JP4876301B2 - Activated carbon and water purifier - Google Patents
Activated carbon and water purifier Download PDFInfo
- Publication number
- JP4876301B2 JP4876301B2 JP2000220451A JP2000220451A JP4876301B2 JP 4876301 B2 JP4876301 B2 JP 4876301B2 JP 2000220451 A JP2000220451 A JP 2000220451A JP 2000220451 A JP2000220451 A JP 2000220451A JP 4876301 B2 JP4876301 B2 JP 4876301B2
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- water
- adsorption
- trihalomethanes
- acidic functional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Carbon And Carbon Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、浄水処理において、飲料水に含まれる有害成分であるトリハロメタン類等の有機塩素系化合物の吸着特性に優れた活性炭、およびそれを用い、飲料水としてトリハロメタン類などの有害成分を除去する浄水器に関するものである。
【0002】
【従来の技術】
近年、飲料水用に用いられる水道水は、殺菌を目的に添加される残留塩素を一定濃度以上含有することが必要で、健康、公衆衛生の観点から、水道法により運用方法が規定されている。しかし、殺菌を目的に添加される残留塩素は、殺菌作用の他に無機物の酸化作用や有機物の酸化分解作用も有しており、天然有機物の一種であるフミン質を酸化分解する際に、発ガン性物質であるトリハロメタン類を生成してしまう。一方、水道水等に利用される原水の水質は、汚染の拡大により近年劣化傾向にあり、これに伴い原水中に含まれるフミン質も増加してきており、フミン質の酸化分解により発生するトリハロメタン類の濃度も増加傾向にある。
【0003】
このため、従来から発生したトリハロメタン類の除去手段として、吸着作用を有する活性炭による浄化処理が行われてきた。一般に、従来の水処理用活性炭は、除去対象物の単位容量当たりの吸着容量を高めるために、ヨウ素吸着性能、メチレンブルー吸着性能等の特性が良い高表面積を有する活性炭が使用されてきた。これらの活性炭は、水処理用であることから、親水性も高いことが望ましく、ガス賦活として水蒸気賦活されるものが圧倒的に多いが、他に、水酸化アルカリで賦活処理して得られる薬品賦活活性炭も用いられる。これらの形状は多様で、粉末状、破砕状、球状、粒状、繊維状の他に、形成された円盤状、顆粒状、球状のものなどが製造され、使用されている。
【0004】
また、特開平8−281099号公報(以下、イ号公報とする。)には、Boehemの方法の全表面酸性官能基量が0.1meq/gより小さい活性炭について開示されている。全表面酸性官能基量が多く、親水性が高すぎると、水溶液中物質の吸着では水分子を形成するクラスターが細孔の入口を塞ぐような状態で滞留し、有機塩素系化合物の吸着能を減少させるため、活性炭の親水性を制御した活性炭が開示されている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の活性炭および浄水器は、以下のような課題を有していた。
【0006】
(1)水蒸気等によりガス賦活された活性炭は、吸着帯を形成し、吸着帯中を被処理水が通過する、通水中のトリハロメタン類の浄化処理法において、活性炭単位重量当たりの吸着容量が静水状態時の平衡吸着量に対して極めて低く、活性炭の吸着性能が十分に発揮されていないという課題を有していた。
【0007】
(2)椰子殻を原料とする活性炭は表面積が大きく、水中に含まれる多くの物質に対して広範囲な吸着特性を有するが、トリハロメタン類の吸着浄化処理においては、特定の細孔のみがトリハロメタン類の吸着に有効であり、通水中のトリハロメタン類の吸着浄化処理を行うため、吸着に寄与する特定の細孔のみを選択的に多く持つように調整しようとすると、その他の吸着特性を劣化させ吸着材としての特性を損なうという課題を有していた。
【0008】
(3)フェノール樹脂を原料とする活性炭は、選択的に形成された特定の細孔がトリハロメタン類の吸着に寄与し、静状態下の平衡吸着時には高い吸着性能をもつが、平衡到達速度が遅いため、吸着帯中を被処理水が通過する、通水という動的状態であるトリハロメタン類の浄化処理において、平衡吸着時の高い吸着特性を活かしきれないという課題を有していた。
【0009】
(4)イ号公報の活性炭では、活性炭のpHに関係なく表面酸性官能基を減少させたために水分子の活性炭細孔への吸着速度が極端に遅くなり、それに伴い通水中では水分子中のトリハロメタン吸着速度が極端に遅くなるという課題を有していた。
【0010】
本発明は上記従来の課題を解決するもので、通水時という動的状態でトリハロメタン類の吸着性能に優れ、活性炭の単位重量当たりの吸着容量を著しく向上させた活性炭の提供、及びそのトリハロメタン除去特性を利用し優れた浄化作用を有する浄水器を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決するために、本発明の活性炭は、Boehemの方法による活性炭の表面酸性官能基量(α)とpH(β)をかけた値をφとしたとき、0.44≦φ≦0.98、好ましくは0.45≦φ≦0.82であり、このpHが5.0〜7.5、好ましくは5.6〜7.5である構成を有している。この構成により、通水時にトリハロメタン吸着性能に優れ、活性炭の単位重量当たりの吸着容量を著しく向上させることができる。
【0012】
また、本発明の浄水器は、本発明の活性炭を浄水材として備えており、トリハロメタン類の浄化作用に必要な活性炭量を少なくすることができるので、小型化、長寿命化、低コスト化を実現することができる。
【0013】
【発明の実施の形態】
本発明の請求項1に記載の活性炭は、賦活処理後、アニーリングを行い、Boehemの方法による活性炭の表面酸性官能基量(α)とpH(β)をかけた値φが0.49≦φ≦0.82である構成を有している。
【0014】
この構成により、以下のような作用を有する。
【0015】
(1)吸着帯を形成し、吸着帯中を被処理水が通過する、通水中のトリハロメタン類の浄化において、活性炭単位重量当たりの吸着容量を高め、活性炭の吸着性能を著しく向上させることができる。
【0016】
(2)活性炭の全表面酸性官能基量(α)とpH(β)をかけた値φを0.44≦φ≦0.98、好ましくは0.45≦φ≦0.82にすることにより、親水性の表面酸性官能基での水の取り込みと、疎水性の活性炭表面でのトリハロメタン類の吸着のバランスが良くなり、通水中という動的状態であってもトリハロメタン類の吸着量を増大させることができる。
【0017】
ここで、Boehemの方法は、Angew.Chem.,Intern.Ed.Engl.5,533(1966)によっており、所定の量の活性炭に塩基であるNaOHを吸着させ、その溶液を酸であるHClで逆滴定することによって得られた塩基消費量を酸性官能基量とした。得られた値は活性炭1g当たりのm当量であるmeq/gという単位で表示している。
【0018】
また、活性炭のpHによっては、Boehemの方法でのNaOHのpHが変化し、塩基消費量が変化するため、トリハロメタン類除去性能が高い表面酸性官能基量の範囲は、JIS1474に規定される活性炭のpH変化によって異なる。一方、通水状態で吸着速度を上げ動的吸着を向上させるためには、活性炭表面の親水性と疎水性の比率が大きく影響する。このため、親水性である活性炭の表面酸性官能基量(α)と活性炭のpH(β)をかけた値φを用いている。
【0019】
また、活性炭の比表面積は、分子と吸着表面の分子間力が強く働く6〜9・の細孔が比較的多く形成される、300〜1500m2/gが好ましい。300m2/gより小さくなるにつれ細孔分布の山の中心が6・よりも小さくなって、細孔容積自体が減り、1500m2/gより大きくなるにつれ細孔分布の山の中心が9・より大きくなって、分子間力が小さくなり、トリハロメタン類の吸着性能が低くなる傾向があるため、いずれも好ましくない。
【0020】
また、活性炭の表面官能基量の調整は、いくつかの方法があり、特に限定するものではない。まず、炭化処理は不活性雰囲気であるアルゴン、窒素などを用いて炭化温度500〜700℃で処理することが望ましい。500℃より低くなるにつれ十分な炭化が行えず、700℃より高くなるにつれ灰化する傾向があるため好ましくない。次に賦活処理では、ガス賦活処理では水蒸気、酸素、二酸化炭素、もしくはこれらのガスを2種類以上用いたもの、さらにこれらを含んだ不活性雰囲気のアルゴン、窒素等で処理され、薬品賦活処理は塩化亜鉛、リン酸等を用いて、賦活温度800〜1000℃で処理することが好ましい。800℃より低くなるにつれ十分に賦活することができず、1000℃より高くしても著しい賦活向上が認められない傾向があるため好ましくない。
【0021】
また、ガスを用いたアニーリングでは不活性雰囲気であるアルゴン、窒素等、もしくは還元雰囲気である水素等で、アニール温度300〜700℃で行うことが好ましい。300℃より低くなるにつれ十分なアニーリングを行うことができず、700℃より高くしてもアニールによる効果の向上が得られない傾向があるため好ましくない。また、細孔分布の親水性、疎水性の性質を制御するため、アニーリングは常温から0.5〜1.5時間かけて300〜700℃まで上昇させ、0〜2時間程度上昇した温度を維持し、その後自然放冷することが好ましい。0.5時間よりも短くするにつれ全表面酸性官能基が著しく脱落し、1.5時間より長くしても全表面酸性官能基の脱落は減少しない傾向があるため好ましくない。
【0022】
また、活性炭の原料としては、椰子殻やおがくず、木材などの天然有機物、炭素原子を有する原料で重合された各種合成樹脂や合成繊維などの合成有機物、あるいは石炭、石炭系ピッチ、石油系ピッチ等が用いられる。
【0023】
本発明の請求項2に記載の活性炭は、請求項1に記載の活性炭のpHが5.0〜7.5、好ましくは5.6〜7.5である構成を有している。
【0024】
この構成により、請求項1の作用に加え、以下のような作用を有する。
【0025】
(1)活性炭のpHを5.0〜7.5、好ましくは5.6〜7.5にすることにより、水道水の水質規準を満たし、かつアルカリイオン整水器に用いた場合でも所定のpHに調整することができる。
【0026】
ここで、pH5.0より低いと通水後の水のpHが小さくなり水道水の水質規準を下回り、pH7.5より高くなるにつれ、水処理装置のうち、特にアルカリイオン整水器に用いた場合、通水初期に原水のpHより大きくなり、所定のpHに調整できなくなる傾向があるため好ましくない。pH5.0より低くなるかpH7.5より高くなるとその傾向が著しくなるのでいずれも好ましくない。
【0027】
本発明の請求項3に記載の活性炭は、請求項1又は請求項2に記載の活性炭の基材が果実殻、熱硬化性樹脂の1以上である構成を有している。
【0028】
この構成により、請求項1または請求項2の作用に加えて以下の作用を有する。
【0029】
(1)産業廃棄物である果実殻を用いることにより、安価に活性炭を手に入れることができる。
【0030】
(2)石炭などの鉱物系原料よりも金属不純物が少ないため、安全で構造調整が容易である。
【0031】
(3)熱硬化性樹脂を用いることにより、炭化、賦活処理時に硬化し活性炭化するため、材料の多様化を図ることができる。
【0032】
本発明の請求項4に記載の活性炭は、請求項3に記載の活性炭の基材が椰子殻、フェノール性合成樹脂の1以上を主材とする構成を有している。
【0033】
この構成により、請求項3の作用に加え、以下のような作用を有する。
【0034】
(1)産業廃棄物である椰子殻を用いることによって、安価に原料を手に入れることができる。
【0035】
(2)東南アジアより安定供給されるので、活性炭を低原価で安定して製造できる。
【0036】
(3)フェノール性合成樹脂を用いることにより、金属不純物が少なく、安全で構造調整が容易である。
【0037】
ここで、椰子殻としては、一種類、もしくは数種類の産地の異なる椰子殻の混合物を用いることができる。
【0038】
また、椰子殻、フェノール性合成樹脂以外の混合物として、木屑や籾殻等のセルロース質物質や米、麦、粟、稗、トウモロコシ、芋類等の澱粉質物質、アクリルニトリル系樹脂、メラニン樹脂、ポリビニルアルコール樹脂等の合成樹脂の他に、ポリビニルアルコール等の有機質または無機質のバインダーを混合したものを用いることができる。
【0039】
本発明の請求項5に記載の浄水器は、浄水材として、請求項1乃至4の内いずれか1の活性炭を用いた構成を有している。
【0040】
この構成により、以下のような作用を有する。
【0041】
(1)細孔径の分布を制御した活性炭の設計を行うことにより、吸着帯を形成し、吸着帯中を被処理水が通過する、水中のトリハロメタン類の浄水器において、活性炭単位重量当たりの吸着容量を大きく向上させ、活性炭の吸着性能を十分に発揮させることができる。
【0042】
(2)トリハロメタン類の吸着に必要な活性炭量が低減することにより、カートリッジの小型化、長寿命化、低コスト化が実現できる。
【0043】
(3)前記カートリッジを用いた浄水器、アルカリ整水器等が小型化できるため、使用者の利便性が向上する。
【0044】
【実施例】
以下、本発明の実施例について、図1〜図4を用いて説明する。
【0045】
(実施例1)
図1は活性炭原料として椰子殻を用いた時の、活性炭の表面酸性官能基とpHをかけた値φと、トリハロメタン吸着容量の関係図である。
【0046】
図1において、縦軸はトリハロメタン吸着容量をppb・tonで表し、横軸は活性炭の表面酸性官能基量を示す。
【0047】
次に、実施例1の活性炭について説明するが、この発明はこれに限定されるものではない。
【0048】
本実施例では、活性炭原料として椰子殻を用い、窒素ガス雰囲気下、600℃で炭化処理を行った後、800℃で2時間の賦活処理を行った。その後、各アニール温度でアニーリングを行った。試料に供した活性炭の比表面積は1000m2/gで、粒度分布は60〜150メッシュであった。このときの活性炭のpHを調べ、Boehemの方法により全表面酸性官能基量を求めた。上記の活性炭を体積容量50ml、厚さ20mmの円筒形カラムに充填し、活性炭と0.2μmフィルターにより浄化処理した水道浄化水に、トリハロメタン類を100ppb添加したものを調整原水とし、SV値640で、カラム中に充填した活性炭層を通過させ、活性炭層の流入前後でトリハロメタン類の濃度を、パージ・アンド・トラップ法で濃縮前処理し、ガスクロマトグラフィー質量分析装置で定量測定した。この時、活性炭層通過前後で、流入水に対する流出水のトリハロメタン類の水中濃度が、20%以上になる点を破過点とし、活性炭の吸着材としての寿命とした。この時点までに活性炭が吸着したトリハロメタン類の量を吸着容量とした。各活性炭の全表面酸性官能基量、活性炭のpH、全表面酸性官能基量とpHをかけた値φ、トリハロメタン類の吸着容量を(表1)に示す。また、各φに対する吸着容量を図1に示す。
【0049】
【表1】
【0050】
図1に示すように、活性炭全表面酸性官能基量(α)とpH(β)をかけた値をφとした時、φが0.45≦φ≦0.79のときに高いトリハロメタン類の除去性能が得られることが分かった(しかし実験点のない仮想線上では0.2と予想されるので、この限りではない。)。
【0051】
(実施例2)
図2は活性炭原料としてフェノール樹脂を用いた時の、活性炭の表面酸性官能基量(α)とpH(β)をかけた値φと、トリハロメタン吸着量の関係図である。
【0052】
図2において、縦軸はトリハロメタン吸着容量をppb・tonで表し、横軸は活性炭の表面酸性官能基量を示す。
【0053】
次に、実施例2の活性炭について説明するが、この発明はこれに限定されるものではない。
【0054】
本実施例では、活性炭原料としてフェノール樹脂を用い、窒素ガス雰囲気下、600℃で炭化処理を行った後、800℃で2時間の賦活処理を行った。その後、各アニール温度で1時間のアニーリングを行った。試料に供した活性炭の比表面積は1000m2/gで、粒度分布は60〜150メッシュであった。このときの活性炭のpHを調べ、Boehemの方法により全表面酸性官能基量を求めた。上記の活性炭を体積容量50ml、厚さ20mmの円筒形カラムに充填し、活性炭と0.2μmフィルターにより浄化処理した水道浄化水に、トリハロメタン類を100ppb添加したものを調整原水とし、SV値640で、カラム中に充填した活性炭層を通過させ、活性炭層の流入前後でトリハロメタン類の濃度を、パージ・アンド・トラップ法で濃縮前処理し、ガスクロマトグラフィー質量分析装置で定量測定した。この時、活性炭層通過前後で、流入水に対する流出水のトリハロメタン類の水中濃度が、20%以上になる点を破過点とし、活性炭の吸着材としての寿命とした。この時点までに活性炭が吸着したトリハロメタン類の量を吸着容量とした。各賦活処理温度、アニール温度、活性炭の全表面酸性官能基量、活性炭のpH、全表面酸性官能基量とpHをかけた値φ、トリハロメタン類の吸着容量を(表2)に示す。また、各φに対する吸着容量を図2に示す。
【0055】
【表2】
【0056】
図2に示すように、活性炭全表面酸性官能基量(α)とpH(β)をかけた値をφとした時、φが0.49≦φ≦0.82のときに高いトリハロメタン類の除去性能が得られることが分かった。
【0057】
(実施例3)
図3は活性炭のpHと通水時のpH(初期−10分後)の関係図である。
【0058】
図3において、縦軸は通水時のpH(初期−10分後)を表し、横軸は活性炭のpHを示す。
【0059】
次に、前記実施例2を例に説明するが、この発明はこれに限定されるものではない。
【0060】
本実施例は、実施例2で得られた結果について活性炭の各pHごとの初期通水時の試験水のpHとその後10分後の試験水のpHの差を表したもので、アルカリイオン整水器で指定したpHに短時間で到達するために、前記pHの差の上限を1とした。各活性炭のpH(JIS pH)と、初期通水時とその後10分後の試験水のpHの差(通水時pH)を(表3)に示す。また、各JIS pHに対する通水時のpHを図3に示す。
【0061】
【表3】
【0062】
図3に示すように、活性炭のpHが5.0〜7.5のときに目標到達することができることが分かった。
【0063】
(実施例4)
図4は本発明の活性炭を用いた浄水器の形態を示す模式図である。
【0064】
図4において、1は吐出管、2は浄水器本体、3は中空糸膜、4は上記実施例で得られた活性炭、5は浄水カートリッジ、6は導水チューブ、7は水スイッチ、8は蛇口である。
【0065】
以上のように構成された浄水器について、以下にその使用方法を説明する。
【0066】
まず、蛇口8より供給された水道水は水スイッチ7を介して導水チューブ6を通り、浄水器本体2に入水する。このとき水スイッチ7は内蔵されたスイッチにより、浄水器本体2に入水するか、浄水器本体2を介さずに外に排出されるか、選択することができる。
【0067】
浄水器本体2に入水すると、浄水カートリッジ5の下部に配置している活性炭4に通水される。活性炭4は、フミン質に代表される有機物等の大きな濁質や水中のトリハロメタン等の有害物質を高い吸着率で吸着する。その後、中空糸膜で小さな濁質を除去し、吐出管1を介して吐水され、主に飲料水として利用される。
また、前述のように、活性炭の表面官能基量の調整は、いくつかの方法がある。まず、炭化処理は不活性雰囲気であるアルゴン、窒素などを用いて炭化温度500〜700℃で処理することが望ましい。500℃より低くなるにつれ十分な炭化が行えず、700℃より高くなるにつれ灰化する傾向があるため好ましくない。次に賦活処理では、ガス賦活処理では水蒸気、酸素、二酸化炭素、もしくはこれらのガスを2種類以上用いたもの、さらにこれらを含んだ不活性雰囲気のアルゴン、窒素等で処理され、薬品賦活処理は塩化亜鉛、リン酸等を用いて、賦活温度800〜1000℃で処理することが好ましい。800℃より低くなるにつれ十分に賦活することができず、1000℃より高くしても著しい賦活向上が認められない傾向があるため好ましくない。
また、前述のように、ガスを用いたアニーリングでは不活性雰囲気であるアルゴン、窒素等、もしくは還元雰囲気である水素等で、アニール温度300〜700℃で行うことが好ましい。300℃より低くなるにつれ十分なアニーリングを行うことができず、700℃より高くしてもアニールによる効果の向上が得られない傾向があるため好ましくない。また、細孔分布の親水性、疎水性の性質を制御するため、アニーリングは常温から0.5〜1.5時間かけて300〜700℃まで上昇させ、0〜2時間程度上昇した温度を維持し、その後自然放冷することが好ましい。0.5時間よりも短くするにつれ全表面酸性官能基が著しく脱落し、1.5時間より長くしても全表面酸性官能基の脱落は減少しない傾向があるため好ましくない。
また、前述のように、活性炭の原料としては、椰子殻やおがくず、木材などの天然有機物、炭素原子を有する原料で重合された各種合成樹脂や合成繊維などの合成有機物、あるいは石炭、石炭系ピッチ、石油系ピッチ等が用いられる。
【0068】
【発明の効果】
以上から明らかなように、本発明における活性炭充填材を用いると、以下の優れた効果を実現できる。
【0069】
請求項1に記載の発明によれば、以下の効果を有する。
【0070】
(1)吸着帯を形成し、吸着帯中を被処理水が通過する、通水中のトリハロメタン類の浄化において、単位重量当たりの高い吸着容量と、著しく向上した吸着性能をもった活性炭を提供することができる。
【0071】
(2)賦活処理後、アニーリングを行い、全表面酸性官能基量(α)とpH(β)をかけた値φを0.49≦φ≦0.82にすることにより、親水性の表面酸性官能基での水の取り込みと、疎水性の活性炭表面でのトリハロメタン類の吸着のバランスが良くなり、通水中という動的状態であってもトリハロメタン類の吸着量が増大する活性炭を提供することができる。
【0072】
請求項2に記載の発明によれば、以下の効果を有する。
【0073】
(1)pHを5.0〜7.5、好ましくは5.6〜7.5にすることにより、水道水の水質規準を満たし、かつアルカリイオン整水器に用いた場合でも所定のpHに調整できる活性炭を提供することができる。
【0074】
請求項3に記載の発明によれば、以下の効果を有する。
【0075】
(1)産業廃棄物である果実殻を用いることにより、安価に活性炭を提供することができる。
【0076】
(2)石炭などの鉱物系原料よりも金属不純物が少ないため、安全で構造調整が容易な活性炭を提供することができる。
【0077】
(3)熱硬化性樹脂を用いることにより、炭化、賦活処理時に硬化し活性炭化するため、材料の多様化を図ることができる活性炭を提供することができる。
【0078】
請求項4に記載の発明によれば、以下の効果を有する。
【0079】
(1)産業廃棄物である椰子殻を用いることによって、原料が安価な活性炭を提供することができる。
【0080】
(2)東南アジアより安定供給されるので、低原価で安定して製造できる活性炭を提供することができる。
【0081】
(3)フェノール性合成樹脂を用いることにより、金属不純物が少なく、安全で構造調整が容易な活性炭を提供することができる。
【0082】
請求項5に記載の発明によれば、以下の効果を有する。
【0083】
(1)細孔径の分布を制御した活性炭の設計を行うことにより、吸着帯を形成し、吸着帯中を被処理水が通過する、水中のトリハロメタン類の浄水器において、活性炭単位重量当たりの吸着容量を大きく向上させ、活性炭の吸着性能を十分に発揮させる浄水器を提供することができる。
【0084】
(2)トリハロメタン類の吸着に必要な活性炭量が低減することにより、カートリッジの小型化、長寿命化、低コスト化が実現できる浄水器を提供することができる。
【図面の簡単な説明】
【図1】活性炭原料として椰子殻を用いたときの、活性炭の表面酸性官能基量とpHをかけた値φと、トリハロメタン吸着容量の関係図
【図2】活性炭原料としてフェノール樹脂を用いたときの、活性炭の表面酸性官能基量とpHをかけた値φと、トリハロメタン吸着容量の関係図
【図3】活性炭のpHと通水時のpH(初期−10分後)の関係図
【図4】本発明の活性炭を用いた浄水器の形態を示す模式図
【符号の説明】
1 吐出管
2 浄水器本体
3 中空糸膜
4 活性炭
5 浄水カートリッジ
6 導水チューブ
7 水スイッチ
8 蛇口[0001]
BACKGROUND OF THE INVENTION
The present invention removes harmful components such as trihalomethanes as drinking water by using activated carbon excellent in adsorption characteristics of organochlorine compounds such as trihalomethanes, which are harmful components contained in drinking water, in the water purification treatment. It is about water purifier.
[0002]
[Prior art]
In recent years, tap water used for drinking water needs to contain a certain concentration or more of residual chlorine added for the purpose of sterilization, and the operation method is regulated by the Water Supply Law from the viewpoint of health and public health. . However, residual chlorine added for the purpose of sterilization also has an oxidative action of inorganic substances and an oxidative decomposition action of organic substances in addition to the sterilizing action, and is generated when humic substances, a kind of natural organic substances, are oxidatively decomposed. This produces trihalomethanes, which are cancerous substances. On the other hand, the quality of raw water used for tap water, etc. has been deteriorating in recent years due to the expansion of pollution, and humic substances contained in raw water have been increasing accordingly. Trihalomethanes generated by oxidative decomposition of humic substances The concentration of is also increasing.
[0003]
For this reason, as a means for removing conventionally generated trihalomethanes, purification treatment using activated carbon having an adsorption action has been performed. Generally, activated carbon having a high surface area with good characteristics such as iodine adsorption performance and methylene blue adsorption performance has been used as a conventional activated carbon for water treatment in order to increase the adsorption capacity per unit volume of an object to be removed. Since these activated carbons are used for water treatment, it is desirable that they have high hydrophilicity, and most of them are water vapor activated as gas activation, but in addition, chemicals obtained by activation treatment with alkali hydroxide Activated activated carbon is also used. These shapes are various, and in addition to powder, crushed, spherical, granular, and fibrous, formed discs, granules, and spheres are manufactured and used.
[0004]
JP-A-8-281099 (hereinafter referred to as “I”) discloses activated carbon having a total surface acidic functional group amount of less than 0.1 meq / g according to the Bohem method. If the total amount of acidic functional groups on the entire surface is too high and the hydrophilicity is too high, the adsorption of substances in aqueous solution will cause the water molecules forming clusters to stay in the state of blocking the entrance of the pores, increasing the adsorption capacity of organochlorine compounds. In order to reduce, activated carbon in which the hydrophilicity of the activated carbon is controlled is disclosed.
[0005]
[Problems to be solved by the invention]
However, the above-mentioned conventional activated carbon and water purifier have the following problems.
[0006]
(1) Activated carbon activated by water vapor or the like forms an adsorption zone, and the treated water passes through the adsorption zone, and the adsorption capacity per unit weight of activated carbon is static water in the purification method of trihalomethanes in water flow. There was a problem that the adsorption performance of activated carbon was not sufficiently exhibited due to the extremely low equilibrium adsorption amount in the state.
[0007]
(2) Activated carbon made from coconut shell has a large surface area and has a wide range of adsorption characteristics for many substances contained in water. However, in the adsorption purification treatment of trihalomethanes, only specific pores are trihalomethanes. It is effective for adsorption of trihalomethanes in water flow, and if it is adjusted to selectively have many specific pores that contribute to adsorption, other adsorption characteristics will be degraded and adsorption will occur. It had the subject of impairing the properties as a material.
[0008]
(3) Activated carbon made from phenolic resin has specific pores formed selectively that contribute to the adsorption of trihalomethanes, and has high adsorption performance during equilibrium adsorption under static conditions, but the equilibrium reaching speed is slow. For this reason, in the purification treatment of trihalomethanes, which is a dynamic state of passing water, through which the water to be treated passes through the adsorption zone, there is a problem that the high adsorption characteristics at the time of equilibrium adsorption cannot be fully utilized.
[0009]
(4) In the activated carbon of No. 1 publication, the surface acidic functional groups are reduced regardless of the pH of the activated carbon, so that the adsorption rate of water molecules to the activated carbon pores becomes extremely slow. There was a problem that the adsorption rate of trihalomethane was extremely slow.
[0010]
The present invention solves the above-mentioned conventional problems, and provides an activated carbon that is excellent in adsorption performance of trihalomethanes in a dynamic state of passing water, and that has significantly improved the adsorption capacity per unit weight of activated carbon, and its removal of trihalomethane. An object of the present invention is to provide a water purifier having an excellent purifying action by utilizing characteristics.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the activated carbon of the present invention is 0.44 ≦ φ ≦ 0, where φ is a value obtained by multiplying the surface acidic functional group amount (α) and pH (β) of the activated carbon by the Boehem method. .98, preferably 0.45 ≦ φ ≦ 0.82, and the pH is 5.0 to 7.5, preferably 5.6 to 7.5. With this configuration, the trihalomethane adsorption performance is excellent when water is passed, and the adsorption capacity per unit weight of activated carbon can be remarkably improved.
[0012]
Further, the water purifier of the present invention includes the activated carbon of the present invention as a water purification material, and can reduce the amount of activated carbon necessary for the purification action of trihalomethanes, thereby reducing the size, extending the service life, and reducing the cost. Can be realized.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The activated carbon according to claim 1 of the present invention is annealed after the activation treatment, and the value φ obtained by multiplying the surface acidic functional group amount (α) and pH (β) of the activated carbon by the Boehem method is 0.49 ≦ φ ≦ 0.82 .
[0014]
This configuration has the following effects.
[0015]
(1) In the purification of trihalomethanes in the passing water, which forms an adsorption zone and the treated water passes through the adsorption zone, the adsorption capacity per unit weight of activated carbon can be increased and the adsorption performance of activated carbon can be remarkably improved. .
[0016]
(2) By setting the value φ obtained by multiplying the total surface acidic functional group amount (α) and pH (β) of activated carbon to 0.44 ≦ φ ≦ 0.98, preferably 0.45 ≦ φ ≦ 0.82. Improves the balance between water uptake by hydrophilic surface acidic functional groups and adsorption of trihalomethanes on the surface of hydrophobic activated carbon, increasing the amount of trihalomethanes adsorbed even in the dynamic state of passing water be able to.
[0017]
Here, Boehem's method is described in Angew. Chem. , Intern. Ed. Engl. The amount of base consumption obtained by adsorbing NaOH as a base on a predetermined amount of activated carbon and back titrating the solution with HCl as an acid was defined as the amount of acidic functional groups. The obtained value is expressed in units of meq / g which is m equivalent per 1 g of activated carbon.
[0018]
In addition, depending on the pH of activated carbon, the pH of NaOH in the Bohem method changes and the base consumption changes. Therefore, the range of the surface acidic functional group amount with high trihalomethane removal performance is the range of the activated carbon specified in JIS 1474. Varies with pH change. On the other hand, the ratio of hydrophilicity to hydrophobicity on the activated carbon surface has a great influence on increasing the adsorption rate and improving the dynamic adsorption in the water-flowing state. Therefore, a value φ obtained by multiplying the surface acidic functional group amount (α) of the activated carbon that is hydrophilic and the pH (β) of the activated carbon is used.
[0019]
Moreover, the specific surface area of activated carbon is preferably 300 to 1500 m <2> / g, in which relatively many 6-9.multidot. Pores where the intermolecular force between the molecule and the adsorption surface is strong are formed. As the center becomes smaller than 300
[0020]
Moreover, there are several methods for adjusting the surface functional group amount of the activated carbon, and there is no particular limitation. First, it is desirable to perform the carbonization treatment at a carbonization temperature of 500 to 700 ° C. using argon, nitrogen, or the like that is an inert atmosphere. Sufficient carbonization cannot be performed as the temperature becomes lower than 500 ° C, and ashing tends to occur as the temperature becomes higher than 700 ° C. Next, in the activation treatment, the gas activation treatment is performed with water vapor, oxygen, carbon dioxide, or those using two or more of these gases, and further treated with argon, nitrogen, etc. in an inert atmosphere containing these, and the chemical activation treatment is It is preferable to treat at an activation temperature of 800 to 1000 ° C. using zinc chloride, phosphoric acid or the like. Since it cannot fully activate as it becomes lower than 800 degreeC and there exists a tendency for remarkable activation improvement not to be recognized even if it exceeds 1000 degreeC, it is unpreferable.
[0021]
Also, annealing using a gas is preferably performed at an annealing temperature of 300 to 700 ° C. in an inert atmosphere such as argon or nitrogen, or in a reducing atmosphere such as hydrogen. As the temperature is lower than 300 ° C., sufficient annealing cannot be performed, and even if the temperature is higher than 700 ° C., there is a tendency that the effect of annealing cannot be obtained. In addition, in order to control the hydrophilic and hydrophobic properties of the pore distribution, annealing is increased from room temperature to 300 to 700 ° C. over 0.5 to 1.5 hours and maintained at a temperature increased for about 0 to 2 hours. Then, it is preferable to naturally cool. As the time is shorter than 0.5 hours, the whole surface acidic functional groups are remarkably removed, and even if the time is longer than 1.5 hours, the removal of the whole surface acidic functional groups tends not to decrease.
[0022]
In addition, as raw materials for activated carbon, natural organic materials such as coconut shells, sawdust and wood, synthetic organic materials such as various synthetic resins and synthetic fibers polymerized with carbon atom raw materials, coal, coal-based pitch, petroleum-based pitch, etc. Is used.
[0023]
The activated carbon according to
[0024]
With this configuration, in addition to the operation of the first aspect, the following operation is provided.
[0025]
(1) By setting the pH of the activated carbon to 5.0 to 7.5, preferably 5.6 to 7.5, even if it satisfies the water quality standards of tap water and is used in an alkali ion water conditioner, a predetermined value is obtained. The pH can be adjusted.
[0026]
Here, when the pH is lower than 5.0, the pH of the water after passing through becomes lower than the water quality standard of tap water and becomes higher than pH 7.5. In this case, it is not preferable because it tends to be higher than the pH of raw water at the initial stage of water flow and cannot be adjusted to a predetermined pH. When the pH is lower than 5.0 or higher than pH 7.5, the tendency becomes remarkable, so that both are not preferable.
[0027]
The activated carbon according to
[0028]
With this configuration, in addition to the operation of the first or second aspect, the following operation is provided.
[0029]
(1) By using fruit shells that are industrial waste, activated carbon can be obtained at low cost.
[0030]
(2) Since there are few metal impurities than mineral raw materials, such as coal, it is safe and structural adjustment is easy.
[0031]
(3) By using a thermosetting resin, it is cured and activated carbonized at the time of carbonization and activation treatment, and therefore, diversification of materials can be achieved.
[0032]
The activated carbon according to
[0033]
With this configuration, in addition to the operation of the third aspect, the following operation is provided.
[0034]
(1) By using the coconut shell which is industrial waste, raw materials can be obtained at low cost.
[0035]
(2) Since it is supplied stably from Southeast Asia, activated carbon can be manufactured stably at low cost.
[0036]
(3) By using a phenolic synthetic resin, there are few metal impurities, it is safe and structural adjustment is easy.
[0037]
Here, as the coconut shell, one kind or a mixture of several kinds of coconut shells having different origins can be used.
[0038]
Also, as a mixture other than coconut shell and phenolic synthetic resin, cellulosic substances such as wood chips and rice husks, starch substances such as rice, wheat, straw, straw, corn, and potatoes, acrylonitrile resins, melanin resins, polyvinyl In addition to a synthetic resin such as an alcohol resin, a mixture of an organic or inorganic binder such as polyvinyl alcohol can be used.
[0039]
The water purifier according to
[0040]
This configuration has the following effects.
[0041]
(1) Adsorption per unit weight of activated carbon in a water purifier for underwater trihalomethanes in which water to be treated passes through the adsorption zone by forming an activated carbon by controlling the pore size distribution. The capacity can be greatly improved and the adsorption performance of activated carbon can be fully exhibited.
[0042]
(2) By reducing the amount of activated carbon necessary for adsorption of trihalomethanes, it is possible to reduce the size of the cartridge, extend its life, and reduce costs.
[0043]
(3) Since the water purifier, alkaline water conditioner, etc. using the cartridge can be reduced in size, the convenience for the user is improved.
[0044]
【Example】
Examples of the present invention will be described below with reference to FIGS.
[0045]
Example 1
FIG. 1 is a graph showing the relationship between the surface acidic functional group of activated carbon and the value φ multiplied by pH and trihalomethane adsorption capacity when coconut shell is used as the activated carbon raw material.
[0046]
In FIG. 1, the vertical axis represents the trihalomethane adsorption capacity by ppb · ton, and the horizontal axis represents the surface acidic functional group amount of the activated carbon.
[0047]
Next, although the activated carbon of Example 1 is demonstrated, this invention is not limited to this.
[0048]
In this example, coconut shell was used as the activated carbon raw material, and after carbonization treatment at 600 ° C. in a nitrogen gas atmosphere, activation treatment was performed at 800 ° C. for 2 hours. Thereafter, annealing was performed at each annealing temperature. The specific surface area of the activated carbon used for the sample was 1000 m2 / g, and the particle size distribution was 60 to 150 mesh. The pH of the activated carbon at this time was examined, and the total surface acidic functional group amount was determined by the Boehem method. The above activated carbon is packed in a cylindrical column with a volume capacity of 50 ml and a thickness of 20 mm, and purified water with 100 ppb of trihalomethanes added to purified water treated with activated carbon and a 0.2 μm filter is used as adjusted raw water, with an SV value of 640 The activated carbon layer packed in the column was passed through, and the concentration of trihalomethanes before and after the inflow of the activated carbon layer was subjected to concentration pretreatment by the purge and trap method, and quantitatively measured with a gas chromatography mass spectrometer. At this time, before and after passing through the activated carbon layer, the point where the concentration of the trihalomethanes in the effluent with respect to the influent was 20% or more was defined as the breakthrough point, and the lifetime of the activated carbon as an adsorbent was defined. The amount of trihalomethanes adsorbed by the activated carbon up to this point was taken as the adsorption capacity. Table 1 shows the total surface acidic functional group amount of each activated carbon, the pH of the activated carbon, the value φ obtained by multiplying the total surface acidic functional group amount and the pH, and the adsorption capacity of trihalomethanes. Also, the adsorption capacity for each φ is shown in FIG.
[0049]
[Table 1]
[0050]
As shown in FIG. 1, when the value obtained by multiplying the activated carbon total surface acidic functional group amount (α) and pH (β) is φ, when φ is 0.45 ≦ φ ≦ 0.79 , high trihalomethanes It was found that the removal performance can be obtained (however, this is not the case because it is expected to be 0.2 on the virtual line where there is no experimental point).
[0051]
(Example 2)
FIG. 2 is a relationship diagram of trihalomethane adsorption amount and value φ obtained by multiplying the surface acidic functional group amount (α) and pH (β) of activated carbon when phenol resin is used as the activated carbon raw material.
[0052]
In FIG. 2, the vertical axis represents the trihalomethane adsorption capacity by ppb · ton, and the horizontal axis represents the surface acidic functional group amount of the activated carbon.
[0053]
Next, although the activated carbon of Example 2 is demonstrated, this invention is not limited to this.
[0054]
In this example, a phenol resin was used as an activated carbon raw material, and after carbonizing at 600 ° C. in a nitrogen gas atmosphere, activation treatment was performed at 800 ° C. for 2 hours. Thereafter, annealing was performed at each annealing temperature for 1 hour. The specific surface area of the activated carbon used for the sample was 1000 m2 / g, and the particle size distribution was 60 to 150 mesh. The pH of the activated carbon at this time was examined, and the total surface acidic functional group amount was determined by the Boehem method. The above activated carbon is packed in a cylindrical column with a volume capacity of 50 ml and a thickness of 20 mm, and purified water with 100 ppb of trihalomethanes added to purified water treated with activated carbon and a 0.2 μm filter is used as adjusted raw water, with an SV value of 640 The activated carbon layer packed in the column was passed through, and the concentration of trihalomethanes before and after the inflow of the activated carbon layer was subjected to concentration pretreatment by the purge and trap method, and quantitatively measured with a gas chromatography mass spectrometer. At this time, before and after passing through the activated carbon layer, the point where the concentration of the trihalomethanes in the effluent with respect to the influent was 20% or more was defined as the breakthrough point, and the lifetime of the activated carbon as an adsorbent was defined. The amount of trihalomethanes adsorbed by the activated carbon up to this point was taken as the adsorption capacity. Each activation treatment temperature, annealing temperature, total surface acidic functional group amount of activated carbon, pH of activated carbon, value φ obtained by multiplying the total surface acidic functional group amount and pH, and adsorption capacity of trihalomethanes are shown in (Table 2). Also, the adsorption capacity for each φ is shown in FIG.
[0055]
[Table 2]
[0056]
As shown in FIG. 2, when the value obtained by multiplying the activated carbon total surface acidic functional group amount (α) and pH (β) is φ, when φ is 0.49 ≦ φ ≦ 0.82 , high trihalomethanes It was found that removal performance was obtained.
[0057]
(Example 3)
FIG. 3 is a graph showing the relationship between the pH of activated carbon and the pH during water passage (initially after 10 minutes).
[0058]
In FIG. 3, the vertical axis represents the pH during water passage (initially after 10 minutes), and the horizontal axis represents the pH of the activated carbon.
[0059]
Next, the second embodiment will be described as an example, but the present invention is not limited to this.
[0060]
This example represents the difference between the pH of the test water at the initial water flow and the pH of the test water after 10 minutes for each pH of the activated carbon for the results obtained in Example 2. In order to reach the pH specified by the water vessel in a short time, the upper limit of the pH difference was set to 1. Table 3 shows the pH of each activated carbon (JIS pH) and the difference in pH of the test water at the time of initial water flow and after 10 minutes (pH during water flow). Moreover, pH at the time of water flow with respect to each JIS pH is shown in FIG.
[0061]
[Table 3]
[0062]
As shown in FIG. 3, it was found that the target could be reached when the pH of the activated carbon was 5.0 to 7.5.
[0063]
Example 4
FIG. 4 is a schematic view showing the form of a water purifier using the activated carbon of the present invention.
[0064]
In FIG. 4, 1 is a discharge pipe, 2 is a water purifier body, 3 is a hollow fiber membrane, 4 is activated carbon obtained in the above embodiment, 5 is a water purification cartridge, 6 is a water guide tube, 7 is a water switch, and 8 is a faucet. It is.
[0065]
About the water purifier comprised as mentioned above, the usage method is demonstrated below.
[0066]
First, the tap water supplied from the
[0067]
When water enters the water purifier
Further, as described above, there are several methods for adjusting the surface functional group amount of the activated carbon. First, it is desirable to perform the carbonization treatment at a carbonization temperature of 500 to 700 ° C. using argon, nitrogen, or the like that is an inert atmosphere. Sufficient carbonization cannot be performed as the temperature becomes lower than 500 ° C, and ashing tends to occur as the temperature becomes higher than 700 ° C. Next, in the activation treatment, the gas activation treatment is performed with water vapor, oxygen, carbon dioxide, or those using two or more of these gases, and further treated with argon, nitrogen, etc. in an inert atmosphere containing these, and the chemical activation treatment is It is preferable to treat at an activation temperature of 800 to 1000 ° C. using zinc chloride, phosphoric acid or the like. Since it cannot fully activate as it becomes lower than 800 degreeC and there exists a tendency for remarkable activation improvement not to be recognized even if it exceeds 1000 degreeC, it is unpreferable.
Further, as described above, it is preferable that annealing using a gas is performed at an annealing temperature of 300 to 700 ° C. with argon or nitrogen as an inert atmosphere or hydrogen as a reducing atmosphere. As the temperature is lower than 300 ° C., sufficient annealing cannot be performed, and even if the temperature is higher than 700 ° C., there is a tendency that the effect of annealing cannot be obtained. In addition, in order to control the hydrophilic and hydrophobic properties of the pore distribution, annealing is increased from room temperature to 300 to 700 ° C. over 0.5 to 1.5 hours and maintained at a temperature increased for about 0 to 2 hours. Then, it is preferable to naturally cool. As the time is shorter than 0.5 hours, the whole surface acidic functional groups are remarkably removed, and even if the time is longer than 1.5 hours, the removal of the whole surface acidic functional groups tends not to decrease.
As described above, as the raw material for activated carbon, natural organic materials such as coconut shells, sawdust and wood, synthetic organic materials such as various synthetic resins and synthetic fibers polymerized with raw materials having carbon atoms, or coal, coal pitch Petroleum pitch is used.
[0068]
【Effect of the invention】
As is clear from the above, the following excellent effects can be realized by using the activated carbon filler in the present invention.
[0069]
According to invention of Claim 1, it has the following effects.
[0070]
(1) To provide activated carbon having a high adsorption capacity per unit weight and a markedly improved adsorption performance in the purification of trihalomethanes in the passing water, in which an adsorption zone is formed and treated water passes through the adsorption zone. be able to.
[0071]
(2) After the activation treatment, annealing is performed, and the value φ obtained by multiplying the total surface acidic functional group amount (α) and pH (β) is set to 0.49 ≦ φ ≦ 0.82. To provide activated carbon in which the balance between water uptake by functional groups and adsorption of trihalomethanes on the surface of hydrophobic activated carbon is improved, and the adsorption amount of trihalomethanes is increased even in a dynamic state of passing water. it can.
[0072]
According to invention of
[0073]
(1) By adjusting the pH to 5.0 to 7.5, preferably 5.6 to 7.5, the water quality standards for tap water are satisfied, and even when used in an alkaline ionized water apparatus, the pH is kept at a predetermined level. Adjustable activated carbon can be provided.
[0074]
According to invention of
[0075]
(1) Activated carbon can be provided at low cost by using fruit shells that are industrial waste.
[0076]
(2) Since there are fewer metal impurities than mineral raw materials such as coal, it is possible to provide activated carbon that is safe and easy to adjust the structure.
[0077]
(3) By using a thermosetting resin, it is hardened and activated carbonized at the time of carbonization and activation treatment, so that activated carbon capable of diversifying materials can be provided.
[0078]
According to invention of
[0079]
(1) By using the coconut shell which is an industrial waste, it is possible to provide activated carbon whose raw material is inexpensive.
[0080]
(2) Since it is stably supplied from Southeast Asia, it is possible to provide activated carbon that can be manufactured stably at a low cost.
[0081]
(3) By using a phenolic synthetic resin, it is possible to provide activated carbon that has few metal impurities and is safe and easy to adjust the structure.
[0082]
According to invention of
[0083]
(1) Adsorption per unit weight of activated carbon in a water purifier for underwater trihalomethanes in which water to be treated passes through the adsorption zone by forming an activated carbon by controlling the pore size distribution. It is possible to provide a water purifier that greatly improves the capacity and sufficiently exhibits the adsorption performance of activated carbon.
[0084]
(2) By reducing the amount of activated carbon necessary for adsorption of trihalomethanes, it is possible to provide a water purifier that can realize a reduction in the size, long life, and cost of the cartridge.
[Brief description of the drawings]
[Fig. 1] Relationship between the surface acidic functional group amount of activated carbon and the value φ multiplied by pH and the trihalomethane adsorption capacity when coconut shell is used as the activated carbon material. [Fig. 2] When phenol resin is used as the activated carbon material. Fig. 3 is a graph showing the relationship between the amount of surface acidic functional groups of activated carbon and the value φ multiplied by pH and the adsorption capacity of trihalomethane. Fig. 3 Relationship between pH of activated carbon and pH during water passage (after initial 10 minutes) ] Schematic diagram showing the form of water purifier using activated carbon of the present invention [Explanation of symbols]
1
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000220451A JP4876301B2 (en) | 2000-07-21 | 2000-07-21 | Activated carbon and water purifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000220451A JP4876301B2 (en) | 2000-07-21 | 2000-07-21 | Activated carbon and water purifier |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002029722A JP2002029722A (en) | 2002-01-29 |
JP4876301B2 true JP4876301B2 (en) | 2012-02-15 |
Family
ID=18715060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000220451A Expired - Fee Related JP4876301B2 (en) | 2000-07-21 | 2000-07-21 | Activated carbon and water purifier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4876301B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8205755B2 (en) | 2006-03-22 | 2012-06-26 | 3M Innovative Properties Company | Filter media |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08281099A (en) * | 1995-04-13 | 1996-10-29 | Toyobo Co Ltd | Adsorbent for organic chlorine compound |
JPH09225454A (en) * | 1996-02-28 | 1997-09-02 | Takeda Chem Ind Ltd | Wet activated carbon and preserving method therefor |
-
2000
- 2000-07-21 JP JP2000220451A patent/JP4876301B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002029722A (en) | 2002-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ghasemi et al. | Synthesis of a high characteristics activated carbon from walnut shell for the removal of Cr (VI) and Fe (II) from aqueous solution: single and binary solutes adsorption | |
US20050247635A1 (en) | Adsorbents for removing heavy metal cations and methods for producing and using these adsorbents | |
JP2023182576A (en) | Chemical sorbent oxidation method and sorbents made therefrom | |
Goud et al. | Phenol removal from aqueous solutions by tamarind nutshell activated carbon: batch and column studies | |
WO2005082523A1 (en) | Adsorbents for removing heavy metal cations and methods for producing and using these adsorbents | |
Fooladvand et al. | Adsorption potential of NH 4 Br-soaked activated carbon for cyanide removal from wastewater | |
JP3506043B2 (en) | Activated carbon and water purifier using it | |
Kachabi et al. | Synthesis and adsorption properties of activated carbon from KOH-activation of Moroccan Jujube shells for the removal of COD and color from wastewater | |
Sihombing et al. | Filter material based on zeolite-activated charcoal from cocoa shells as ammonium adsorbent in greywater treatment | |
JP4876301B2 (en) | Activated carbon and water purifier | |
Zhang et al. | Regeneration of 4-chlorophenol from spent powdered activated carbon by ultrasound | |
JP3528685B2 (en) | Activated carbon and water purifier equipped with it | |
JP3693544B2 (en) | Activated carbon and water purifier provided with the same | |
JP3915597B2 (en) | Water purification cartridge | |
CN115087498A (en) | Carbonaceous material, method for producing same, filter for water purification, and water purifier | |
Knappe et al. | Effects of activated carbon characteristics on organic contaminant removal | |
Tzvetkova et al. | DIATOMITE/CARBON ADSORBENT FOR PHENOL REMOVAL. | |
JP4876307B2 (en) | Method for producing activated carbon | |
KR102576958B1 (en) | Activated carbon, and method for producing the activated carbon | |
JP2001162269A (en) | Activated carbon filler and water cleaning cartridge using the filler | |
JP2002053314A (en) | Activated carbon and water purifier provided with the same | |
Yusuf et al. | Investigations of nickel (II) removal from aqueous effluents using electric arc furnace slag | |
Anisuzzaman et al. | Sorption potential of oil palm shell for the removal of chlorinated phenol from aqueous solution: kinetic investigation | |
JP3436190B2 (en) | Method for producing activated carbon for running water treatment and activated carbon for running water treatment obtained by the method | |
JPH06106161A (en) | Activated carbon water purifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20070319 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070322 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070322 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070517 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100617 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100727 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100924 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101116 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110418 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111101 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111114 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141209 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |