25が、図3
(b)で示すような位置に存在しており、実施例2と略
同様の吸着容量であった。
Activated carbons having the above characteristics were used in Examples 1 and 2.
The results of measuring the adsorption characteristics of trihalomethane by the same method as in (1) are summarized in (Table 1). When the adsorption capacity of the amount of trihalomethanes was determined, it was 120 ppb · ton, which was 3.4 times higher than the activated carbon of Comparative Example 1 described later, but lower than that of Example 1 and D was 10 to 10. The peak value 0.25 of dV / dlogR in the range of 20Å is shown in FIG.
It was present at the position shown in (b) and had an adsorption capacity substantially similar to that of Example 2.

【0046】(比較例) 活性炭原料としてフェノール樹脂を使用し、炭化処理と
して不活性雰囲気下(窒素下)で、加熱開始から1時間
で500℃まで昇温し、3時間保持した後自然放冷し
た。次いで、賦活処理として加熱開始から1時間で90
0℃まで昇温し、水蒸気を含んだ窒素を通過させ1時間
保持した後自然放冷した。BET法により求めた比表面
積は960mm2/gであった。
Comparative Example 1 A phenol resin was used as a raw material for activated carbon, and the carbonization treatment was carried out in an inert atmosphere (under nitrogen), the temperature was raised to 500 ° C. in 1 hour from the start of heating, and the mixture was kept for 3 hours and then spontaneously released. Chilled Next, as activation treatment, 90 hours after starting heating
The temperature was raised to 0 ° C., nitrogen containing water vapor was passed through and kept for 1 hour, and then naturally cooled. The specific surface area determined by the BET method was 960 mm 2 / g.

【0047】粒度が60/150メッシュのものを用
い、実施例1〜と同様の方法でdV/dlogR値を
測定した。その結果を図4(a)に示し、更にその要部
拡大図を図4(b)に示した。
Using a particle size of 60/150 mesh, dV / dlogR value was measured by the same method as in Examples 1 to 3 . The results are shown in FIG. 4 (a), and an enlarged view of the relevant parts is shown in FIG. 4 (b).

【0048】図4(a)で明らかなように細孔直径Dが
6〜9Åの範囲においてdV/dlogRはピーク値が
5.9であるピークを1個有している。図4(b)では
Dが10〜20Åの範囲でdV/dlogRのピーク値
が0.23、0.11、0.1の3個のピーク、Dが2
0〜30Åの範囲では、dV/dlogRのピーク値が
0.03以上のピークを有さず、Dが30〜40Åの範
囲で、dV/dlogRのピーク値が0.03以上のも
のはなく、0.025が最大であった。Dが10〜40
Åの範囲でピーク値が0.03以上のピークは3個とな
り、Dが6〜40Åの範囲に合計4個のdV/dlog
Rのピークを有している。しかし、Dが20〜50Åの
範囲でdV/dlogRが0.03以上の部分はなく、
実施例1〜3と比較して全体的に低いものであった。
As is apparent from FIG. 4 (a), dV / dlogR has one peak with a peak value of 5.9 in the range of the pore diameter D of 6 to 9Å. In FIG. 4B, three peaks of dV / dlogR have peak values of 0.23, 0.11, and 0.1 in the range of D of 10 to 20Å, and D is 2
In the range of 0 to 30Å, the peak value of dV / dlogR does not have a peak of 0.03 or more, and in the range of D of 30 to 40Å, the peak value of dV / dlogR is not 0.03 or more, 0.025 was the maximum. D is 10-40
There are 3 peaks with a peak value of 0.03 or more in the range of Å, and a total of 4 dV / dlog in the range of D of 6 to 40 Å.
It has an R peak. However, there is no part where dV / dlogR is 0.03 or more in the range of D to 20 to 50Å,
It was low as a whole as compared with Examples 1 to 3 .

【0049】以上の特性を有する比較例の活性炭のト
リハロメタンの吸着容量を求め、(表1)に示した。
(表1)から判るように、トリハロメタンの吸着容量は
35ppb・tonであり、実施例1〜3と比べ極度に
小さいことが判る。
The trihalomethane adsorption capacity of the activated carbon of Comparative Example 1 having the above characteristics was determined and is shown in (Table 1).
As can be seen from (Table 1), the adsorption capacity of trihalomethane is 35 ppb · ton, which is extremely small as compared with Examples 1 to 3 .

【0050】[0050]

【発明の効果】本発明の請求項1に記載の発明によれ
ば、クロロホルム(分子直径5Å)で代表されるトリハ
ロメタンに対し、静的吸着特性の高い細孔直径Dが6Å
〜9Åの範囲の細孔が多いので分子間力が強く働き、ト
リハロメタンの吸着容量を大きくすることができる。
According to the invention described in claim 1 of the present invention, the pore diameter D having a high static adsorption property is 6Å with respect to trihalomethane represented by chloroform (molecular diameter 5Å).
Since there are many pores in the range of up to 9Å, the intermolecular force works strongly and the adsorption capacity of trihalomethane can be increased.

【0051】本発明の請求項2に記載の発明によれば、
請求項1に記載の発明の効果に加え、トリハロメタン以
外の各種成分の吸着除去能力をさらに高めることができ
る。
According to the second aspect of the present invention,
In addition to the effect of the invention described in claim 1, the ability to adsorb and remove various components other than trihalomethane can be further enhanced.

【0052】本発明の請求項3に記載の発明によれば、
請求項1、2に記載の発明の効果に加え、産業廃棄物で
ある果実殻を用いることによって、安価に活性炭を手に
入れることができるとともに、石炭等の鉱物系の原料よ
りも金属不純物が少ないため、安全で構造調整が容易で
ある。
According to the invention of claim 3 of the present invention,
In addition to the effects of the invention described in claims 1 and 2, by using fruit shells which are industrial wastes, activated carbon can be obtained at low cost, and metal impurities are contained more than mineral raw materials such as coal. Since there are few, it is safe and the structure adjustment is easy.

【0053】本究明の請求項3に記載の発明によれは、
請求項1又は2に記載の発明で得られる効果に加え、産
業廃棄物である果実殻を用いることによって、安価に活
性炭を手に入れることができるとともに、石炭等の鉱物
系の原料よりも金属不純物が少ないため、安全性に優れ
るとともに構造調整が容易で設計の自由性に優れる。
According to the invention of claim 3 of the present invention,
In addition to the effects obtained by the invention according to claim 1 or 2, by using fruit shells which are industrial wastes, activated carbon can be obtained at low cost, and metal is more preferable than mineral-based raw materials such as coal. Since it contains few impurities, it excels in safety, structural adjustment is easy, and design freedom is excellent.

【0054】本発明の請求項4に記載の発明によれば、
請求項3に記載の発明で得られる効果に加え、従来から
広範に使用されていた、浄水処理用のヤシガラ活性炭
の、広範な浄化性能を低下させることなく、トリハロメ
タン類の吸着特性を飛躍的に向上させることができる。
According to the invention of claim 4 of the present invention,
In addition to the effect obtained by the invention described in claim 3, the adsorption property of trihalomethanes is dramatically improved without deteriorating the wide range of purification performance of the coconut husk activated carbon which has been widely used from the past. Can be improved.

【0055】本発明の請求項5に記載の発明によれば、
請求項1又は2の発明で得られる効果に加え、炭化、賦
活時に硬化して活性炭化し、材料の多様化を図ることが
できる。
According to the invention of claim 5 of the present invention,
In addition to the effect obtained by the invention of claim 1 or 2, it is possible to diversify the material by hardening at the time of carbonization and activation to activate carbonization.

【0056】本発明の請求項6に記載の発明によれば、
請求項5に記載の発明で得られる効果に加え、トリハロ
メタン類に対して高い吸着特性を有するフェノール樹脂
を原料とする活性炭の吸着能力を高めたことで、材料コ
ストの高い活性炭のランニングコストを下げることを実
現できる。
According to the invention of claim 6 of the present invention,
In addition to the effect obtained by the invention described in claim 5, by increasing the adsorption capacity of activated carbon made of a phenol resin having a high adsorption property for trihalomethanes, the running cost of activated carbon having a high material cost is reduced. Can be realized.

【0057】本発明の請求項7に記載の発明によれば、
トリハロメタン類の吸着に必要な活性炭量が低減するこ
とにより、浄水器等に使用されるカートリッジなどの活
性炭充填必要量が減少するので、カートリッジの小型化
・長寿命化が実現できる。
According to the invention of claim 7 of the present invention,
Since the amount of activated carbon required for adsorbing trihalomethanes is reduced, the amount of activated carbon required to fill a cartridge used in a water purifier or the like is reduced, so that the cartridge can be downsized and the service life can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)本発明の実施例1の活性炭のdV/dl
ogR値を示す図 (b)その要部拡大図
FIG. 1 (a) dV / dl of activated carbon of Example 1 of the present invention
Figure showing the ogR value (b) Enlarged view of the main part

【図2】(a)実施例2の活性炭のdV/dlogR値
を示す図 (b)その要部拡大図
FIG. 2 (a) is a diagram showing dV / dlogR values of the activated carbon of Example 2 (b) is an enlarged view of a main part thereof.

【図3】(a)実施例3の活性炭のdV/dlogR値
を示す図 (b)その要部拡大図
FIG. 3 (a) is a diagram showing the dV / dlogR value of the activated carbon of Example 3 (b) is an enlarged view of the relevant part.

【図4】(a)比較例1の活性炭のdV/dlogR値
を示す図 (b)その要部拡大図
FIG. 4 (a) is a diagram showing the dV / dlogR value of the activated carbon of Comparative Example 1 (b) is an enlarged view of the relevant part.

【図5】本発明の活性炭を備えた浄水器の要部模式図FIG. 5 is a schematic view of a main part of a water purifier equipped with activated carbon according to the present invention.

【符号の説明】[Explanation of symbols]

1 吐出管 2 浄水器本体 3 中空糸膜 4 活性炭 5 浄水カートリッジ 6 導水チューブ 7 水スイッチ 8 蛇口 1 discharge pipe 2 Water purifier body 3 hollow fiber membranes 4 activated carbon 5 water purification cartridge 6 water transfer tube 7 water switch 8 faucet

フロントページの続き (56)参考文献 特開 平11−157821(JP,A) 特開 平10−297912(JP,A) 特開 平9−328308(JP,A) 特開 平10−279303(JP,A) 特開 平7−215711(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01B 31/08 - 31/14 B01J 20/20 C02F 1/28 Continuation of front page (56) Reference JP-A-11-157821 (JP, A) JP-A-10-297912 (JP, A) JP-A-9-328308 (JP, A) JP-A-10-279303 (JP , A) JP-A-7-215711 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C01B 31/08-31/14 B01J 20/20 C02F 1/28

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】パラメータdV/dlogR(V:細孔容
積、R:細孔半径)で表した細孔径分布において、dV
/dlogR値が、(a)細孔直径Dが10Å〜40Å
の範囲でdV/dlogR値が0.03〜0.2の範囲
に少なくとも1個以上のピーク値と、(b)細孔直径D
が6Å〜9Åの範囲でdV/dlogR値が1.0〜
7.0の範囲に少なくとも1個以上のピーク値と、を備
え、細孔直径Dが10Å〜50Åの多数の大口径細孔の
内表面に細孔直径Dが6Å〜9Åの小口径細孔が形成さ
れており、トリハロメタンの通水時の吸着容量が118
〜220ppb・tonであることを特徴とする活性
炭。
1. In the pore size distribution represented by the parameter dV / dlogR (V: pore volume, R: pore radius), dV
/ DlogR value, (a) a pore diameter D is 10 Å ~40A
In the range of dV / dlogR value of 0.03 to 0.2, at least one peak value, and (b) pore diameter D
Is in the range of 6Å to 9Å and the dV / dlogR value is 1.0 to
Comprising at least one or more peak values, the ranges of 7.0, the small-diameter pores of a number of pore diameter D on the inner surface of the large diameter pores of diameter D is 10 Å ~50A is 6Å~9Å Is formed, and the adsorption capacity of the trihalomethane during water flow is 118
Activated carbon characterized in that it is ~ 220 ppb ton .
【請求項2】前記細孔直径Dが20Å〜50Åの範囲
で、dV/dlogR値が0.03未満とならないこと
を特徴とする請求項1に記載の活性炭。
2. The activated carbon according to claim 1, wherein the pore diameter D is in the range of 20Å to 50Å and the dV / dlogR value does not become less than 0.03.
【請求項3】前記活性炭の原料が果実殻であることを特
徴とする請求項1又は2に記載の活性炭。
3. The activated carbon according to claim 1, wherein the raw material of the activated carbon is fruit shell.
【請求項4】前記活性炭の原料がヤシガラであることを
特徴とする請求項1又は2に記載の活性炭。
4. The activated carbon according to claim 1, wherein the raw material of the activated carbon is coconut husk.
【請求項5】前記活性炭の原料が熱硬化性樹脂であるこ
とを特徴とする請求項1又は2記載の活性炭。
5. The activated carbon according to claim 1, wherein the raw material of the activated carbon is a thermosetting resin.
【請求項6】前記熱硬化性樹脂がフェノール樹脂である
ことを特徴とする清求項5記載の活性炭。
6. The activated carbon according to claim 5, wherein the thermosetting resin is a phenol resin.
【請求項7】請求項1乃至6のうちのいずれか1項に記
載の活性炭を浄水材として備えていることを特徹とする
浄水器。
7. A water purifier comprising the activated carbon according to any one of claims 1 to 6 as a water purification material.
JP16490599A 1999-06-11 1999-06-11 Activated carbon and water purifier equipped with it Expired - Fee Related JP3528685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16490599A JP3528685B2 (en) 1999-06-11 1999-06-11 Activated carbon and water purifier equipped with it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16490599A JP3528685B2 (en) 1999-06-11 1999-06-11 Activated carbon and water purifier equipped with it

Publications (2)

Publication Number Publication Date
JP2000351613A JP2000351613A (en) 2000-12-19
JP3528685B2 true JP3528685B2 (en) 2004-05-17

Family

ID=15802104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16490599A Expired - Fee Related JP3528685B2 (en) 1999-06-11 1999-06-11 Activated carbon and water purifier equipped with it

Country Status (1)

Country Link
JP (1) JP3528685B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190005997A (en) 2016-05-17 2019-01-16 주식회사 쿠라레 Activated carbon, adsorption filter and water purifier using it

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8205755B2 (en) 2006-03-22 2012-06-26 3M Innovative Properties Company Filter media
DE102010029034A1 (en) * 2010-05-17 2011-11-17 Sgl Carbon Se Porous carbon with high volumetric capacity for double layer capacitors
JP5863532B2 (en) * 2012-03-29 2016-02-16 大阪ガスケミカル株式会社 Activated carbon and manufacturing method thereof
JP6174556B2 (en) * 2014-12-24 2017-08-02 トクラス株式会社 Modified activated carbon, method for producing the same, and filtration cartridge
JP7253880B2 (en) * 2018-05-21 2023-04-07 三菱ケミカル・クリンスイ株式会社 Water purification cartridge and its use
JP2022017611A (en) * 2018-10-31 2022-01-26 三菱ケミカル・クリンスイ株式会社 Water treatment cartridge and water purifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190005997A (en) 2016-05-17 2019-01-16 주식회사 쿠라레 Activated carbon, adsorption filter and water purifier using it
US10843168B2 (en) 2016-05-17 2020-11-24 Kuraray Co., Ltd. Activated carbon, and adsorption filter and water purifier both including same

Also Published As

Publication number Publication date
JP2000351613A (en) 2000-12-19

Similar Documents

Publication Publication Date Title
CA2431314C (en) Activated carbon for odor control and method for making same
Zhu et al. Removal of toluene from waste gas by adsorption-desorption process using corncob-based activated carbons as adsorbents
Qiao et al. Preparation of biochar from Enteromorpha prolifera and its use for the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous solution
San Miguel et al. The regeneration of field-spent granular-activated carbons
Manap et al. Adsorption isotherm and kinetic study of gas-solid system of formaldehyde on oil palm mesocarp bio-char: pyrolysis effect
Vohra Adsorption-based removal of gas-phase benzene using granular activated carbon (GAC) produced from date palm pits
KR950003733B1 (en) Activated carbon production thereof & its use for adsorption
JP3528685B2 (en) Activated carbon and water purifier equipped with it
JP3506043B2 (en) Activated carbon and water purifier using it
Somyanonthanakun et al. Studies on the adsorption of Pb (II) from aqueous solutions using sugarcane bagasse-based modified activated carbon with nitric acid: kinetic, isotherm and desorption
Rashidi et al. The efficacy of the ozonation process in the presence of activated carbon impregnated with magnesium oxide in the removal of benzene from the air stream
He et al. Synthesis of corncob biochar with high surface area by KOH activation for VOC adsorption: effect of KOH addition method
JP4876307B2 (en) Method for producing activated carbon
JP3693544B2 (en) Activated carbon and water purifier provided with the same
Zhang et al. Regeneration of 4-chlorophenol from spent powdered activated carbon by ultrasound
JP3436190B2 (en) Method for producing activated carbon for running water treatment and activated carbon for running water treatment obtained by the method
JP2002053314A (en) Activated carbon and water purifier provided with the same
Rangkoy et al. Effect of nano-TiO2 immobilized on activated carbon, zeolite Y and ZSM-5 on the removal of styrene vapors from polluted air
US6362127B1 (en) Synthesis of a carbon-based catalyst from sludge
JP4876301B2 (en) Activated carbon and water purifier
JP2000203823A (en) Production of activated carbon
Cao et al. Adsorption behavior and mechanism of 2, 4, 6-Trichlorophenol on nut shell activated carbon
Al-Zahrani et al. Characterization of Date Seed Powder Derived Porous Graphene Oxide and Its Application as an Environmental Functional Material to Remove Dye from aqueous Solutions. Materials 2022, 15, 8136
JP4310851B2 (en) Method for producing activated carbon
KR101765236B1 (en) Ion Purifier

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees